1
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Sun LWH, Asana Marican HT, Beh LK, Shen H. Imaging the radioprotective effect of amifostine in the developing brain using an apoptosis-reporting transgenic zebrafish. Int J Radiat Biol 2023; 100:433-444. [PMID: 37922446 DOI: 10.1080/09553002.2023.2280011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE Normal tissue radioprotectants alleviate radiation-induced damages and preserve critical organ functions. Investigating their efficacy in vivo remains challenging, especially in enclosed organs like the brain. An animal model that enables direct visualization of radiation-induced apoptosis while possessing the structural complexity of a vertebrate brain facilitates these studies in a precise and effective manner. MATERIALS AND METHODS We employed a secA5 transgenic zebrafish expressing secreted Annexin V fused with a yellow fluorescent protein to visualize radiation-induced apoptosis in vivo. We developed a semi-automated imaging method for standardized acquisition of apoptosis signals in batches of zebrafish larvae. Using these approaches, we studied the protective effect of amifostine (WR-2721) in the irradiated zebrafish larval brain. RESULTS Upon 2 Gy total-body 137Cs irradiation, increased apoptosis could be visualized at high resolution in the secA5 brain at 2, 24, and 48 hour post irradiation (hpi). Amifostine treatment (4 mM) during irradiation reduced apoptosis significantly at 24 hpi and preserved Wnt active cells in the larval brain. When the 2 Gy irradiation was delivered in combination with cisplatin treatment (0.1 mM), the radioprotective effect of amifostine was also observed. CONCLUSIONS Our study reveals the radioprotective effect of amifostine in the developing zebrafish larval brain, and highlights the utility of secA5 transgenic zebrafish as a novel system for investigating normal tissue radioprotectants in vivo.
Collapse
Affiliation(s)
- Lucas W H Sun
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | | | - Lih Khiang Beh
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
3
|
Matsuu-Matsuyama M, Shichijo K, Tsuchiya T, Nakashima M. The effects of cystine and theanine mixture on the chronic survival rate and tumor incidence of rats after total body X-ray irradiation†. JOURNAL OF RADIATION RESEARCH 2023:rrad047. [PMID: 37336495 DOI: 10.1093/jrr/rrad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Indexed: 06/21/2023]
Abstract
Cystine and theanine (CT), an amino acid mixture, provides the substrates cysteine and glutamic acid that promote glutathione synthesis. We previously reported that CT pre-treatment significantly improved the acute survival rate and reduced acute radiation injury of the small intestine and bone marrow of rats after 5 Gy of total body X-ray irradiation. To examine the long-term effects of CT administration after irradiation, we investigated the effects of CT pre-treatment and pre- and post-treatment on the chronic survival rate and solid tumor (spleen, skin and subcutis, and thyroid) incidence after irradiation using 7-week-old male Wistar rats. CT pre-treatment of 280 mg/kg was administered orally for 5 days before 5 Gy irradiation, and CT pre- and post-treatment was administered 5 days before and 5 days after irradiation. A 0.5% carboxymethyl cellulose solution was administered as a control. The chronic survival rate of the pre-treated rats was higher than that of the control rats at 441 days after irradiation (40 vs 8.1%, P = 0.011). However, the survival rate did not significantly differ between the pre- and post-treatment and control rats at 467 days after irradiation (33.8 vs 30.2%, P = 0.792). In addition, more solid tumors, especially subcutis sarcomas, were observed in the pre-treatment rats (26.1%, 6/23) than in the control rats (4.5%, 1/22) after irradiation. Therefore, pre-administration of CT improves the chronic survival rate after irradiation; however, the occurrence of solid tumors was not suppressed.
Collapse
Affiliation(s)
- Mutsumi Matsuu-Matsuyama
- Division of Strategic Collaborative Research, Center for Promotion of Collaborative Research on Radiation and Environment Health Effects, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Takashi Tsuchiya
- Department of Surgery, Sendai City Medical Center, 5-22-1 Tsurugaya, Miyagino, Sendai, Miyagi 983-0824, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Zhao D, Yang L, Han P, Zhang H, Wang F, Meng Z, Gan H, Wu Z, Sun W, Chen C, Dou G, Gu R. Blocking TRAIL-DR5 signaling pathway with soluble death receptor 5 fusion protein mitigates radiation-induced injury. Front Pharmacol 2023; 14:1171293. [PMID: 37274104 PMCID: PMC10232792 DOI: 10.3389/fphar.2023.1171293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
The increasing application of nuclear technology, the high fatality of acute radiation syndrome (ARS) and its complex mechanism make ARS a global difficulty that requires urgent attention. Here we reported that the death receptor 5 (DR5), as well as its ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were both significantly upregulated after irradiation in mice with 6 Gy γ-ray single radiation. And by intravenously administrated with soluble DR5 fusion protein (sDR5-Fc), the competitive antagonist of DR5, the excessive apoptosis in the radiation-sensitive tissues such as spleen and thymus were significantly inhibited and the radiation-induced damage of spleen and thymus were mitigated, while the expression of apoptosis-inhibiting proteins such as Bcl-2 was also significantly upregulated. The biochemical indicators such as serum ALP, AST, ALT, TBIL, K, and Cl levels that affected by radiation, were improved by sDR5-Fc administration. sDR5-Fc can also regulate the number of immune cells and reduce blood cell death. For in vitro studies, it had been found that sDR5-Fc effectively inhibited apoptosis of human small intestinal mucosal epithelial cells and IEC-6 cells using flow cytometry. Finally, survival studies showed that mice administrated with sDR5-Fc after 9 Gy γ-ray single whole body radiation effectively increased the 30-day survival and was in a significant dose-dependent manner. Overall, the findings revealed that DR5/TRAIL-mediated apoptosis pathway had played important roles in the injury of ARS mice, and DR5 probably be a potential target for ARS therapeutics. And the DR5 apoptosis antagonist, sDR5 fusion protein, probably is a promising anti-ARS drug candidate which deserves further investigation.
Collapse
Affiliation(s)
- Danyang Zhao
- School of Life Sciences, Hebei University, Baoding, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Yang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng Han
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Haihui Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fanjun Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenzhong Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Chuan Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
5
|
Karpiński TM, Adamczak A, Ożarowski M. Radioprotective Effects of Plants from the Lamiaceae Family. Anticancer Agents Med Chem 2022; 22:4-19. [PMID: 33121420 DOI: 10.2174/1871520620666201029120147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Edible and medicinal plants are still an interesting source of promising biologically active substances for drug discovery and development. At a time of increasing cancer incidence in the world, alleviating the bothersome side effects of radiotherapy in debilitated cancer patients is becoming an important challenge. OBJECTIVE The aim of the study was to overview the literature data concerning the radioprotective activity of extracts, essential oils, and some chemical compounds obtained from 12 species belonging to the Lamiaceae family, gathering of numerous spice and medicinal plants rich in valuable phytochemicals. RESULTS The analysis of available publications showed radioprotective effectiveness of essential oils and complex extracts containing phenolic acids and flavonoids in various in vitro and in vivo models. Relatively welldocumented preventive properties exhibited the following species: Mentha × piperita, Ocimum tenuiflorum, Origanum vulgare, and Rosmarinus officinalis. However, few plants such as Lavandula angustifolia, Mentha arvensis, M. spicata, Plectranthus amboinicus, Salvia miltiorrhiza, S. officinalis, Scutellaria baicalensis, and Zataria multiflora should be more investigated in the future. Among the mechanisms of radioprotective effects of well-studied extracts and phytochemicals, it can be mentioned mainly the protection against chromosomal damage, scavenging free radicals, decreasing of lipid peroxidation and elevating of glutathione, superoxide dismutase, catalase, and alkaline phosphatase enzyme levels as well as the reduction of the cell death. The plant substances protected the gastrointestinal tract, bone marrow and lung fibroblasts. CONCLUSION The studied species of Lamiaceae family and their active chemical compounds are potent in alleviating the side effects of radiotherapy and should be considered as a complementary therapy.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Faculty of Medical Sciences, Poznań University of Medical Sciences, Poznań, Poland
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Poznań, Poland
| |
Collapse
|
6
|
Ge C, Su F, Fu H, Wang Y, Tian B, Liu B, Zhu J, Ding Y, Zheng X. RNA Profiling Reveals a Common Mechanism of Histone Gene Downregulation and Complementary Effects for Radioprotectants in Response to Ionizing Radiation. Dose Response 2020; 18:1559325820968433. [PMID: 33117095 PMCID: PMC7573744 DOI: 10.1177/1559325820968433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
High-dose ionizing radiation (IR) alters the expression levels of non-coding RNAs (ncRNAs). However, the roles of ncRNAs and mRNAs in mediating radiation protection by radioprotectants remain unknown. Microarrays were used to determine microRNA (miRNA), long ncRNA (lncRNA), and mRNA expression profiles in the bone marrow of irradiated mice pretreated with amifostine, CBLB502, and nilestriol. Differentially expressed mRNAs were functionally annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Some histone cluster genes were validated by real-time PCR, and the effects of radioprotectant combinations were monitored by survival analysis. We found that these radioprotectants increased the induction of lncRNAs and mRNAs. miRNA, lncRNA, and mRNA expression patterns were similar with amifostine and CBLB502, but not nilestriol. The radioprotectants exhibited mostly opposite effects against IR-induced miRNAs, lncRNAs, and mRNAs while inducing a common histone gene downregulation following IR, mainly via nucleosome assembly and related signaling pathways. Notably, the effects of nilestriol significantly complemented those of amisfostine or CBLB502; low-dose drug combinations resulted in better radioprotective effects in pretreated mice. Thus, we present histone gene downregulation by radioprotectants, together with the biological functions of miRNA, lncRNA, and mRNA, to explain the mechanism underlying radioprotection.
Collapse
Affiliation(s)
- Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baolei Tian
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Ding
- 5th Medical Center, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Matsuu-Matsuyama M, Shichijo K, Tsuchiya T, Kondo H, Miura S, Matsuda K, Sekine I, Nakashima M. Protective effects of a cystine and theanine mixture against acute radiation injury in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103395. [PMID: 32325407 DOI: 10.1016/j.etap.2020.103395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
This study aims to examine the effects of cystine and theanine (CT), which increases glutathione biosynthesis, on the survival rate and acute radiation injury of the small intestine and bone marrow using a rat model. CT pre-treatment (280 mg/kg for 5 days) significantly improved weight loss and survival rate of rats as compared with the control group after 5 Gy. CT pre-treatment significantly increased the rate of mucosa and crypt length, and decreased the number of apoptotic cells, TUNEL and cleaved caspase-3 positive cells, while increasing the number of mitotic cells and Ki-67 positive cells in jejunal crypts and villi compared to control rats post-irradiation. CT also suppressed bone marrow cell loss and reduced the number of apoptotic cells in bone marrow. These results suggest a protective effect of CT pre-treatment for acute injury after irradiation through apoptosis inhibition and increased proliferative activity in jejunal crypt cells and bone marrow cells.
Collapse
Affiliation(s)
- Mutsumi Matsuu-Matsuyama
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Takashi Tsuchiya
- Sendai City Medical Center, 5-22-1 Tsurugaya, Miyagino, Miyagi 983-0824, Japan.
| | - Hisayoshi Kondo
- Biostatistics Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Shiro Miura
- Department of Pathology, National Hospital Organization Nagasaki Medical Center, 2-1001-1 Kubara, Omura, Nagasaki 856-8562, Japan.
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Ichiro Sekine
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Masahiro Nakashima
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
8
|
King M, Joseph S, Albert A, Thomas TV, Nittala MR, Woods WC, Vijayakumar S, Packianathan S. Use of Amifostine for Cytoprotection during Radiation Therapy: A Review. Oncology 2019; 98:61-80. [PMID: 31846959 DOI: 10.1159/000502979] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Radiation therapy is a cornerstone of the therapeutic modalities used in modern oncology. However, it is sometimes limited in its ability to achieve optimal tumor control by radiation-induced normal tissue toxicity. In delivering radiation therapy, a balance must be achieved between maximizing the dose to the tumor and minimizing any injury to the normal tissues. Amifostine was the first Food and Drug Administration (FDA)-approved clinical radiation protector intended to reduce the impact of radiation on normal tissue, lessening its toxicity and potentially allowing for increased tumor dose/control. Despite being FDA-approved almost 20 years ago, Amifostine has yet to achieve widespread clinical use. SUMMARY A thorough review of Amifostine's development, mechanism of action, and current clinical status were conducted. A brief history of Amifostine is given, from its development at Walter Reid Institute of Research to its approval for clinical use. The mechanism of action of Amifostine is explored. The results of a complete literature review of all prospective randomized trials to date involving the use of Amifostine in radiation therapy are presented. The results are arranged by treatment site and salient findings discussed. Side effects and complications to consider in using Amifostine are reviewed. Key Messages: Amifostine has been explored as a radiation protectant in most radiation treatment sites. Studies have demonstrated efficacy of Amifostine in all treatment sites reviewed, but results are heterogeneous. The heterogeneity of studies looking at Amifostine as a clinical radiation protectant has precluded a definitive answer on its efficacy. Complicating its clinical use is its toxicity and delivery requirements. Amifostine has largely fallen out of use with the advent of intensity modulated radiation therapy (IMRT). However, side effects with IMRT remain a challenge and concern. The use of Amifostine in the IMRT era has been poorly explored and is worthy of future study.
Collapse
Affiliation(s)
- Maurice King
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sanjay Joseph
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ashley Albert
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Toms V Thomas
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Mary R Nittala
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA,
| | - William C Woods
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Satyaseelan Packianathan
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
9
|
Li K, Zhang J, Cao J, Li X, Tian H. 1,4-Dithiothreitol treatment ameliorates hematopoietic and intestinal injury in irradiated mice: Potential application of a treatment for acute radiation syndrome. Int Immunopharmacol 2019; 76:105913. [PMID: 31627170 DOI: 10.1016/j.intimp.2019.105913] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Radiation exposure poses a significant threat to public health, which can lead to acute hematopoietic system and intestinal system injuries due to their higher radiation sensitivity. Hence, antioxidants and thiol-reducing agents could have a potential protective effect against this complication. The dithiol compound 1,4-dithiothreitol (DTT) has been used in biochemistry, peptide/protein chemistry and clinical medicine. However, the effect of DTT on ionizing radiation (IR)-induced hematopoietic injury and intestinal injury are unknown. The current investigation was designed to evaluate the effect of DTT as a safe and clinically applicable thiol-radioprotector in irradiated mice. DTT treatment improved the survival of irradiated mice and ameliorated whole body irradiation (WBI)-induced hematopoietic injury by attenuating myelosuppression and myeloid skewing, increasing self-renewal and differentiation of hematopoietic progenitor cells/hematopoietic stem cells (HPCs/HSCs). In addition, DTT treatment protected mice from abdominal irradiation (ABI)-induced changes in crypt-villus structures and function. Furthermore, treatment with DTT significantly enhanced the ABI-induced reduction in Olfm4 positive cells and offspring cells of Lgr5+ stem cells, including lysozyme+ Paneth cells and Ki67+ cells. Moreover, IR-induced DNA strand break damage, and the expression of proapoptotic-p53, Bax, Bak protein and antiapoptotic-Bcl-2 protein were reversed in DTT treated mice, and DTT also promoted small intestine repair after radiation exposure via the p53 intrinsic apoptotic pathway. In general, these results demonstrated the potential of DTT for protection against hematopoietic injury and intestinal injury after radiation exposure, suggesting DTT as a novel effective agent for radioprotection.
Collapse
Affiliation(s)
- Kui Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Jian Cao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
10
|
Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound. J Bioenerg Biomembr 2019; 51:371-379. [PMID: 31388813 DOI: 10.1007/s10863-019-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
HESA-A is an herbal-marine compound which improves the quality of life of end-stage cancer patients. The aim of the present study was to evaluate the possible protective effect of HESA-A against IR-induced genotoxicity and apoptosis in rat bone marrow. Rats were given HESA-A orally at doses of 150 and 300 mg/kg body weight for seven consecutive days. On the seventh day, the rats were irradiated with 4 Gy X-rays at 1 h after the last oral administration. The micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis and flow cytometry were used to assess radiation antagonistic potential of HESA-A. Administration of 150 and 300 mg/kg of HESA-A to irradiated rats significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs), and also increased PCE/(PCE + NCE) ratio in bone marrow cells. Moreover, pretreatment of irradiated rats with HESA-A (150 and 300 mg/kg) significantly decreased ROS level and apoptosis in bone marrow cells, and also increased white blood cells count in peripheral blood. For the first time in this study, it was observed that HESA-A can have protective effects against radiation-induced genotoxicity and apoptosis in bone marrow cells. Therefore, HESA-A can be considered as a candidate for future studies to reduce the side effects induced by radiotherapy in cancer patients.
Collapse
|
11
|
Tian M, Lan T, Gao M, Li B, Zhang G, Wang HB. Synthesis and Characterization of Two Chiral Pyrrolyl α-Nitronyl Nitroxide Radicals and Determination of their Cytotoxicity and Radioprotective Properties in C6 Cells and Mice under Ionizing Radiation. Aust J Chem 2019. [DOI: 10.1071/ch18625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, two chiral nitronyl nitroxyl radicals, L1 and D1, were synthesized and evaluated for their potential radioprotective properties invitro and invivo. We synthesized the new stable nitronyl nitroxide radicals, L1 and D1, according to Ullman’s method, and their chemical structures were characterized using UV-vis absorption, electron spin resonance (ESR), and circular dichroism (CD) spectra. The cytotoxicity of L1 and D1 on C6 glioma cells (C6 cells) was examined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To study the anti-radiation effects of L1 and D1 on C6 cells, we determined the optical density (OD) values of irradiated C6 cells using the MTT assay. The effects of L1 and D1 on the survival rate of mice after radiation exposure was evaluated. To demonstrate the influence of L1 and D1 pre-treatment on the antioxidant enzyme system, we studied the activities of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GSH) in mouse plasma after exposure to 6.5 Gy gamma radiation. The results showed that L1 and D1 did not have any obvious cytotoxicity at concentrations below 125μgmL−1. Moreover, L1 and D1 had the same cytotoxic effects on C6 cells. L1 and D1 significantly enhanced C6 cell survival after 8, 10, and 12 Gy radiation exposure, and there was no significant difference in the OD values between L1 and D1. The effects of these drugs on mouse survival rates were dose-dependent. Pre-treatment with different concentrations of L1, D1, or WR2721 significantly increased the activity of SOD, CAT, and GSH and significantly decreased the activity of MDA compared with radiation exposure only. In addition, the activities of SOD, CAT, and GSH in the L1 group were higher than those in the D1 group, whereas the activity of MDA was lower. Therefore, L1 and D1 have potential as safe and efficient therapeutic drugs against radiation damage.
Collapse
|
12
|
Nurhasanah I, Safitri W, Arifin Z, Subagio A, Windarti T. Antioxidant activity and dose enhancement factor of CeO2 nanoparticles synthesized by precipitation method. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/432/1/012031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Abstract
Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.
Collapse
|
14
|
Tang Q, Zhao F, Yu X, Wu L, Lu Z, Yan S. The role of radioprotective spacers in clinical practice: a review. Quant Imaging Med Surg 2018; 8:514-524. [PMID: 30050786 DOI: 10.21037/qims.2018.06.06] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The delivery of high dose radiotherapy to tumors is often limited by the proximity of the surrounding radiosensitive normal tissues, even using modern techniques such as intensity modulated radiation therapy (IMRT). Previous studies have reported that placement of a spacer can effectively displace normal tissues. So that they are some distance away from the lesion, thus allowing for the safe delivery of high-dose radiation. The application of radioprotective spacers was first reported 30 years ago regarding radiotherapy of tongue and abdominal cancers; more recently, they are increasingly being used in prostate cancer. This review focuses on the published data concerning the features of different types of spacers and their application in various tumor sites. Placement-related complications and the cost-effectiveness of the spacers are also discussed. With the increasing use of high-precision radiotherapy in clinical practice, especially the paradigm-changing stereotactic body radiotherapy (SBRT), more robust studies are warranted to further establish the role of radioprotective spacers through materials development and novel placement techniques.
Collapse
Affiliation(s)
- Qiuying Tang
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feng Zhao
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaokai Yu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lingyun Wu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhongjie Lu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Senxiang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
15
|
Kumar A, Choudhary S, Adhikari JS, Chaudhury NK. Sesamol ameliorates radiation induced DNA damage in hematopoietic system of whole body γ-irradiated mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:79-90. [PMID: 28766757 DOI: 10.1002/em.22118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 05/27/2023]
Abstract
Ionizing radiation exposure is harmful and at high doses can lead to acute hematopoietic radiation syndrome. Therefore, agents that can protect hematopoietic system are important for development of radioprotector. Sesamol is a potential molecule for development of radioprotector due to its strong free radical scavenging and antioxidant properties. In the present study, sesamol was evaluated for its role in DNA damage and repair in hematopoietic system of γ-irradiated CB57BL/6 mice and compared with amifostine. C57BL/6 male mice were administered with sesamol 20 mg/kg (i.p.) followed by 2 Gy whole body irradiation (WBI) at 30 min. Mice were sacrificed at 0.5, 3, 24 h postirradiation; bone marrow, splenocytes, and peripheral blood lymphocytes were isolated to measure DNA damages and repair using alkaline comet,γ-H2AXand micronucleus assays. An increase in % of tail DNA was observed in all organs of WBI mice. Whereas in pre-administered sesamol reduced %DNA in tail (P ≤ 0.05). Sesamol has also reduced formation of radiation induced γ-H2AX foci after 0.5 h in these organs and further lowered to respective control values at 24 h of WBI. Similar reduction of % DNA in tail and γ-H2AX foci were observed with amifostine (P ≤ 0.05). Analysis of mnPCE frequency at 24 h has revealed similar extent of protection by sesamol and amifostine. Interestingly, both sesamol and amifostine, alone and with radiation, also increased the granulocytes count significantly compared to the control (P ≤ 0.05). These findings suggest that sesamol has strong potential to protect hematopoietic system by lowering radiation induced DNA damages and can prevent acute hematopoietic syndrome in mice. Environ. Mol. Mutagen. 59:79-90, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Jawahar S Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Nabo K Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| |
Collapse
|
16
|
Morel KL, Ormsby RJ, Bezak E, Sweeney CJ, Sykes PJ. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo. Radiat Res 2017; 187:501-512. [PMID: 28398879 DOI: 10.1667/rr14710.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Collapse
Affiliation(s)
- Katherine L Morel
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| | - Rebecca J Ormsby
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| | - Eva Bezak
- b Medical Radiation, School of Health Sciences, University of South Australia, Adelaide, South Australia
| | | | - Pamela J Sykes
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| |
Collapse
|
17
|
Bhatia M. Understanding toxicology: mechanisms and applications. Cell Biol Toxicol 2017; 33:1-4. [PMID: 27714471 DOI: 10.1007/s10565-016-9363-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch, 2 Riccarton Avenue, PO Box 4345, Christchurch, 8140, New Zealand.
| |
Collapse
|
18
|
Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol 2016; 32:543-561. [PMID: 27473378 DOI: 10.1007/s10565-016-9354-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Protection against ionizing radiation (IR) and sensitization of cancer cells to IR are apparently contrasting phenomena. However, curcumin takes on these contrasting roles leading to either protection or enhanced apoptosis in different irradiated cells. Here we studied whether pretreatment with free curcumin or a novel dendrosomal nanoformulation of curcumin (DNC) could exert protective/sensitizing effects on irradiated THP-1 leukemia cells. We employed assays including MTT viability, clonogenic survival, DNA fragmentation, PI/Annexin V flow cytometry, antioxidant system (ROS, TBARS for lipid peroxidation, 8-OHdG and γH2AX for DNA damage, glutathione, CAT and GPx activity, enzymes gene expression), ELISA (NF-κB and Nrf2 binding, TNF-α release), caspase assay, siRNA silencing of caspase-3, and western blotting to illustrate the observed protective role of curcumin in comparison with the opposite sensitizing role of its nanoformulation at a similar 10 μM concentration. The in vivo relevance of this concentration was determined via intraperitoneal administration in mice. Curcumin significantly enhanced the antioxidant defense, while DNC induced apoptosis and reduced viability as well as survival of irradiated THP-1 cells. Nrf2 binding showed an early rise and fall in DNC-treated cells, despite a gradual increase in curcumin-treated cells. We also demonstrated that DNC induced apoptosis in THP-1 cells via caspase-3 activation; whereas in combination with radiation, DNC alternatively employed a caspase-independent apoptosis pathway involving cytochrome c release from mitochondria.
Collapse
Affiliation(s)
- Behrooz Soltani
- Department of Biotechnology, College of Science, University of Tehran, Enghelab St., Tehran, 14155-6455, Iran
| | - Nasser Ghaemi
- Department of Biotechnology, College of Science, University of Tehran, Enghelab St., Tehran, 14155-6455, Iran. .,School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
19
|
Kaur A, Singla N, Dhawan DK. Low dose X-irradiation mitigates diazepam induced depression in rat brain. Regul Toxicol Pharmacol 2016; 80:82-90. [PMID: 27316553 DOI: 10.1016/j.yrtph.2016.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - D K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Pirayesh Islamian J, Farajollahi A, Mehrali H, Hatamian M. Radioprotective Effects of Amifostine and Lycopene on Human Peripheral Blood Lymphocytes In Vitro. J Med Imaging Radiat Sci 2016; 47:49-54. [PMID: 31047163 DOI: 10.1016/j.jmir.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Radiation protection is a pivotal challenge for radiation workers employed in medical fields, industry, and also space professionals with an increasing role in medical diagnostic and therapeutic applications. Radioprotective effects of amifostine and lycopene and their ability to moderate the level of radiation-induced chromosomal aberrations were investigated using the dicentric chromosome assay. METHODS Parallel human whole blood samples, pretreated with amifostine (250 μg/mL), lycopene (5 μg/mL), and/or their combinations were irradiated for 30 minutes with 60Co γ rays (1, 2, 3, and 4 Gy) with a dose rate of 98.46 cGy/min at SAD = 100 cm, in vitro and cocultured with control groups. The frequencies of chromosomal aberrations in the lymphocyte of the cells were analyzed. RESULTS There were no apparent chromosome aberrations in controls and also in the drug-treated groups in the absence of radiation. Radiodrug treatment significantly decreased frequency of the radiation-induced chromosome aberrations compared with radiation alone (P < .05). Amifostine reduced the frequency of radiation-induced dicentrics by 15.8%, 21.9%, 4.5%, and 11.6%, with dose protection factors (DPFs) of 1.2 ± 0.02, 1.3 ± 0.1, 1.05 ± 0.03, and 1.13 ± 0.02. Lycopene reduced the frequency by 17.2%, 3.07%, 1.63%, and 16.6%, with DPFs of 1.21 ± 0.12, 1.03±0.05, 1.02±0.03 and 1.12±0.03. The combination treatment reduced the frequency by 28%, 24.9%, 9%, and 31.2%, with DPFs of 1.38 ± 0.06, 1.33 ± 0.06, 1.09 ± 0.02, and 1.45 ± 0.03 with radiation doses of 1, 2, 3, and 4 Gy, respectively. CONCLUSIONS It can be suggested that pretreatment with combined amifostine and lycopene may reduce the extent of ionizing radiation damage in cells.
Collapse
Affiliation(s)
- Jalil Pirayesh Islamian
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Farajollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Mehrali
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Hatamian
- Department of Medical Physics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Aoki S, Ariyasu S, Hanaya K, Hisamatsu Y, Sugai T. Chemical Reactions of 8-Quinolinol Derivatives and Their Applications to Biochemical Tools and Enzyme Inhibitors. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Shinya Ariyasu
- School of Physical & Mathematical Sciences, Nanyang Technological University
| | | | | | | |
Collapse
|
22
|
Pecaut MJ, Mehrotra S, Luo-Owen X, Bayeta EJM, Bellinger DL, Gridley DS. Chlorisondamine, a sympathetic ganglionic blocker, moderates the effects of whole-body irradiation (WBI) on early host defense to a live bacterial challenge. Immunol Lett 2015; 167:103-15. [PMID: 26235133 DOI: 10.1016/j.imlet.2015.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/08/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
There is a growing consensus that long-term deficits in the brain are due to dynamic interactions between multiple neural and immune cell types. Specifically, radiation induces an inflammatory response, including changes in neuromodulatory pro- and anti-inflammatory cytokine secretion. The purpose of this study was to establish that there is sympathetic involvement in radiation-induced decrements early in in vivo immune function host defense. Female, 8-9 week-old C57BL/6J mice were exposed to whole-body irradiation (WBI). There were 8 groups with radiation (0 vs. 3 Gy protons), immune challenge (Escherichia coli) and exposure to the sympathetic ganglionic blocker, chlorisondamine (1 mg/kg weight, i.p.), as independent variables. Ten days post-irradiation, mice were inoculated with E. coli intraperitoneally and sacrificed 90-120 min later. The data suggest that radiation-induced changes in immune function may in part be mediated by the sympathetic nervous system. Briefly, we found that radiation augments the bacteria-induced inflammatory cytokine response, particularly those cytokines involved in innate immunity. However, this augmentation can be reduced by the ganglionic blockade.
Collapse
Affiliation(s)
- Michael J Pecaut
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States.
| | - Shalini Mehrotra
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Xian Luo-Owen
- Division of Trauma Services, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Erben J M Bayeta
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Daila S Gridley
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| |
Collapse
|
23
|
Duan Y, Chen F, Yao X, Zhu J, Wang C, Zhang J, Li X. Protective Effect of Lycium ruthenicum Murr. Against Radiation Injury in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8332-47. [PMID: 26193298 PMCID: PMC4515725 DOI: 10.3390/ijerph120708332] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 01/09/2023]
Abstract
The protective effect of Lycium ruthenicum Murr. against radiation injury was examined in mice. Kunming mice were randomly divided into a control group, model group, positive drug group and L. ruthenicum high dose (8 g/kg), L. ruthenicum middle dose (4 g/kg), L. ruthenicum low dose (2 g/kg) treatment groups, for which doses were administered the third day, seventh day and 14th day after irradiation. L. ruthenicum extract was administered orally to the mice in the three treatment groups and normal saline was administered orally to the mice in the control group and model group for 14 days. The positive group was treated with amifostine (WR-2721) at 30 min before irradiation. Except for the control group, the groups of mice received a 5 Gy quantity of X-radiation evenly over their whole body at one time. Body weight, hemogram, thymus and spleen index, DNA, caspase-3, caspase-6, and P53 contents were observed at the third day, seventh day, and 14th day after irradiation. L. ruthenicum could significantly increase the total red blood cell count, hemoglobin count and DNA contents (p < 0.05). The spleen index recovered significantly by the third day and 14th day after irradiation (p < 0.05). L. ruthenicum low dose group showed a significant reduction in caspase-3 and caspase-6 of serum in mice at the third day, seventh day, and 14th day after irradiation and L. ruthenicum middle dose group experienced a reduction in caspase-6 of serum in mice by the seventh day after irradiation. L. ruthenicum could decrease the expression of P53. The results showed that L. ruthenicum had protective effects against radiation injury in mice.
Collapse
Affiliation(s)
- Yabin Duan
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Fan Chen
- Department of Radiotherapy Oncology, Qinghai University Affiliated Hospital, Xining 810001, China.
| | - Xingchen Yao
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Junbo Zhu
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Cai Wang
- Department of Radiotherapy Oncology, Qinghai University Affiliated Hospital, Xining 810001, China.
| | - Juanling Zhang
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Xiangyang Li
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| |
Collapse
|
24
|
Chung DM, Nasir Uddin SM, Kim JH, Kim JK. [6]-Gingerol prevents gamma radiation-induced cell damage in HepG2 cells. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-3947-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Vijayan V, Pathak U, Meshram GP. Mutagenicity and antimutagenicity studies of DRDE-07 and its analogs against sulfur mustard in the in vitro Ames Salmonella/microsome assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 773:39-45. [DOI: 10.1016/j.mrgentox.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
26
|
Design and synthesis of 8-hydroxyquinoline-based radioprotective agents. Bioorg Med Chem 2014; 22:3891-905. [DOI: 10.1016/j.bmc.2014.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022]
|