1
|
Ketebo AA, Din SU, Lee G, Park S. Mechanobiological Analysis of Nanoparticle Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101682. [PMID: 37242097 DOI: 10.3390/nano13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NPs) are commonly used in healthcare and nanotherapy, but their toxicity at high concentrations is well-known. Recent research has shown that NPs can also cause toxicity at low concentrations, disrupting various cellular functions and leading to altered mechanobiological behavior. While researchers have used different methods to investigate the effects of NPs on cells, including gene expression and cell adhesion assays, the use of mechanobiological tools in this context has been underutilized. This review emphasizes the importance of further exploring the mechanobiological effects of NPs, which could reveal valuable insights into the mechanisms behind NP toxicity. To investigate these effects, different methods, including the use of polydimethylsiloxane (PDMS) pillars to study cell motility, traction force production, and rigidity sensing contractions, have been employed. Understanding how NPs affect cell cytoskeletal functions through mechanobiology could have significant implications, such as developing innovative drug delivery systems and tissue engineering techniques, and could improve the safety of NPs for biomedical applications. In summary, this review highlights the significance of incorporating mechanobiology into the study of NP toxicity and demonstrates the potential of this interdisciplinary field to advance our knowledge and practical use of NPs.
Collapse
Affiliation(s)
- Abdurazak Aman Ketebo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16499, Republic of Korea
| | - Shahab Ud Din
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16499, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Liu Y, Li X, Wang F, Huang Y, Liu Y, Zhu Y. Investigation of the Biosafety of Antibacterial Mg(OH) 2 Nanoparticles to a Normal Biological System. J Funct Biomater 2023; 14:jfb14040229. [PMID: 37103319 PMCID: PMC10141151 DOI: 10.3390/jfb14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
The toxicity of Mg(OH)2 nanoparticles (NPs) as antibacterial agents to a normal biological system is unclear, so it is necessary to evaluate their potential toxic effect for safe use. In this work, the administration of these antibacterial agents did not induce pulmonary interstitial fibrosis as no significant effect on the proliferation of HELF cells was observed in vitro. Additionally, Mg(OH)2 NPs caused no inhibition of the proliferation of PC-12 cells, indicating that the brain's nervous system was not affected by Mg(OH)2 NPs. The acute oral toxicity test showed that the Mg(OH)2 NPs at 10,000 mg/kg induced no mortality during the administration period, and there was little toxicity in vital organs according to a histological analysis. In addition, the in vivo acute eye irritation test results showed little acute irritation of the eye caused by Mg(OH)2 NPs. Thus, Mg(OH)2 NPs exhibited great biosafety to a normal biological system, which was critical for human health and environmental protection.
Collapse
Affiliation(s)
- Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuezhou Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yimin Zhu
- Collaborative Innovation Central for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
3
|
Echeverry-Rendón M, Stančič B, Muizer K, Duque V, Calderon DJ, Echeverria F, Harmsen MC. Cytotoxicity Assessment of Surface-Modified Magnesium Hydroxide Nanoparticles. ACS OMEGA 2022; 7:17528-17537. [PMID: 35664586 PMCID: PMC9161253 DOI: 10.1021/acsomega.1c06515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
Magnesium-based nanoparticles have shown promise in regenerative therapies in orthopedics and the cardiovascular system. Here, we set out to assess the influence of differently functionalized Mg nanoparticles on the cellular players of wound healing, the first step in the process of tissue regeneration. First, we thoroughly addressed the physicochemical characteristics of magnesium hydroxide nanoparticles, which exhibited low colloidal stability and strong aggregation in cell culture media. To address this matter, magnesium hydroxide nanoparticles underwent surface functionalization by 3-aminopropyltriethoxysilane (APTES), resulting in excellent dispersible properties in ethanol and improved colloidal stability in physiological media. The latter was determined as a concentration- and time-dependent phenomenon. There were no significant effects on THP-1 macrophage viability up to 1.500 μg/mL APTES-coated magnesium hydroxide nanoparticles. Accordingly, increased media pH and Mg2+ concentration, the nanoparticles dissociation products, had no adverse effects on their viability and morphology. HDF, ASCs, and PK84 exhibited the highest, and HUVECs, HPMECs, and THP-1 cells the lowest resistance toward nanoparticle toxic effects. In conclusion, the indicated high magnesium hydroxide nanoparticles biocompatibility suggests them a potential drug delivery vehicle for treating diseases like fibrosis or cancer. If delivered in a targeted manner, cytotoxic nanoparticles could be considered a potential localized and specific prevention strategy for treating highly prevalent diseases like fibrosis or cancer. Looking toward the possible clinical applications, accurate interpretation of in vitro cellular responses is the keystone for the relevant prediction of subsequent in vivo biological effects.
Collapse
Affiliation(s)
- Mónica Echeverry-Rendón
- IMDEA
Materials Institute, C/Eric Kandel 2, Getafe, Madrid 28906, Spain
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Brina Stančič
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
- Department
of Molecular Biology, Universidad Autónoma de Madrid, and Department
of Molecular Neuropathology, Center of Molecular
Biology Severo Ochoa (UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Kirsten Muizer
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
| | - Valentina Duque
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Deanne Jennei Calderon
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Felix Echeverria
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Martin C. Harmsen
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. Int J Biol Macromol 2021; 192:7-15. [PMID: 34571124 DOI: 10.1016/j.ijbiomac.2021.09.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Natural polymers are at the center of materials development for biomedical and biotechnological applications based on their biocompatibility, low-toxicity and biodegradability. In this study, a novel nanobiocomposite based on cross-linked pectin-cellulose hydrogel, silk fibroin, and Mg(OH)2 nanoparticles was designed and synthesized. After extensive physical-chemical characterization, the biological response of pectin-cellulose/silk fibroin/Mg(OH)2 nanobiocomposite scaffolds was evaluated by cell viability, red blood cells hemolytic and anti-biofilm assays. After 3 days and 7 days, the cell viability of this nanobiocomposite scaffold was 65.5% and 60.5% respectively. The hemolytic effect was below 20%. Furthermore, the presence of silk fibroin and Mg(OH)2 nanoparticles allowed to enhance the anti-biofilm activity, inhibiting the P. aeruginosa biofilm formation.
Collapse
|
5
|
Eivazzadeh-Keihan R, Khalili F, Khosropour N, Aliabadi HAM, Radinekiyan F, Sukhtezari S, Maleki A, Madanchi H, Hamblin MR, Mahdavi M, Haramshahi SMA, Shalan AE, Lanceros-Méndez S. Hybrid Bionanocomposite Containing Magnesium Hydroxide Nanoparticles Embedded in a Carboxymethyl Cellulose Hydrogel Plus Silk Fibroin as a Scaffold for Wound Dressing Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33840-33849. [PMID: 34278788 DOI: 10.1021/acsami.1c07285] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Based on the promising biomedical developments in wound healing strategies, herein, a new nanobiocomposite scaffold was designed and presented by incorporation of carboxymethyl cellulose hydrogels prepared using epichlorohydrin as a cross-linking agent (CMC hydrogel), a natural silk fibroin (SF) protein, and magnesium hydroxide nanoparticles (Mg(OH)2 NPs). Biological evaluation of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite scaffold was conducted via in vitro cell viability assays and in vivo assays, red blood cell hemolysis, and antibiofilm assays. Considering the cell viability percentage of Hu02 cells (84.5%) in the presence of the prepared nanobiocomposite after 7 days, it was indicated that this new nanoscaffold was biocompatible. The signs of excellent hemocompatibility and the high antibacterial activity were observed due to the low-point hemolytic effect (8.3%) and high-level potential in constraining the P. aeruginosa biofilm formation with a low OD value (0.13). Moreover, in vivo wound healing assay results indicated that the wound healing method was faster in mice treated with the prepared nanobiocomposite scaffold (82.29%) than the control group (75.63%) in 12 days. Apart from the structural characterization of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite through FTIR, EDX, FESEM, and TG analyses, compressive mechanical tests, contact angle, porosity, and swelling ratio studies indicated that the combination of the CMC hydrogel structure with SF protein and Mg(OH)2 NPs could significantly impact Young's modulus (from 11.34 to 10.14 MPa), tensile strength (from 299.35 to 250.78 MPa), elongation at break (12.52 to 12.84%), hydrophilicity, and water uptake capacity (92.5%).
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farzane Khalili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Nastaran Khosropour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sima Sukhtezari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1496913345, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
6
|
Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, Sukhtezari S, Tahmasebi B, Maleki A, Madanchi H. Chitosan hydrogel/silk fibroin/Mg(OH) 2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci Rep 2021; 11:650. [PMID: 33436831 PMCID: PMC7804245 DOI: 10.1038/s41598-020-80133-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Herein, a novel nanobiocomposite scaffold based on modifying synthesized cross-linked terephthaloyl thiourea-chitosan hydrogel (CTT-CS hydrogel) substrate using the extracted silk fibroin (SF) biopolymer and prepared Mg(OH)2 nanoparticles was designed and synthesized. The biological capacity of this nanobiocomposite scaffold was evaluated by cell viability method, red blood cells hemolytic and anti-biofilm assays. According to the obtained results from 3 and 7 days, the cell viability of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold was accompanied by a considerable increment from 62.5 to 89.6% respectively. Furthermore, its low hemolytic effect (4.5%), and as well, the high anti-biofilm activity and prevention of the P. aeruginosa biofilm formation confirmed its promising hemocompatibility and antibacterial activity. Apart from the cell viability, blood biocompatibility, and antibacterial activity of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold, its structural features were characterized using spectral and analytical techniques (FT-IR, EDX, FE-SEM and TG). As well as, given the mechanical tests, it was indicated that the addition of SF and Mg(OH)2 nanoparticles to the CTT-CS hydrogel could improve its compressive strength from 65.42 to 649.56 kPa.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Sukhtezari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Behnam Tahmasebi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
8
|
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol 2020; 41:683-700. [DOI: 10.1002/jat.4121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
9
|
Eivazzadeh-Keihan R, Khalili F, Aliabadi HAM, Maleki A, Madanchi H, Ziabari EZ, Bani MS. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int J Biol Macromol 2020; 162:1959-1971. [DOI: 10.1016/j.ijbiomac.2020.08.090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
10
|
Gu Y, Zhang J, Zhang X, Liang G, Xu T, Niu W. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis In Vitro. Tissue Eng Regen Med 2019; 16:415-429. [PMID: 31413945 PMCID: PMC6675836 DOI: 10.1007/s13770-019-00192-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Three-dimensional (3D) printed bone tissue engineering scaffolds have been widely used in research and clinical applications. β-TCP is a biomaterial commonly used in bone tissue engineering to treat bone defects, and its multifunctionality can be achieved by co-doping different metal ions. Magnesium doping in biomaterials has been shown to alter physicochemical properties of cells and enhance osteogenesis. Methods A series of Mg-doped TCP scaffolds were manufactured by using cryogenic 3D printing technology and sintering. The characteristics of the porous scaffolds, such as microstructure, chemical composition, mechanical properties, apparent porosity, etc., were examined. To further study the role of magnesium ions in simultaneously inducing osteogenesis and angiogenesis, human bone marrow mesenchymal stem cells (hBMSCs) and human umblical vein endothelial cells (HUVECs) were cultured in scaffold extracts to investigate cell proliferation, viability, and expression of osteogenic and angiogenic genes. Results The results showed that Mg-doped TCP scaffolds have the advantages of precise design, interconnected porous structure, and similar compressive strength to natural cancellous bone. hBMSCs and HUVECs exhibit high proliferation rate, cell morphology and viability in a certain amount of Mg2+. In addition, this concentration of magnesium can also increase the expression levels of osteogenic and angiogenic biomarkers. Conclusion A certain concentration of magnesium ions plays an important role in new bone regeneration and reconstruction. It can be used as a simple and effective method to enhance the osteogenesis and angiogenesis of bioceramic scaffolds, and support the development of biomaterials and bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yifan Gu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006 China
- Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
| | - Jing Zhang
- Medprin Regenerative Medical Technologies Co., Ltd, Guangzhou, 510663 China
- East China Institute of Digital Medical Engineering, Shangrao, 334000 China
| | - Xinzhi Zhang
- East China Institute of Digital Medical Engineering, Shangrao, 334000 China
| | - Guiping Liang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006 China
- Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
| | - Tao Xu
- East China Institute of Digital Medical Engineering, Shangrao, 334000 China
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, 100084 China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055 China
| | - Wei Niu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006 China
- Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
| |
Collapse
|
11
|
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018; 25:1694-1705. [PMID: 30394120 PMCID: PMC6225504 DOI: 10.1080/10717544.2018.1501119] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/11/2023] Open
Abstract
The oral application of pharmaceuticals is unarguably the most convenient method of application. Especially for protein- or peptide-based drugs, however, the effectiveness is significantly reduced due to enzymatic digestion in the stomach as well as a poor bioavailability in the small intestine. For these difficult formulations, the encapsulation into nanocarriers would protect the sensitive drug and thus could considerably improve the efficiency of oral drug delivery. In the last years, many candidate biodegradable nanomaterials for such carrier systems have been published. However, before the cargo can be released, the nanocarrier needs to cross multiple barriers of the human body, including a layer of intestinal mucus and epithelial as well as endothelial cells. For overcoming these cellular barriers, transcytosis is favored over a paracellular transport for most nanomaterials as paracellular transport routes lack selectivity of transported molecules once opened up. The exact mechanisms behind the transcellular translocations are up to now still not completely understood. For the vast majority of nanocarriers, the rate of transcellular transport is not sufficient to realize their application in oral drug delivery. Especially trafficking into the endolysosomal pathway often marks a key problem. In this review, we focus on the molecular mechanisms of overcoming cellular barriers, especially transcytosis, and highlight difficulties of oral drug delivery via nanocarriers.
Collapse
Affiliation(s)
- Jonas Reinholz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
12
|
Abstract
Cell toxicity may result in organ dysfunction and cause severe health problem. Recent studies revealed many toxicants may induced the over production of Nitric oxide, reactive oxygen species and the subsequent oxidative stress, cause cell toxicity. Mitochondrion dysfunction maybe the subsequent consequence of oxidative stress and has been recognized as another contributing factor in cell toxicity. Besides, oxidative products induced by some toxicants may also produce the compounds that damage cell DNA, leading to toxicity. Especially, the significance of nanoparticle induced cell toxicity was disclosed recently and attract more concern. The mechanism mainly includes inflammation, oxidative stress and DNA damage. On the other side, some biomarkers of cell toxicity including autophagy, cytokines, miRNA has been identified. The understanding of these phenomenon may enable us to clarify the cell toxicity mechanism then contribute to cell toxicity protection, disease treatment and drug side effect prevention.
Collapse
Affiliation(s)
- Yong Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China.
| |
Collapse
|
13
|
Park KS, Kim BJ, Lih E, Park W, Lee SH, Joung YK, Han DK. Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta Biomater 2018; 73:204-216. [PMID: 29673840 DOI: 10.1016/j.actbio.2018.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
Artificial scaffolds made up of various synthetic biodegradable polymers have been reported to have many advantages including cheap manufacturing, easy scale up, high mechanical strength, convenient manipulation, and molding into an unlimited variety of shapes. However, the synthetic biodegradable polymers still have the insufficiency for cartilage regeneration owing to their acidic degradation products. To reduce acidification by degradation of synthetic polymers, we incorporated magnesium hydroxide (MH) nanoparticles into porous polymer scaffold not only to effectively neutralize the acidic hydrolysate but also to minimize the structural disturbance of scaffolds. The neutralization effect of poly(D,L-lactic-co-glycolic acid; PLGA)/MH scaffold was confirmed with the maintenance of neutral pH, contrary to a PLGA scaffold with low pH. Further, the scaffolds were applied to evaluate the chondrogenic differentiation of the human bone marrow mesenchymal stem cells. In in vitro study, the PLGA/MH scaffold enhanced the chondrogenesis markers and reduced the calcification, compared to the PLGA scaffold. Additionally, the PLGA/MH scaffold reduced the release of inflammatory cytokines, compared to the PLGA scaffold, as the cell death decreased. Moreover, the addition of MH reduced necrotic cell death at the early stage of chondrogenic differentiation. Further, the necrotic cell death by the PLGA scaffold was mediated by cleavage of caspase-1, the so-called interleukin 1-converting enzyme, and MH alleviated it as well as nuclear factor kappa B expression. Furthermore, the PLGA/MH scaffold highly supported chondrogenic healing of rat osteochondral defect sites in in vivo study. Therefore, it was suggested that a synthetic polymer scaffold containing MH could be a novel healing tool to support cartilage regeneration and further treatment of orthopedic patients. STATEMENT OF SIGNIFICANCE Synthetic polymer scaffolds have been widely utilized for tissue regeneration. However, they have a disadvantage of releasing acidic products through degradation. This paper demonstrated a novel type of synthetic polymer scaffold with pH-neutralizing ceramic nanoparticles composed of magnesium hydroxide for cartilage regeneration. This polymer showed pH-neutralization property during polymer degradation and significant enhancement of chondrogenic differentiation of mesenchymal stem cells. It reduced not only chondrogenic calcification but also release of proinflammatory cytokines. Moreover, it has an inhibitory effect on necrotic cell death, particularly caspase-1-mediated necrotic cell death (pyroptosis). In in vivo study, it showed higher healing rate of the damaged cartilage in a rat osteochondral defect model. We expected that this novel type of scaffold can be effectively applied to support cartilage regeneration and further treatment of orthopedic patients.
Collapse
Affiliation(s)
- Kwang-Sook Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byoung-Ju Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Eugene Lih
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Wooram Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
14
|
Tang Y, Shao A, Cao J, Li H, Li Q, Zeng M, Liu M, Cheng Y, Zhu W. cNGR-based synergistic-targeted NIR fluorescent probe for tracing and bioimaging of pancreatic ductal adenocarcinoma. Sci China Chem 2018; 61:184-191. [DOI: 10.1007/s11426-017-9092-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Mukherjee PS, Calderón-Garcidueñas L. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer’s Disease Development. J Alzheimers Dis 2017; 59:189-208. [DOI: 10.3233/jad-170012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Li H, Li L, Chen S, Zhang Y, Li G. Kinetic Control of Hexagonal Mg(OH)2
Nanoflakes for Catalytic Application of Preferential CO Oxidation. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huixia Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; College of Chemistry, Jilin University; Changchun 130012 China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; College of Chemistry, Jilin University; Changchun 130012 China
| | - Shaoqing Chen
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Fuzhou Fujian 350002 China
| | - Yuelan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; College of Chemistry, Jilin University; Changchun 130012 China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; College of Chemistry, Jilin University; Changchun 130012 China
| |
Collapse
|
17
|
Roles of Mitochondrial DNA Signaling in Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:39-53. [PMID: 29178068 DOI: 10.1007/978-981-10-6674-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) plays an important role in immune responses during the evolution. The present chapter systemically describes its role on immune-related diseases and its interaction on immune responses. It is important to explore the main function and mechanisms of mtDNA in immune responses by which mtDNA regulates the signaling pathways of Toll-like receptor 9, autophagy, and STING. There are potentials to discover therapeutic targets of mtDNA in immune diseases and inflammation. It will be more exciting if the CRISPR-Cas9 method can be applied for mtDNA gene editing to cure diseases and provide a novel insight of mtDNA in immune responses as well as new therapies.
Collapse
|
18
|
Calderón-Garcidueñas L, Reynoso-Robles R, Vargas-Martínez J, Gómez-Maqueo-Chew A, Pérez-Guillé B, Mukherjee PS, Torres-Jardón R, Perry G, Gónzalez-Maciel A. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. ENVIRONMENTAL RESEARCH 2016; 146:404-17. [PMID: 26829765 DOI: 10.1016/j.envres.2015.12.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 05/20/2023]
Abstract
Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 04850, México.
| | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04310, México
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|