1
|
Salah B, Abdelgawad A, El-Demellawi JK, Lu Q, Xia Z, Abdullah AM, Eid K. Scalable One-Pot Fabrication of Carbon-Nanofiber-Supported Noble-Metal-Free Nanocrystals for Synergetic-Dependent Green Hydrogen Production: Unraveling Electrolyte and Support Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18768-18781. [PMID: 38588442 DOI: 10.1021/acsami.3c18191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Electrocatalytic hydrogen evolution reactions (HER) are envisaged as the most promising sustainable approach for green hydrogen production. However, the considerably high cost often associated with such reactions, particularly upon scale-up, poses a daunting challenge. Herein, a facile, effective, and environmentally benign one-pot scalable approach is developed to fabricate MnM (M═Co, Cu, Ni, and Fe) nanocrystals supported over in situ formed carbon nanofibers (MnM/C) as efficient noble-metal-free electrocatalysts for HER. The formation of carbon nanofibers entails impregnating cellulose in an aqueous solution of metal precursors, followed by annealing the mixture at 550 °C. During the impregnation process, cellulose acts as a reactor for inducing the in situ reductions of MnM salts with the assistance of ether and hydroxyl groups to drive the mass production (several grams) of ultralong (5 ± 1 μM) carbon nanofibers ornamented with MnM nanoparticles (10-14 nm in size) at an average loading of 2.87 wt %. For better electrocatalytic HER benchmarking, the fabricated catalysts were tested over different working electrodes, i.e., carbon paper, carbon foam, and glassy carbon, in the presence of different electrolytes. All the fabricated MnM/C catalysts have demonstrated an appealing synergetic-effect-dependent HER activity, with MnCo/C exhibiting the best performance over carbon foam, close to that of the state-of-the-art commercial Pt/C (10 wt % Pt), with an overpotential of 11 mV at 10 mA cm-2, a hydrogen production rate of 2448 mol g-1 h-1, and a prolonged stability of 2 weeks. The HER performance attained by MnCo/C nanofibers is among the highest reported for Pt-free electrocatalysts, thanks to the mutual alloying effect, higher synergism, large surface area, and active interfacial interactions over the nanofibers. The presented findings underline the potential of our approach for the large-scale production of cost-effective electrocatalysts for practical HER.
Collapse
Affiliation(s)
- Belal Salah
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Jehad K El-Demellawi
- KAUST Upstream Research Center (KURC), EXPEC-ARC, Saudi Aramco, Thuwal 23955-6900, Saudi Arabia
| | - Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhonghong Xia
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | | | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
2
|
Zhang FW, Trackey PD, Verma V, Mandes GT, Calabro RL, Presot AW, Tsay CK, Lawton TJ, Zammit AS, Tang EM, Nguyen AQ, Munz KV, Nagelli EA, Bartolucci SF, Maurer JA, Burpo FJ. Cellulose Nanofiber-Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels 2023; 9:893. [PMID: 37998983 PMCID: PMC10671317 DOI: 10.3390/gels9110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF-alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF-alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel's mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications.
Collapse
Affiliation(s)
- Felita W. Zhang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Paul D. Trackey
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Vani Verma
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Galen T. Mandes
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Rosemary L. Calabro
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Anthony W. Presot
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Claire K. Tsay
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Timothy J. Lawton
- U.S. Army Combat Capabilities Development Command-Soldier Center, Natick, MA 01760, USA;
| | - Alexa S. Zammit
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Edward M. Tang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Andrew Q. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Kennedy V. Munz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Enoch A. Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| | - Stephen F. Bartolucci
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Joshua A. Maurer
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - F. John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
3
|
Mannan Butt A, Batool M, Abi Jaoude M, Qurashi A. Recent Advancement in Manganese-based Electrocatalyst for Green Hydrogen Production. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Xin Y, Cang Y, Wang Z, Dou X, Hao W, Miao Y. Construction of Non-Precious Metal Self-Supported Electrocatalysts for Oxygen Evolution from a Low-Temperature Immersion Perspective. CHEM REC 2023; 23:e202200259. [PMID: 36744591 DOI: 10.1002/tcr.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Water splitting is considered as a promising technology to solve energy shortage and environmental pollution. Since oxygen evolution reaction (OER) directly affects the efficiency of hydrogen evolution, the preparation of efficient and inexpensive OER catalysts is an urgent problem. "Low-temperature immersion" (LTI) is expected to be a prospective strategy for electrocatalyst preparation due to its simplicity and energy-saving advantages. However, there is almost no comprehensive overview on the progress of LTI engineering in the construction of non-precious metal self-supported electrocatalysts for OER. Herein, this review firstly introduces the principles and applications of LTI engineering-assisted preparation of non-precious metal self-supported electrocatalysts in terms of etching and deposition. Then the mechanism of OER is analyzed from an amorphous viewpoint, and finally some perspective insights and future challenges of this method are discussed.
Collapse
Affiliation(s)
- Yanmei Xin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Rd 334#, Shanghai, 200093, China
| | - Yegui Cang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Rd 334#, Shanghai, 200093, China
| | - Zhuo Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Rd 334#, Shanghai, 200093, China
| | - Xiaoru Dou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Rd 334#, Shanghai, 200093, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Rd 334#, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Rd 334#, Shanghai, 200093, China
| |
Collapse
|
5
|
Chen Y, He J, Pang H, Jiang P, Qu F, Yu D, Zhang J. New insight into electrochemical denitrification using a self-organized nanoporous V O-Co 3O 4/Co cathode: Plasma-assistant oxygen vacancies catalyzed efficient nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157845. [PMID: 35932858 DOI: 10.1016/j.scitotenv.2022.157845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
A novel self-organized nanoporous VO-Co3O4/Co cathode was prepared via anodization and plasma treatment and obtained a significant nitrate reduction efficiency. In the anodization, an oxide layer with the nano-sized pore structure initially grew in-situ on the Co substrate and showed a better surface area. Subsequently, He-plasma increased surface oxygen vacancies (VO) from 24 % to 57 %. Electrons in vacancies were charged into empty eg orbital of low-spin Co3+(Oh, octahedral) and firstly generated high-spin Co2+(Oh) with the configuration of t2g6eg1, accounting for 71.7 % of cobalt species. Accordingly, two original mechanisms (Vo-catalyzed and Co2+(Oh)-catalyzed) were concluded in this study. Oxygen vacancies increased the charge intensity and served as absorption sites in nitrate reduction. Meanwhile, massive Co2+(Oh) provided electrons in the eg orbital with a higher energy state and mediated the faster electron transfer through a Co2+-Co3+-Co2+ redox cycle, compared with Co2+ (Td, tetrahedral). Ultimately, a faster reaction kinetic of 0.0220 min-1 was achieved by VO-Co3O4 than other cathodes e.g., Co3O4 (0.0150 min-1). Such VO-Co3O4/Co cathode-based denitrification strategy displayed great advantages in engineering application and completely removed 90 % of TN from actual wastewater.
Collapse
Affiliation(s)
- Yiwen Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heliang Pang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peigen Jiang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dehai Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Amiri M, Dondapati J, Quintal J, Chen A. Sodium Hexa-Titanate Nanowires Modified with Cobalt Hydroxide Quantum Dots as an Efficient and Cost-Effective Electrocatalyst for Hydrogen Evolution in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40021-40030. [PMID: 36006793 DOI: 10.1021/acsami.2c11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel electrocatalyst with high activity and enhanced durability toward the hydrogen evolution reaction (HER) in alkaline media has been designed and fabricated based on sodium hexa-titanate (Na2Ti6O13) nanowires synthesized by a hydrothermal process and modified with Co(OH)2 quantum dots (QDs) by a facile chemical bath deposition (CBD) method. The current response of the developed Ti/Na2Ti6O13/Co(OH)2 nanocomposite electrode attained 10 mA cm-2 at an overpotential of 159 mV. The nanocomposite electrode exhibited a high stability at an applied current of 100 mA cm-2. The remarkable catalytic behavior was achieved with a loading amount of ca. 0.06 mg cm-2 cobalt hydroxide. This is attributed to the high electrochemically active surface area (EASA) gained by the nanowire-structured substrate and considerable enhancement of electrochemical conductivity with the use of Co(OH)2 quantum dots as an active material. The superior catalytic activity and high stability show that the developed catalyst is a promising candidate for hydrogen production in alkaline media.
Collapse
Affiliation(s)
- Mona Amiri
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Jesse Dondapati
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Jonathan Quintal
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Chen Y, He J, Jiang P, Pang H, Hu X, Zhang J, Zhang W. New insight into degradation of chloramphenicol using a nanoporous Pd/Co 3O 4cathode: characterization and pathways analysis. NANOTECHNOLOGY 2022; 33:210001. [PMID: 35134791 DOI: 10.1088/1361-6528/ac530c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The growing chloramphenicol (CAP) in wastewater brought a serious threat to the activity of activated sludge and the spread of antibiotics resistance bacteria. In this study, a highly ordered nanoporous Co3O4layer on Co foil through anodization was prepared as cathode for nitro-group reduction and electrodeposited with Pd particles for dechlorination to reduce CAP completely. After 3 h treatment, almost 100% of CAP was reduced. Co2+ions in Co3O4served as catalytic sites for electrons transfer to CAP through a redox circle Co2+-Co3+-Co2+, which triggered nitro-group reduction at first. With the presence of Pd particles, more atomic H* were generated for dechlorination, which increased 22% of reduction efficiency after 3 h treatment. Therefore, a better capacity was achieved by Pd/Co3O4cathode (K = 0.0245 min-1,Kis reaction constant) than by other cathodes such as Fe/Co3O4(K = 0.0182 min-1), Cu/Co3O4(K = 0.0164 min-1), and pure Co3O4(K = 0.0106 min-1). From the proposed reaction pathway, the ultimate product was carbonyl-reduced AM (dechlorinated aromatic amine product of CAP) without antibacterial activity, which demonstrated this cathodic technology was a feasible way for wastewater pre-treatment.
Collapse
Affiliation(s)
- Yiwen Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Peigen Jiang
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Xuhui Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|