1
|
Moomivand S, Nikbakht M, Majd A, Bikhof Torbati M, Mousavi SA. Synergistic Enhancement of Apo2L/TRAIL and DR4-Induced Apoptosis by Arsenic Trioxide in Triple-Negative Breast Cancer Cells: A Comparison to Conventional Chemotherapy. Cell Biochem Biophys 2025:10.1007/s12013-025-01764-9. [PMID: 40293700 DOI: 10.1007/s12013-025-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking hormonal and HER2 receptors, making it highly resistant to treatment. Apo2L/TRAIL, a tumor necrosis factor-related ligand, induces apoptosis in cancer cells via the death receptor DR4. However, TNBC often develops resistance to TRAIL-mediated apoptosis, limiting its therapeutic potential. This study investigates whether arsenic trioxide (ATO) can overcome TRAIL resistance by modulating the Apo2L/TRAIL pathway and enhancing the effects of carboplatin (CP) and cyclophosphamide (CY). TNBC cell lines BT-20 and MDA-MB-231 were treated with ATO, CP, CY, and their combinations. Cell viability was measured using the MTT assay, while real-time PCR and Western blot analysis assessed Apo2L/TRAIL and DR4 expression. Statistical analysis was performed using ANOVA with Dunnett's post hoc test. ATO induced dose-dependent cytotoxicity in TNBC cells, which was significantly enhanced in combination treatments. The highest reductions in cell viability were observed with 3 µM ATO plus 5000 µM CP or 500 µM CY (p < 0.0001). ATO markedly upregulated Apo2L/TRAIL and DR4 at both mRNA and protein levels, with the most pronounced effects seen in ATO-CY combinations. These findings indicate that ATO sensitizes TNBC cells to TRAIL-mediated apoptosis by upregulating DR4 and Apo2L/TRAIL, while also exhibiting strong synergistic cytotoxicity with CP and CY. This highlights ATO's potential as an adjuvant therapy to improve TNBC treatment efficacy and overcome chemoresistance, warranting further clinical exploration.
Collapse
Affiliation(s)
- Soraya Moomivand
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Nikbakht
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran.
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre rey branch, Islamic Azad University, Tehran, Iran
| | - Seyed Asadoullah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Komorowicz I, Hanć A. Can arsenic do anything good? Arsenic nanodrugs in the fight against cancer - last decade review. Talanta 2024; 276:126240. [PMID: 38754186 DOI: 10.1016/j.talanta.2024.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Arsenic has been an element of great interest among scientists for many years as it is a widespread metalloid in our ecosystem. Arsenic is mostly recognized with negative connotations due to its toxicity. Surely, most of us know that a long time ago, arsenic trioxide was used in medicine to treat, mainly, skin diseases. However, not everyone knows about its very wide and promising use in the treatment of cancer. Initially, in the seventies, it was used to treat leukemia, but new technological possibilities and the development of nanotechnology have made it possible to use arsenic trioxide for the treatment of solid tumours. The most toxic arsenic compound - arsenic trioxide - as the basis of anticancer drugs in which they function as a component of nanoparticles is used in the fight against various types of cancer. This review aims to present the current solutions in various cancer treatment using arsenic compounds with different binding motifs and methods of preparation to create targeted nanoparticles, nanodiamonds, nanohybrids, nanodrugs, or nanovehicles.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| |
Collapse
|
4
|
Yan M, Wang H, Wei R, Li W. Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date. Arch Pharm Res 2024; 47:249-271. [PMID: 38147202 DOI: 10.1007/s12272-023-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Hao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Pharmacy Department, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Fang Y, Bai Z, Cao J, Zhang G, Li X, Li S, Yan Y, Gao P, Kong X, Zhang Z. Low-intensity ultrasound combined with arsenic trioxide induced apoptosis of glioma via EGFR/AKT/mTOR. Life Sci 2023; 332:122103. [PMID: 37730111 DOI: 10.1016/j.lfs.2023.122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS This study aimed to explore whether low-intensity ultrasound (LIUS) combined with low-concentration arsenic trioxide (ATO) could inhibit the proliferation of glioma and, if so, to clarify the potential mechanism. MAIN METHODS The effects of ATO and LIUS alone or in combination on glioma were examined by CCK8, EdU, and flow cytometry assays. Western blot analysis was used to detect changes in expression of apoptosis-related proteins and their effects on the EGFR/AKT/mTOR pathway. The effects of ATO and LIUS were verified in vivo in orthotopic xenograft models, and tumor size, arsenic content in brain tissue, survival, and immunohistochemical changes were observed. KEY FINDINGS LIUS enhanced the inhibitory effect of ATO on the proliferation of glioma, and EGF reversed the proliferation inhibition and protein changes induced by ATO and LIUS. The anti-glioma effect of ATO combined with LIUS was related to downstream AKT/mTOR pathway changes caused by inhibition of EGFR activation, which enhanced apoptosis of U87MG and U373 cells. In vivo experiments showed significant increases in arsenic content in brain tissue, as well as decreased tumor sizes and longer survival times in the combined treatment group compared with other groups. The trends of immunohistochemical protein changes were consistent with the in vitro results. SIGNIFICANCE This study showed that LIUS enables ATO to exert anti-glioma effects at a safe dose by inhibiting the activation of EGFR and the downstream AKT/mTOR pathway to regulate apoptosis. LIUS in combination with ATO is a promising novel method for treating glioma and could improve patient prognosis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhiqun Bai
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jibin Cao
- Department of Radiology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Gaosen Zhang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xiang Li
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Shufeng Li
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Peirong Gao
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiangkai Kong
- Department of Ultrasound, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Zhen Zhang
- Department of Ultrasound, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
7
|
Zhou M, Yao Y, Ma S, Zou M, Chen Y, Cai S, Zhao F, Wu H, Xiao F, Abudushalamu G, Fan X, Wu G. Dual-targeted and dual-sensitive self-assembled protein nanocarrier delivering hVEGI-192 for triple-negative breast cancer. Int J Biol Macromol 2023:125475. [PMID: 37353129 DOI: 10.1016/j.ijbiomac.2023.125475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer is a highly prevalent malignancy worldwide among women with an increasing incidence in recent years. Triple-negative breast cancer (TNBC), a specific type of breast cancer, occurs primarily in young women and exhibits large tumor size, high clinical stage, and extremely poor prognosis with a high rate of lymph node, liver, and lung metastases. TNBC is insensitive to endocrine therapy and trastuzumab treatment, and there is an urgent need for effective therapeutics and treatment guidelines. However, investigations into antiangiogenic agents for the treatment of TNBC are ongoing. In this study, we successfully engineered a self-assembled protein nanocarrier TfRBP9-hVEGI-192-ELP fusion protein (TVEFP) to deliver the therapeutic protein, human vascular endothelial growth inhibitor (hVEGI-192). This was found to be effective in inhibiting tumor angiogenesis in vivo. The protein nanocarrier effectively inhibited the progression of TNBC in vivo and showed the behavior of self-assembly, thermoresponsiveness, enzyme stimulation-responsiveness, tumor-targeting, biocompatibility, and biodegradability. Near-infrared imaging studies showed that fluorescent dye-stained TVEFP effectively aggregated at the tumor site. The TVEFP nanocarrier significantly expands the application of the therapeutic protein hVEGI-192 and improves the imaging and biotherapeutic effects in TNBC, chiefly based on anti-angiogenesis effects.
Collapse
Affiliation(s)
- Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Huina Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Feng Xiao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - GuliNazhaer Abudushalamu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaobo Fan
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Laboratory Medcine, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
8
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
9
|
Dubey S, Mishra N, Goswami N, Siddiqui MQ, Varma AK. Multimodal approach to characterize the tetrameric form of human PML-RBCC domain and ATO-mediated conformational changes. Int J Biol Macromol 2022; 223:468-478. [PMID: 36356867 DOI: 10.1016/j.ijbiomac.2022.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
RING-B box-coiled coil (RBCC) domain of promyelocytic leukemia (PML) comprises a zinc finger motif that is targeted by arsenic trioxide (ATO) to treat acute promyelocytic leukemia (APL) pathogenesis. Preliminary evidence suggests that the PML-RBCC has different functional characteristics, but no structural details have been reported despite its importance in differential expression and cell-cycle regulation. Therefore, the recombinant h-PML-RBCC protein was purified to its homogeneity, and characterized for oligomeric behaviour which indicated that RBCC domain exists as a tetramer in solution. Furthermore, nano-DSF and circular-dichroism demonstrated that the tetrameric form preserves its native conformation along with thermal stability (Tm = 83.2 °C). In-silico-based PML-RBCC structure was used to perform the molecular dynamics simulation for 300 ns in the presence of zinc atoms, which demonstrated the differential dynamic of PML-RBCC tetrameric chains. MMPBSA analysis also indicated the role of hydrophobic interactions that favours stable tetrameric structure of PML-RBCC. ATO-induced secondary and tertiary structure changes were observed in PML-RBCC using circular dichroism and fluorescence spectroscopy. Dynamic light scattering and transmission electron microscopy revealed ATO-induced higher-order oligomerization and aggregation of PML-RBCC. The unique oligomeric nature of the h-PML-RBCC protein and its interactions with ATO will help to understand the mechanism of APL pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Suchita Dubey
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Neha Mishra
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nabajyoti Goswami
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - M Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
10
|
Breast Cancer and Arsenic Anticancer Effects: Systematic Review of the Experimental Data from In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8030931. [PMID: 36619302 PMCID: PMC9815927 DOI: 10.1155/2022/8030931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022]
Abstract
Arsenic is a known environmental carcinogenic agent. However, under certain circumstances, it may exert anticancer effects. In this systematic review, we aim to provide information on recent developments in studies on arsenic antitumor effects in breast cancer. Research included in the review refers to experimental data from in vitro studies. The data was collected using search terms "breast cancer," "arsenic," and "anticancer" (25.05.2021). Only studies in English and published in the last 10 years were included. The search identified 123 studies from the EBSCOhost, PubMed, and Scopus databases. In the selection process, thirty full-texts were evaluated as eligible for the review. The literature of the last decade provides a lot of information on mechanisms behind anticancer effects of arsenic on breast cancer. Similar to arsenic-induced carcinogenesis, these mechanisms include the activation of the redox system and the increased production of free radicals. Targets of arsenic action are systems of cell membranes, mitochondria, pathways of intracellular transmission, and the genetic apparatus of the cell. Beneficial effects of arsenic use are possible due to significant metabolic differences between cancer and healthy cells. Further efforts are needed in order to establish modes and doses of treatment with arsenic that would provide anticancer activity with minimal toxicity.
Collapse
|
11
|
Ran S, Ren Q, Li S. JAK2/STAT3 in role of arsenic-induced cell proliferation: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:451-461. [PMID: 34332517 DOI: 10.1515/reveh-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Malignant cell proliferation is one of the important mechanisms of arsenic poisoning. A large number of studies have shown that STAT3 plays an important role in cell malignant proliferation, but there are still many contradictions in the effect of arsenic on JAK2/STAT3. This study aims to explore the role of JAK2/STAT3 in arsenic-induced cell proliferation. METHODS By taking normal cells as the research object and using Standard Mean Difference (SMD) as the effect size, meta-analysis was used to explore the effect of arsenic on JAK2/STAT3. Then, the dose-effect Meta was used to further clarify the dose-effect relationship of arsenic on JAK2/STAT3. RESULTS Through meta-analysis, this study found that arsenic could promote the phosphorylation of STAT3 (SMD=4.21, 95%CI [1.05, 7.37]), and increase IL-6 and p-JAK2, Vimentin, VEGF expression levels, thereby inducing malignant cell proliferation. In addition, this study also found that arsenic exposure dose (<5 μmol m-3), time(<24 h) and cell type were important sources of heterogeneity in the process of exploring the effects of arsenic on p-STAT3, IL-6 and p-JAK2. Dose-effect relationship meta-analysis results showed that arsenic exposure significantly increased the expression level of IL-6. When the arsenic exposure concentration was less than 7 μmol m-3, the expression level of p-JAK2 upregulated significantly as the arsenic exposure concentration gradually increasing. Moreover, the expression level of p-STAT3 elevated significantly with the gradual increase of the arsenic concentration under 5 μmol m-3 of arsenic exposure, but the expression level of p-STAT3 gradually decreases when the concentration is greater than 5 μmol m-3. CONCLUSIONS Exposure to low dose of arsenic could promote the expression of JAK2/STAT3 and induce the malignant proliferation of cells through upregulating IL-6, and there was dose-effect relationship among them.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Public Health, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy. Pharmacol Res 2022; 182:106333. [PMID: 35779815 DOI: 10.1016/j.phrs.2022.106333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment (TME) through limiting immune cell infiltration into tumors. The defective vascular perfusion in tumors also impairs the delivery and efficacy of chemotherapeutic agents. Targeting abnormal tumor blood vessels has emerged as an effective therapeutic strategy to improve the outcome of chemotherapy and immunotherapy. In this study, we demonstrated that Salvianolic acid B (SalB), one of the major ingredients of Salvia miltiorriza elicited vascular normalization in the mouse models of breast cancer, contributing to improved delivery and response of chemotherapeutic agent cisplatin as well as attenuated metastasis. Moreover, SalB in combination with anti-PD-L1 blockade retarded tumor growth, which was mainly due to elevated infiltration of immune effector cells and boosted delivery of anti-PD-L1 into tumors. Mechanistically, tumor cell enhancer of zeste homolog 2 (Ezh2)-driven cytokines disrupted the endothelial junctions with diminished VE-cadherin expression, which could be rescued in the presence of SalB. The restored vascular integrity by SalB via modulating the interactions between tumor cells and endothelial cells (ECs) offered a principal route for achieving vascular normalization. Taken together, our data elucidated that SalB enhanced sensitivity of tumor cells to chemotherapy and immunotherapy through triggering tumor vascular normalization, providing a potential therapeutic strategy of combining SalB and chemotherapy or immunotherapy for patients with breast cancer.
Collapse
|
13
|
Adibfar S, Elveny M, Kashikova HS, Mikhailova MV, Farhangnia P, Vakili-Samiani S, Tarokhian H, Jadidi-Niaragh F. The molecular mechanisms and therapeutic potential of EZH2 in breast cancer. Life Sci 2021; 286:120047. [PMID: 34653429 DOI: 10.1016/j.lfs.2021.120047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Due to its high occurrence and mortality rate, breast cancer has been studied from various aspects as one of the cancer field's hot topics in the last decade. Epigenetic alterations are spoused to be highly effective in breast cancer development. Enhancer of zeste homolog 2 (EZH2) is an enzymatic epi-protein that takes part in most vital cell functions by its different action modes. EZH2 is suggested to be dysregulated in specific breast cancer types, particularly in advanced stages. Mounting evidence revealed that EZH2 overexpression or dysfunction affects the pathophysiology of breast cancer. In this review, we discuss biological aspects of the EZH2 molecule with a focus on its newly identified action mechanisms. We also highlight how EZH2 plays an essential role in breast cancer initiation, progression, metastasis, and invasion, which emerged as a worthy target for treating breast cancer in different approaches.
Collapse
Affiliation(s)
- Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marischa Elveny
- DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Advanced Cellular Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sajjad Vakili-Samiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Tarokhian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Integrated Medicine and Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
15
|
Miodragović Ð, Qiang W, Sattar Waxali Z, Vitnik Ž, Vitnik V, Yang Y, Farrell A, Martin M, Ren J, O’Halloran TV. Iodide Analogs of Arsenoplatins-Potential Drug Candidates for Triple Negative Breast Cancers. Molecules 2021; 26:molecules26175421. [PMID: 34500854 PMCID: PMC8434261 DOI: 10.3390/molecules26175421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Patients with triple negative breast cancers (TNBCs)—highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors—have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Wenan Qiang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Željko Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Vesna Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Yi Yang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Annie Farrell
- Department of Chemistry, University of Illinois at Urbana Champaign, 102 N. Neil St., Champaign, IL 61820, USA;
| | - Matthew Martin
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
| | - Justin Ren
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Thomas V. O’Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Department of Chemistry and Department of Microbiology & Molecular Genetics, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Correspondence: or ; Tel.: +1-847-491-5060; Fax: +1-847-467-1566
| |
Collapse
|
16
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Sun Z, Cao Y, Xing Y, Wu M, Shao X, Huang Q, Bai L, Wang L, Zhao Y, Wu Y. Antiangiogenic effect of arsenic trioxide in HUVECs by FoxO3a-regulated autophagy. J Biochem Mol Toxicol 2021; 35:e22728. [PMID: 33592126 DOI: 10.1002/jbt.22728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
Abstract
Arsenic trioxide (ATO) has been shown to have antitumor effect in different tumors, although the underlying mechanisms are not fully understood. Autophagy plays a critical role in tumorigenesis and cancer therapy and has been found to be activated by ATO in different cells. However, the role of autophagy in the antitumor effect of ATO has not yet been elucidated. In this study, we investigated the role of autophagy in the antiangiogenic effect of ATO in human umbilical vein endothelial cells (HUVECs) in vitro and its underlying mechanism. Our data showed that ATO suppresses angiogenesis and induces autophagy in HUVECs through upregulation of forkhead box protein O3 (FoxO3a). Co-incubated with autophagy inhibitor or knockdown of FoxO3a effectively inhibited ATO-induced autophagy and reversed the antiangiogenic effect of ATO, indicating that ATO-induced autophagy plays an antiangiogenic role in HUVECs. Our results highlight the importance of autophagy in the antiangiogenic effect of ATO and provide an improved understanding of the function of ATO.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yidan Cao
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yueping Xing
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xiaotong Shao
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Qingli Huang
- Research Facility Center for Morphology of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Li Wang
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yaxian Zhao
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Xin T, Lv W, Liu D, Jing Y, Hu F. Opa1 Reduces Hypoxia-Induced Cardiomyocyte Death by Improving Mitochondrial Quality Control. Front Cell Dev Biol 2020; 8:853. [PMID: 32984338 PMCID: PMC7483501 DOI: 10.3389/fcell.2020.00853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction contributes to cardiovascular disorders, especially post-infarction cardiac injury, through incompletely characterized mechanisms. Among the latter, increasing evidence points to alterations in mitochondrial quality control, a range of adaptive responses regulating mitochondrial morphology and function. Optic atrophy 1 (Opa1) is a mitochondrial inner membrane GTPase known to promote mitochondrial fusion. In this study, hypoxia-mediated cardiomyocyte damage was induced to mimic post-infarction cardiac injury in vitro. Loss- and gain-of-function assays were then performed to evaluate the impact of Opa1 expression on mitochondrial quality control and cardiomyocyte survival and function. Hypoxic stress reduced cardiomyocyte viability, impaired contractile/relaxation functions, and augmented the synthesis of pro-inflammatory mediators. These effects were exacerbated by Opa1 knockdown, and significantly attenuated by Opa1 overexpression. Mitochondrial quality control was disturbed by hypoxia, as reflected by multiple mitochondrial deficits; i.e., increased fission, defective fusion, impaired mitophagy, decreased biogenesis, increased oxidative stress, and blunted respiration. By contrast, overexpression of Opa1 normalized mitochondrial quality control and sustained cardiomyocyte function. We also found that ERK, AMPK, and YAP signaling can regulate Opa1 expression. These results identify Opa1 as a novel regulator of mitochondrial quality control and highlight a key role for Opa1 in protecting cardiomyocytes against post-infarction cardiac injury.
Collapse
Affiliation(s)
- Ting Xin
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Wei Lv
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Dongmei Liu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Yongle Jing
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Fang Hu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
19
|
Fu G, Wang B, He B, Feng M, Yu Y. LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020; 41:32-37. [PMID: 32580628 DOI: 10.1080/10799893.2020.1783682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necroptosis is a new type of cell death. However, the role of necroptosis in LPS-related cardiomyocyte damage has not been fully understood. The aim of our study is to explore the molecular mechanism underlying inflammation-mediated cardiomyocyte necroptosis. H9C2 cardiomyocyte cell line was treated with LPS. Then, cell viability and necroptosis were measured through qPCR and ELISA. Pathway analysis was performed to verify whether Ripk3/Pgam5 signaling pathway is implicated into the regulation of cardiomyocyte necroptosis. The results demonstrated that LPS reduced cardiomyocyte viability and activated necroptosis. At the molecular levels, oxidative stress and inflammation were triggered by LPS and these alterations may contribute to the activation of necroptosis. Finally, we found that Ripk3/Pgam5 signaling pathway was activated by LPS in cardiomyocyte and this signaling pathway may explain the regulatory mechanism underlying LPS-mediated necroptosis. Altogether, our results demonstrated that septic cardiomyopathy is associated with an activation of necroptosis through the Ripk3/Pgam5 signaling pathway.
Collapse
Affiliation(s)
- Guohua Fu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Bin He
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Mingjun Feng
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yibo Yu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
iRGD and TGN co-modified PAMAM for multi-targeted delivery of ATO to gliomas. Biochem Biophys Res Commun 2020; 527:117-123. [PMID: 32446354 DOI: 10.1016/j.bbrc.2020.04.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
|
21
|
Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153227. [PMID: 32339885 DOI: 10.1016/j.phymed.2020.153227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| | - Kgk Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|
22
|
Wan Z, Jiang H, Li L, Zhu S, Hou J, Yu Y. Carcinogenic roles and therapeutic effects of EZH2 in gynecological cancers. Bioorg Med Chem 2020; 28:115379. [PMID: 32098708 DOI: 10.1016/j.bmc.2020.115379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Enhancer of Zeste Homolog 2 (EZH2) is highly expressed in kinds of malignant tumors and related to tumor occurrence, development, and prognosis. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which promotes cell proliferation, migration, and invasion by epigenetic regulation of anti-tumor gene. It can activate numerous tumor-associated signaling pathways and interfere with DNA damage repair. In recent years, large amounts of studies have shown that EZH2 is closely related to gynecologic-related malignancies and can be used as a potential target gene for the treatment of gynecological-related malignancies. This review summarizes the oncogenic function of EZH2 and introduces the recent advances in the development of EZH2 inhibitors. On this basis, future research prospect of EZH2 is proposed.
Collapse
Affiliation(s)
- Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuhui Zhu
- Department of Food and Drug Engineering, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, Malla RR. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 2020; 153:104683. [PMID: 32050092 DOI: 10.1016/j.phrs.2020.104683] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is most aggressive subtype of breast cancers with high probability of metastasis as well as lack of specific targets and targeted therapeutics. TNBC is characterized with unique tumor microenvironment (TME), which differs from other subtypes. TME is associated with induction of proliferation, angiogenesis, inhibition of apoptosis and immune system suppression, and drug resistance. Exosomes are promising nanovesicles, which orchestrate the TME by communicating with different cells within TME. The components of TME including transformed ECM, soluble factors, immune suppressive cells, epigenetic modifications and re-programmed fibroblasts together hamper antitumor response and helps progression and metastasis of TNBCs. Therefore, TME could be a therapeutic target of TNBC. The current review presents latest updates on the role of exosomes in modulation of TME, approaches for targeting TME and combination of immune checkpoint inhibitors and target chemotherapeutics. Finally, we also discussed various phytochemicals that alter genetic, transcriptomic and proteomic profiles of TME along with current challenges and future implications. Thus, as TME is associated with the hallmarks of TNBC, the understanding of the impact of different components can improve the clinical benefits of TNBC patients.
Collapse
Affiliation(s)
- K G K Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Rahul Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Nagini S
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, India
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
24
|
Potential molecular mechanisms underlying the effect of arsenic on angiogenesis. Arch Pharm Res 2019; 42:962-976. [PMID: 31701373 DOI: 10.1007/s12272-019-01190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Arsenic is a potent chemotherapeutic drug that is applied as a treatment for cancer; it exerts its functions through multiple pathways, including angiogenesis inhibition. As angiogenesis is a critical component of the progression of many diseases, arsenic is a feasible treatment option for patients with other angiogenic diseases, including rheumatoid arthritis and psoriasis, among others. However, arsenic is also a well-known carcinogen, demonstrating a pro-angiogenesis effect. This review will focus on the dual effects of arsenic on neovascularization and the relevant mechanisms underlying these effects, aiming to provide a rational understanding of arsenic treatment. In particular, we expect to provide a comprehensive overview of the current knowledge of the mechanisms by which arsenic influences angiogenesis.
Collapse
|
25
|
Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:195. [PMID: 31088482 PMCID: PMC6518732 DOI: 10.1186/s13046-019-1206-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Triple negative breast cancer (TNBC), which is typically lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), represents the most aggressive and mortal subtype of breast cancer. Currently, only a few treatment options are available for TNBC due to the absence of molecular targets, which underscores the need for developing novel therapeutic and preventive approaches for this disease. Recent evidence from clinical trials and preclinical studies has demonstrated a pivotal role of signal transducer and activator of transcription 3 (STAT3) in the initiation, progression, metastasis, and immune evasion of TNBC. STAT3 is overexpressed and constitutively activated in TNBC cells and contributes to cell survival, proliferation, cell cycle progression, anti-apoptosis, migration, invasion, angiogenesis, chemoresistance, immunosuppression, and stem cells self-renewal and differentiation by regulating the expression of its downstream target genes. STAT3 small molecule inhibitors have been developed and shown excellent anticancer activities in in vitro and in vivo models of TNBC. This review discusses the recent advances in the understanding of STAT3, with a focus on STAT3’s oncogenic role in TNBC. The current targeting strategies and representative small molecule inhibitors of STAT3 are highlighted. We also propose potential strategies that can be further examined for developing more specific and effective inhibitors for TNBC prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Li Yan
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia Zhang
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China. .,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|