1
|
Peng Y, She X, Peng Y. Characterization of key genes and immune cell infiltration associated with endometriosis through integrating bioinformatics and experimental analyses. Hereditas 2025; 162:49. [PMID: 40165344 PMCID: PMC11956255 DOI: 10.1186/s41065-025-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUNDS Endometriosis (EM) is the most common gynecological disease in women of childbearing age. This study aims to identify key genes and screen drugs that may contribute to EM treatment. METHODS The differentially expressed genes (DEGs) were identified using limma analysis in the GSE11691 dataset. The protein-protein network (PPI) was constructed. Four machine learning methods, including LASSO, SVM-RFE, random forest, and Boruta, were applied to identify the key genes associated with EM. Flow cytometry, wound healing, and migration assays were applied to assess the cell functions of APLNR on hEM15A. The immune cell infiltration of each sample in EM was calculated using a single-sample gene set enrichment analysis (ssGSEA) algorithm. The potential drugs were screened using the Connectivity Map (CMAP) database, based on the DEGs. Finally, the expression levels of the three genes were further validated in the GSE23339 dataset. RESULTS One hundred thirty-seven down-regulated genes and 304 up-regulated genes were identified. We identified three key genes associated with EM: APLNR, HLA-DPA1, and AP1S2. The ssGSEA analysis results indicated that these genes play an important role in the development of EM. Moreover, EM immune cell infiltration was tightly associated with these three genes. Finally, several molecular compounds targeting EM were screened with the connectivity map (CMAP) database. ShAPLNR decreased the cell viability of hEM15A, increased the number of apoptotic cells, and significantly decreased the proportion of callus through APLNR in vitro studies. DISCUSSION Three genes (APLNR, HLA-DPA1, and AP1S2) may serve as novel therapeutic targets for diagnosing and treating patients with EM.
Collapse
Affiliation(s)
- Ying Peng
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong She
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Peng
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Khurram I, Khan MU, Ibrahim S, Ghani MU, Amin I, Falzone L, Herrera-Bravo J, Setzer WN, Sharifi-Rad J, Calina D. Thapsigargin and its prodrug derivatives: exploring novel approaches for targeted cancer therapy through calcium signaling disruption. Med Oncol 2024; 42:7. [PMID: 39557802 DOI: 10.1007/s12032-024-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Thapsigargin, a sesquiterpene lactone derived from Thapsia garganica L., has demonstrated mixed potential as an anticancer agent due to its potent ability to disrupt calcium signaling and induce apoptosis. This review evaluates the chemopreventive and chemotherapeutic potential of thapsigargin, focusing on its molecular mechanisms and toxicity. An extensive literature review of studies published since 2015 was conducted using databases such as PubMed/MedLine and Science Direct. Findings indicate that thapsigargin's primary mechanism is the inhibition of sarco/endoplasmic reticulum calcium ATPase, leading to endoplasmic reticulum stress and cell death in various cancer types. Despite these effects, thapsigargin's non-specific cytotoxicity results in significant side effects, including organ damage and histamine-related reactions. Recent advances in targeted delivery, especially with the prodrug mipsagargin, initially suggested promise in minimizing these toxicities by selectively activating in cancer cells expressing prostate-specific membrane antigen (PSMA). However, the completion of clinical trials with no ongoing studies suggests that the viability of mipsagargin and other prodrugs remains uncertain, especially in light of the toxicities observed. While thapsigargin and its derivatives present a potential pathway in cancer treatment, their future role in oncology requires careful re-evaluation.
Collapse
Affiliation(s)
- Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
3
|
Arunachalam AR, Samuel SS, Mani A, Maynard JP, Stayer KM, Dybbro E, Narayanan S, Biswas A, Pathan S, Soni K, Kamal AHM, Ambati CSR, Putluri N, Desai MS, Thevananther S. P2Y2 purinergic receptor gene deletion protects mice from bacterial endotoxin and sepsis-associated liver injury and mortality. Am J Physiol Gastrointest Liver Physiol 2023; 325:G471-G491. [PMID: 37697947 PMCID: PMC10812707 DOI: 10.1152/ajpgi.00090.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Athis R Arunachalam
- Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sanju S Samuel
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Arunmani Mani
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Janielle P Maynard
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kelsey M Stayer
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Eric Dybbro
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Subapradha Narayanan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Aalekhya Biswas
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Saliha Pathan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Krishnakant Soni
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Moreshwar S Desai
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sundararajah Thevananther
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
4
|
Parkkinen I, Their A, Asghar MY, Sree S, Jokitalo E, Airavaara M. Pharmacological Regulation of Endoplasmic Reticulum Structure and Calcium Dynamics: Importance for Neurodegenerative Diseases. Pharmacol Rev 2023; 75:959-978. [PMID: 37127349 DOI: 10.1124/pharmrev.122.000701] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca2+), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity. The brain itself is high in lipid content, and many structural lipids are produced, in part, by the ER. Cholesterol and steroid synthesis are strictly regulated in the ER of the blood-brain barrier protected brain cells. The high Ca2+ level in the ER lumen and low cytosolic concentration is needed for Ca2+-based intracellular signaling, for synaptic signaling and Ca2+ waves, and for preparing proteins for correct folding in the presence of high Ca2+ concentrations to cope with the high concentrations of extracellular milieu. Particularly, ER Ca2+ is controlled in axodendritic areas for proper neurito- and synaptogenesis and synaptic plasticity and remodeling. In this review, we cover the physiologic functions of the neuronal ER and discuss it in context of common neurodegenerative diseases, focusing on pharmacological regulation of ER Ca2+ Furthermore, we postulate that heterogeneity of the ER, its protein folding capacity, and ensuring Ca2+ regulation are crucial factors for the aging and selective vulnerability of neurons in various neurodegenerative diseases. SIGNIFICANCE STATEMENT: Endoplasmic reticulum (ER) Ca2+ regulators are promising therapeutic targets for degenerative diseases for which efficacious drug therapies do not exist. The use of pharmacological probes targeting maintenance and restoration of ER Ca2+ can provide restoration of protein homeostasis (e.g., folding of complex plasma membrane signaling receptors) and slow down the degeneration process of neurons.
Collapse
Affiliation(s)
- Ilmari Parkkinen
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Anna Their
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Muhammad Yasir Asghar
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Sreesha Sree
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Liu B, Zhang L, Yang H, Chen X, Zheng H, Liao X. SIK2 protects against renal tubular injury and the progression of diabetic kidney disease. Transl Res 2023; 253:16-30. [PMID: 36075517 DOI: 10.1016/j.trsl.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023]
Abstract
Despite optimal medical therapy, many patients with diabetic kidney disease (DKD) progress to end-stage renal disease. The identification of new biomarkers and drug targets for DKD is required for the development of more effective therapies. The apoptosis of renal tubular epithelial cells is a key feature of the pathogenicity associated with DKD. SIK2, a salt-inducible kinase, regulates important biological processes, such as energy metabolism, cell cycle progression and cellular apoptosis. In our current study, a notable decrease in the expression of SIK2 was detected in the renal tubules of DKD patients and murine models. Functional experiments demonstrated that deficiency or inactivity of SIK2 aggravates tubular injury and interstitial fibrosis in diabetic mice. Based on transcriptome sequencing, molecular mechanism exploration revealed that SIK2 overexpression reduces endoplasmic reticulum (ER) stress-mediated tubular epithelial apoptosis by inhibiting the histone acetyltransferase activity of p300 to activate HSF1/Hsp70. Furthermore, the specific restoration of SIK2 in tubules blunts tubular and interstitial impairments in diabetic and vancomycin-induced kidney disease mice. Together, these findings indicate that SIK2 protects against renal tubular injury and the progression of kidney disease, and make a compelling case for targeting SIK2 for therapy in DKD.
Collapse
Affiliation(s)
- Bingyao Liu
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hang Yang
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xinyu Chen
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Xiaoyu Liao
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Yang L, Li Z, Ouyang Y. Taurine attenuates ER stress‑associated apoptosis and catabolism in nucleus pulposus cells. Mol Med Rep 2022; 25:172. [PMID: 35315493 PMCID: PMC8971911 DOI: 10.3892/mmr.2022.12688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleus pulposus (NP) apoptosis and subsequent excessive degradation of the extracellular matrix (ECM) are key pathological characteristics of intervertebral disc degeneration (IDD). The present study aims to examine the signaling processes underlying the effects of taurine on IDD, with specific focus on endoplasmic reticulum (ER) stress-mediated apoptosis and ECM degradation, in NP cells. To clarify the role of taurine in IDD, NP cells were treated with various concentrations of taurine and IL-1β or thapsigargin (TG). Cell Counting Kit-8, western blotting, TUNEL, immunofluorescence assays and reverse transcription-quantitative PCR were applied to measure cell viability, the expression of ER stress-associated proteins (GRP78, CHOP and caspase-12), apoptosis and the levels of metabolic factors associated with ECM (MMP-1, 3, 9, ADAMTS-4, 5 and collagen II), respectively. Taurine was found to attenuate ER stress and prevent apoptosis in NP cells induced by IL-1β treatment. Additionally, taurine significantly decreased the expression of ER stress-activated glucose regulatory protein 78, C/EBP homologous protein and caspase-12. TUNEL results revealed that taurine decreased the number of apoptotic TG-treated NP cells. TG-treated NP cells also exhibited characteristics of increased ECM degradation, supported by observations of increased MMP-1, MMP-3, MMP-9 and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 expression in addition to decreased collagen-II expression. However, taurine treatment significantly reversed all indicators of excessive ECM catabolism aforementioned. These data suggest that taurine can mediate protection against apoptosis and ECM degradation in NP cells by inhibiting ER stress, implicating therapeutic potential for the treatment of IDD.
Collapse
Affiliation(s)
- Liuxie Yang
- Department of Orthopedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200040, P.R. China
| | - Zhenhuan Li
- Department of Orthopedics, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200040, P.R. China
| | - Yueping Ouyang
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
8
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Li Z, Guo J, Bian Y, Zhang M. Intermedin protects thapsigargin‑induced endoplasmic reticulum stress in cardiomyocytes by modulating protein kinase A and sarco/endoplasmic reticulum Ca 2+‑ATPase. Mol Med Rep 2020; 23:107. [PMID: 33300086 PMCID: PMC7723158 DOI: 10.3892/mmr.2020.11746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intermedin (IMD) is a calcitonin/calcitonin-related peptide that elicits cardioprotective effects in a variety of heart diseases, such as cardiac hypertrophy and heart failure. However, the molecular mechanism of IMD remains unclear. The present study investigated the effects of IMD on neonatal rat ventricular myocytes treated with thapsigargin. The results of the present study demonstrated that thapsigargin induced apoptosis in cardiomyocytes in a dose- and time-dependent manner. Thapsigargin induced endoplasmic reticulum stress, as determined by increased expression levels of 78-kDa glucose-regulated protein, C/EBP-homologous protein and caspase-12, which were dose-dependently attenuated by pretreatment with IMD. In addition, IMD treatment counteracted the thapsigargin-induced suppression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression levels, and cytoplasmic Ca2+ overload. IMD treatment also augmented the phosphorylation of phospholamban, which is a crucial regulator of SERCA. Additionally, treatment with the protein kinase A antagonist H-89 inhibited the IMD-mediated cardioprotective effects, including SERCA activity restoration, anti-Ca2+ overload, endoplasmic reticulum stress inhibition and antiapoptosis effects. In conclusion, the results of the present study suggested that IMD may protect cardiomyocytes against thapsigargin-induced endoplasmic reticulum stress and the associated apoptosis at least partly by activating the protein kinase A/SERCA pathway.
Collapse
Affiliation(s)
- Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jia Guo
- Department of Cardiology, Shanxi Medical University First Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Yunfei Bian
- Department of Cardiology, Shanxi Medical University Second Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
10
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
11
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
12
|
Bergmann TJ, Fregno I, Fumagalli F, Rinaldi A, Bertoni F, Boersema PJ, Picotti P, Molinari M. Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem 2018; 293:5600-5612. [PMID: 29453283 DOI: 10.1074/jbc.ra117.001484] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
The stress sensors ATF6, IRE1, and PERK monitor deviations from homeostatic conditions in the endoplasmic reticulum (ER), a protein biogenesis compartment of eukaryotic cells. Their activation elicits unfolded protein responses (UPR) to re-establish proteostasis. UPR have been extensively investigated in cells exposed to chemicals that activate ER stress sensors by perturbing calcium, N-glycans, or redox homeostasis. Cell responses to variations in luminal load with unfolded proteins are, in contrast, poorly characterized. Here, we compared gene and protein expression profiles in HEK293 cells challenged with ER stress-inducing drugs or expressing model polypeptides. Drug titration to limit up-regulation of the endogenous ER stress reporters heat shock protein family A (Hsp70) member 5 (BiP/HSPA5) and homocysteine-inducible ER protein with ubiquitin-like domain 1 (HERP/HERPUD1) to levels comparable with luminal accumulation of unfolded proteins substantially reduced the amplitude of both transcriptional and translational responses. However, these drug-induced changes remained pleiotropic and failed to recapitulate responses to ER load with unfolded proteins. These required unfolded protein association with BiP and induced a much smaller subset of genes participating in a chaperone complex that binds unfolded peptide chains. In conclusion, UPR resulting from ER load with unfolded proteins proceed via a well-defined and fine-tuned pathway, whereas even mild chemical stresses caused by compounds often used to stimulate UPR induce cellular responses largely unrelated to the UPR or ER-mediated protein secretion.
Collapse
Affiliation(s)
- Timothy J Bergmann
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ilaria Fregno
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fiorenza Fumagalli
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Graduate School for Cellular and Biomedical Sciences, University of Bern, 3001 Bern, Switzerland
| | - Andrea Rinaldi
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Istituto Oncologico di Ricerca, 6500 Bellinzona, Switzerland, and
| | - Francesco Bertoni
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Istituto Oncologico di Ricerca, 6500 Bellinzona, Switzerland, and
| | - Paul J Boersema
- the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Maurizio Molinari
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland, .,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the École Polytechnique Fédérale de Lausanne, School of Life Sciences, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Charles E, Hammadi M, Kischel P, Delcroix V, Demaurex N, Castelbou C, Vacher AM, Devin A, Ducret T, Nunes P, Vacher P. The antidepressant fluoxetine induces necrosis by energy depletion and mitochondrial calcium overload. Oncotarget 2017; 8:3181-3196. [PMID: 27911858 PMCID: PMC5356874 DOI: 10.18632/oncotarget.13689] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
Selective Serotonin Reuptake Inhibitor antidepressants, such as fluoxetine (Prozac), have been shown to induce cell death in cancer cells, paving the way for their potential use as cancer therapy. These compounds are able to increase cytosolic calcium concentration ([Ca2+]cyt), but the involved mechanisms and their physiological consequences are still not well understood. Here, we show that fluoxetine induces an increase in [Ca2+]cyt by emptying the endoplasmic reticulum (ER) through the translocon, an ER Ca2+ leakage structure. Our data also show that fluoxetine inhibits oxygen consumption and lowers mitochondrial ATP. This latter is essential for Ca2+ reuptake into the ER, and we postulated therefore that the fluoxetine-induced decrease in mitochondrial ATP production results in the emptying of the ER, leading to capacitative calcium entry. Furthermore, Ca2+ quickly accumulated in the mitochondria, leading to mitochondrial Ca2+ overload and cell death. We found that fluoxetine could induce an early necrosis in human peripheral blood lymphocytes and Jurkat cells, and could also induce late apoptosis, especially in the tumor cell line. These results shed light on fluoxetine-induced cell death and its potential use in cancer treatment.
Collapse
Affiliation(s)
- Emilie Charles
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Mehdi Hammadi
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Philippe Kischel
- Laboratory of Cellular and Molecular Physiology EA4667, Université de Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Vanessa Delcroix
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Anne-Marie Vacher
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Anne Devin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Thomas Ducret
- INSERM U1045, Centre de Recherche Cardio-Thoracique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Pierre Vacher
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Farghali H, Canová NK, Zakhari S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. PHARMACEUTICAL BIOLOGY 2015; 53:781-791. [PMID: 25489628 DOI: 10.3109/13880209.2014.950387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT We focused on certain plant active constituents considered to be the most promising/studied for liver disease and that were critically investigated from the basic science point of view and, to some extent, the clinical one. Due to insufficient pharmacological data, most of the herbal formulations containing these molecules cannot be recommended for the treatment of liver disease. OBJECTIVE To present the most promising compounds tested experimentally and/or clinically and describe in brief popular models in experimental testing of potential hepatoprotective compounds. METHODS A literature search using Web of Science (WOS), PubMed, and Google search was performed. RESULTS Focusing on a few herbal hepatoprotective active constituents is useful to health professionals working in the field of therapeutics to develop evidence-based hepatoprotective agents by conducting research on pure chemical structures or on molecular modifications using computational chemistry. This review demonstrates that multi-pathways in the liver pathobiology can be interrupted at one or more levels by natural hepatoprotective studied, such as interference with the oxidative stress at multiple levels to reduce reactive oxygen/nitrogen species, resulting in ameliorating hepatotoxicity. CONCLUSION Hepatoprotective constituents of herbal medications are poorly absorbed after oral administration; methods that can improve their bioavailability are being developed. It is recommended that controlled prospective double-blind multicenter studies on isolated active plant constituents, or on related newly designed molecules after structural modifications, should be performed. This effort will lead to expanding the existing, limited drugs for the vast majority of liver diseases.
Collapse
Affiliation(s)
- Hassan Farghali
- First Faculty of Medicine, Institute of Pharmacology, Charles University in Prague , Czech Republic and
| | | | | |
Collapse
|
15
|
Pink1 protects cortical neurons from thapsigargin-induced oxidative stress and neuronal apoptosis. Biosci Rep 2015; 35:BSR20140104. [PMID: 25608948 PMCID: PMC4340272 DOI: 10.1042/bsr20140104] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apoptosis mediates the precise and programmed natural death of neurons and is a physiologically important process in neurogenesis during maturation of the central nervous system. However, premature apoptosis and/or an aberration in apoptosis regulation are implicated in the pathogenesis of neurodegeneration. Thus, it is important to identify neuronal pathways/factors controlling apoptosis. Pink1 [phosphatase and tensin homologue (PTEN)-induced kinase 1] is a ubiquitously expressed gene and has been reported to have a physiological role in mitochondrial maintenance, suppressing mitochondrial oxidative stress, fission and autophagy. However, how Pink1 is involved in neuronal survival against oxidative stress remains not well understood. In the present paper, we demonstrate that thapsigargin, a specific irreversible inhibitor of endoplasmic reticulum (ER) calcium-ATPase, could lead to dramatic oxidative stress and neuronal apoptosis by ectopic calcium entry. Importantly, the neuronal toxicity of thapsigargin inhibits antioxidant gene Pink1 expression. Although Pink1 knockdown enhances the neuronal apoptosis by thapsigargin, its overexpression restores it. Our findings have established the neuronal protective role of Pink1 against oxidative stress and afford rationale for developing new strategy to the therapy of neurodegenerative diseases. Pink1 (PTEN-induced kinase 1) have a physiological role in mitochondrial maintenance, suppressing mitochondrial oxidative stress, fission, and autophagy. Our findings indicated that thapsigargin induced oxidative stress and neuronal apoptosis in cultured neurons is at least partly mediated inactivation of Pink1.
Collapse
|
16
|
Borlak J, Chougule A, Singh PK. How useful are clinical liver function tests in in vitro human hepatotoxicity assays? Toxicol In Vitro 2014; 28:784-95. [PMID: 24685772 DOI: 10.1016/j.tiv.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
|
17
|
Takaki A, Kawai D, Yamamoto K. Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH). Int J Mol Sci 2014; 15:7352-79. [PMID: 24786095 PMCID: PMC4057677 DOI: 10.3390/ijms15057352] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/28/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD), in which most patients exhibit non-progressive, non-alcoholic fatty liver (NAFL) attributable to simple steatosis. Multiple hits, including genetic differences, fat accumulation, insulin resistance and intestinal microbiota changes, account for the progression of NASH. NAFLD is strongly associated with obesity, which induces adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level, which in turn induces hepatic steatosis, inflammation and fibrosis. Among these factors, gut microbiota are acknowledged as having an important role in initiating this multifactorial disease. Oxidative stress is considered to be a key contributor in the progression from NAFL to NASH. Macrophage infiltration is apparent in NAFL and NASH, while T-cell infiltration is apparent in NASH. Although several clinical trials have shown that antioxidative therapy with vitamin E can effectively control hepatitis pathology in the short term, the long-term effects remain obscure and have often proved to be ineffective in many other diseases. Several long-term antioxidant protocols have failed to reduce mortality. New treatment modalities that incorporate current understanding of NAFLD molecular pathogenesis must be considered.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Daisuke Kawai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
18
|
Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci 2013; 14:20704-28. [PMID: 24132155 PMCID: PMC3821639 DOI: 10.3390/ijms141020704] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 12/12/2022] Open
Abstract
Multiple parallel hits, including genetic differences, insulin resistance and intestinal microbiota, account for the progression of non-alcoholic steatohepatitis (NASH). Multiple hits induce adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level that subsequently induce hepatic steatosis, inflammation and fibrosis, among which oxidative stress is considered a key contributor to progression from simple fatty liver to NASH. Although several clinical trials have shown that anti-oxidative therapy can effectively control hepatitis activities in the short term, the long-term effect remains obscure. Several trials of long-term anti-oxidant protocols aimed at treating cerebrovascular diseases or cancer development have failed to produce a benefit. This might be explained by the non-selective anti-oxidative properties of these drugs. Molecular hydrogen is an effective antioxidant that reduces only cytotoxic reactive oxygen species (ROS) and several diseases associated with oxidative stress are sensitive to hydrogen. The progress of NASH to hepatocellular carcinoma can be controlled using hydrogen-rich water. Thus, targeting mitochondrial oxidative stress might be a good candidate for NASH treatment. Long term clinical intervention is needed to control this complex lifestyle-related disease.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
19
|
Ollivier A, Grougnet R, Cachet X, Meriane D, Ardisson J, Boutefnouchet S, Deguin B. Large scale purification of the SERCA inhibitor Thapsigargin from Thapsia garganica L. roots using centrifugal partition chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 926:16-20. [DOI: 10.1016/j.jchromb.2013.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
20
|
Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E, Dreier A, Buchkremer S, Johann S, Beyer C, Deschauer M, Troost D, Weis J. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:1581-600. [PMID: 23314020 DOI: 10.1093/hmg/ddt008] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS and to determine how these changes contribute to the pathogenesis of ALS. In the present study, we found that levels of the SigR1 protein were reduced in lumbar ALS patient spinal cord. SigR1 was abnormally accumulated in enlarged C-terminals and endoplasmic reticulum (ER) structures of alpha motor neurons. These accumulations co-localized with the 20s proteasome subunit. SigR1 accumulations were also observed in SOD1 transgenic mice, cultured ALS-8 patient's fibroblasts with the P56S-VAPB mutation and in neuronal cell culture models. Along with the accumulation of SigR1 and several other proteins involved in protein quality control, severe disturbances in the unfolded protein response and impairment of protein degradation pathways were detected in the above-mentioned cell culture systems. Furthermore, shRNA knockdown of SigR1 lead to deranged calcium signaling and caused abnormalities in ER and Golgi structures in cultured NSC-34 cells. Finally, pharmacological activation of SigR1 induced the clearance of mutant protein aggregates in these cells. Our results support the notion that SigR1 is abnormally modified and contributes to the pathogenesis of ALS.
Collapse
Affiliation(s)
- J Prause
- Institute of Neuropathology, RWTH Aachen University and JARA Brain Translational Medicine, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Drenning JA, Lira VA, Simmons CG, Soltow QA, Sellman JE, Criswell DS. Nitric oxide facilitates NFAT-dependent transcription in mouse myotubes. Am J Physiol Cell Physiol 2008; 294:C1088-95. [PMID: 18272817 DOI: 10.1152/ajpcell.00523.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular calcium transients in skeletal muscle cells initiate phenotypic adaptations via activation of calcineurin and its effector nuclear factor of activated t-cells (NFAT). Furthermore, endogenous production of nitric oxide (NO) via calcium-calmodulin-dependent NO synthase (NOS) is involved in skeletal muscle phenotypic plasticity. Here, we provide evidence that NO enhances calcium-dependent nuclear accumulation and transcriptional activity of NFAT and induces phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) in C2C12 myotubes. The calcium ionophore A23187 (1 microM for 9 h) or thapsigargin (2 microM for 4 h) increased NFAT transcriptional activity by seven- and fourfold, respectively, in myotubes transiently transfected with an NFAT-dependent reporter plasmid (pNFAT-luc, Stratagene). Cotreatment with the NOS-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 5 mM) or the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM) prevented the calcium effects on NFAT activity. The NO donor diethylenetriamine-NONO (DETA-NO; 10 microM) augmented the effects of A23187 on NFAT-dependent transcription. Similarly, A23187 (0.4 microM for 4 h) caused nuclear accumulation of NFAT and increased phosphorylation (i.e., inactivation) of GSK-3beta, whereas cotreatment with L-NAME or ODQ inhibited these responses. Finally, the NO donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA-NO; 1 microM for 1 h) increased phosphorylation of GSK-3beta in a manner dependent on guanylate cyclase activity. We conclude that NOS activity mediates calcium-induced phosphorylation of GSK-3beta and activation of NFAT-dependent transcription in myotubes. Furthermore, these effects of NO are guanylate cyclase-dependent.
Collapse
Affiliation(s)
- Jason A Drenning
- Center for Exercise Science, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|