1
|
Disease-Modifying Activity of Huperzine A on Alzheimer's Disease: Evidence from Preclinical Studies on Rodent Models. Int J Mol Sci 2022; 23:ijms232315238. [PMID: 36499562 PMCID: PMC9738397 DOI: 10.3390/ijms232315238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Huperzine A, a natural cholinesterase (AChE) inhibitor isolated from the Chinese herb Huperzia Serrata, has been used as a dietary supplement in the United States and a drug in China for therapeutic intervention on Alzheimer's disease (AD). This review aims to determine whether Huperzine A exerts disease-modifying activity through systematic analysis of preclinical studies on rodent AD models. (2) Methods: Sixteen preclinical studies were included based on specific criteria, and the methodological qualities were analyzed by SYRCLE's risk of bias tool. Some outcomes were meta-analyzed: latencies and time spent in quadrant of Morris water maze, soluble amyloid-β (Aβ) level measured by ELISA in the cortex and hippocampus, Aβ plaque numbers measured by immunohistochemistry in hippocampus, choline acetyltransferase (ChAT) activity, and AChE activity. Finally, the mechanisms of Huperzine A on AD models were summarized. (3) Conclusions: The outcomes showed that Huperzine A displayed AChE inhibition, ChAT activity enhancement, memory improvement, and Aβ decreasing activity, indicating the disease-modifying effect of Huperzine A. However, due to the uneven methodological quality, the results need to be rationally viewed, and extensively repeated.
Collapse
|
2
|
A Synopsis of Multitarget Potential Therapeutic Effects of Huperzine A in Diverse Pathologies-Emphasis on Alzheimer's Disease Pathogenesis. Neurochem Res 2022; 47:1166-1182. [PMID: 35122609 DOI: 10.1007/s11064-022-03530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Numerous challenges are confronted when it comes to the recognition of therapeutic agents for treating complex neurodegenerative diseases like Alzheimer's disease (AD). The perplexing pathogenicity of AD embodies cholinergic dysfunction, amyloid beta (Aβ) aggregation, neurofibrillary tangle formation, neuroinflammation, mitochondrial disruption along with vicious production of reactive oxygen species (ROS) generating oxidative stress. In this frame of reference, drugs with multi target components could prove more advantageous to counter complex pathological mechanisms that are responsible for AD progression. For as much as, medicinal plant based pharmaco-therapies are emerging as potential candidates for AD treatment keeping the efficacy and safety parameters in terms of toxicity and side effects into consideration. Huperzine A (Hup A) is a purified alkaloid compound extracted from a club moss called Huperzia serrata. Several studies have reported both cholinergic and non-cholinergic effects of this compound on AD with significant neuroprotective properties. The present review convenes cumulative demonstrations of neuroprotection provided by Hup A in in vitro, in vivo, and human studies in various pathologies. The underlying molecular mechanisms of its actions have also been discussed. However, more profound evidence would certainly promote the therapeutic implementation of this drug thus furnishing decisive insights into AD therapeutics and various other pathologies along with preventive and curative management.
Collapse
|
3
|
Ishiuchi K, Hirose D, Suzuki T, Nakayama W, Jiang WP, Monthakantirat O, Wu JB, Kitanaka S, Makino T. Identification of Lycopodium Alkaloids Produced by an Ultraviolet-Irradiated Strain of Paraboeremia, an Endophytic Fungus from Lycopodium serratum var. longipetiolatum. JOURNAL OF NATURAL PRODUCTS 2018; 81:1143-1147. [PMID: 29676580 DOI: 10.1021/acs.jnatprod.7b00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
12- epi-Lycopodine (1), a Lycopodium alkaloid, along with lycopodine (2) and huperzine A (3), were discovered in the mycelium of Paraboeremia sp. Lsl3KI076, a UV-irradiated strain of Paraboeremia sp. Lsl3, an endophytic fungus from Lycopodium serratum Thunb. var. longipetiolatum Spring. Additionally, a trace of 1 was isolated from Phlegmariurus nummulariifolius (Blume) Ching, and the structure was elucidated on the basis of spectroscopic data. This is the first report proving that a new naturally occurring Lycopodium alkaloid can be obtained from an endophytic fungus.
Collapse
Affiliation(s)
- Kan'ichiro Ishiuchi
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1, Tanabe-Dori , Mizuho-ku, Nagoya 467-8603 , Aichi , Japan
| | - Dai Hirose
- School of Pharmacy , Nihon University , 7-7-1, Narashinodai , Funabashi , 274-8555 , Chiba , Japan
| | - Takuma Suzuki
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1, Tanabe-Dori , Mizuho-ku, Nagoya 467-8603 , Aichi , Japan
| | - Waka Nakayama
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1, Tanabe-Dori , Mizuho-ku, Nagoya 467-8603 , Aichi , Japan
| | - Wen-Ping Jiang
- School of Pharmacy , China Medical University , No. 91, Hsueh-Shih R. , Taichung 40402 , Taiwan
| | - Orawan Monthakantirat
- Faculty of Pharmaceutical Sciences , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Jin-Bin Wu
- School of Pharmacy , China Medical University , No. 91, Hsueh-Shih R. , Taichung 40402 , Taiwan
| | - Susumu Kitanaka
- School of Pharmacy , Nihon University , 7-7-1, Narashinodai , Funabashi , 274-8555 , Chiba , Japan
| | - Toshiaki Makino
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1, Tanabe-Dori , Mizuho-ku, Nagoya 467-8603 , Aichi , Japan
| |
Collapse
|
4
|
Ishiuchi K, Nakayama W, Monthakantirat O, Fujikawa K, Watthana S, Kitanaka S. Phlenumdines A−C, New Lycopodium Alkaloids Isolated from Phlegmariurus nummulariifolius. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Abstract
BACKGROUND Mild cognitive impairment (MCI) has been proposed as a condition of intermediate symptomatology between the cognitive changes of ageing and fully developed symptoms of dementia. Treatment in the stages of MCI may delay the deterioration of cognitive impairment and delay the progression to dementia. Currently, the treatments for Alzheimer's disease have been focused on increasing acetylcholine levels in the brain. However, these drugs have not been proven to be effective for MCI and have numerous side effects. Huperzine A may have some beneficial effects in MCI. OBJECTIVES To assess the clinical efficacy and safety of huperzine A for the treatment of patients with MCI. SEARCH METHODS We searched ALOIS: the Cochrane Dementia and Cognitive Improvement Group's Specialized Register on 23 May 2011 using the terms: huperzine, ayapin, scoparon. ALOIS contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources. Additional searches were also performed separately in MEDLINE, EMBASE, PsycINFO, LILACS, clinicalTrials.gov, the ICTRP (WHO portal), CENTRAL (The Cochrane Library) and Web of Science with Conference Proceedings.The following Chinese databases were searched: The Chinese Biomedical Database, VIP Chinese Science and Technique Journals Database, China National Knowledge Infrastructure and The Chinese Clinical Trials Register. In addition, we handsearched 20 Chinese traditional medicine journals from between 1970 and 1989. SELECTION CRITERIA Randomised, parallel-group, placebo-controlled trials comparing huperzine A with placebo in patients with MCI were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for their eligibility for inclusion. MAIN RESULTS No eligible trials were identified. In the absence of any suitable randomised placebo-controlled trials in this area, we were unable to perform a meta-analysis. AUTHORS' CONCLUSIONS The currently available evidence is insufficient to assess the potential for huperzine A in the treatment of MCI. Randomised double-blind placebo-controlled trials are needed.
Collapse
Affiliation(s)
- Jirong Yue
- West China Hospital, Sichuan UniversityDepartment of GeriatricsNo. 37, Guo Xue XiangChengduChina610041
| | - Bi Rong Dong
- West China Hospital, Sichuan UniversityDepartment of GeriatricsNo. 37, Guo Xue XiangChengduChina610041
| | - Xiufang Lin
- West China Hospital, Sichuan UniversityDepartment of GeriatricsNo. 37, Guo Xue XiangChengduChina610041
| | - Ming Yang
- West China Hospital, Sichuan UniversityDepartment of GeriatricsNo. 37, Guo Xue XiangChengduChina610041
| | - Hong Mei Wu
- West China Hospital, Sichuan UniversityDepartment of GeriatricsNo. 37, Guo Xue XiangChengduChina610041
| | - Taixiang Wu
- West China Hospital, Sichuan UniversityChinese Clinical Trial Registry, Chinese Ethics Committee of Registering Clinical TrialsNo. 37, Guo Xue XiangChengduChina610041
| |
Collapse
|
6
|
Chambon C, Wegener N, Gravius A, Danysz W. Behavioural and cellular effects of exogenous amyloid-β peptides in rodents. Behav Brain Res 2011; 225:623-41. [PMID: 21884730 DOI: 10.1016/j.bbr.2011.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
A better understanding of Alzheimer's disease (AD) and the development of disease modifying therapies are some of the biggest challenges of the 21st century. One of the core features of AD are amyloid plaques composed of amyloid-beta (Aβ) peptides. The first hypothesis proposed that cognitive deficits are linked to plaque-development and transgenic mice have been generated to study this link, thereby providing a good model to develop new therapeutic approaches. Since later it was recognised that in AD patients the cognitive deficit is rather correlated to soluble amyloid levels, consequently, a new hypothesis appeared associating the earliest amyloid toxicity to these soluble species. The purpose of this review is to give a summary of behavioural and cellular data obtained after soluble Aβ peptide administration into rodents' brain, thereby showing that this model is a valid tool to investigate AD pathology when no plaques are present. Additionally, this method offers an excellent, efficient model to test compounds which could act at such early stages of the disease.
Collapse
Affiliation(s)
- Caroline Chambon
- In Vivo Pharmacology, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, D-60318 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
7
|
Malkova L, Kozikowski AP, Gale K. The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques. Neuropharmacology 2010; 60:1262-8. [PMID: 21185313 DOI: 10.1016/j.neuropharm.2010.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/29/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
Abstract
Nootropic agents or cognitive enhancers are purported to improve mental functions such as cognition, memory, or attention. The aim of our study was to determine the effects of two possible cognitive enhancers, huperzine A and IDRA 21, in normal young adult monkeys performing a visual memory task of varying degrees of difficulty. Huperzine A is a reversible acetylcholinesterase (AChE) inhibitor, its administration results in regionally specific increases in acetylcholine levels in the brain. In human clinical trials, Huperzine A resulted in cognitive improvement in patients with mild to moderate form of Alzheimer's disease (AD) showing its potential as a palliative agent in the treatment of AD. IDRA 21 is a positive allosteric modulator of glutamate AMPA receptors. It increases excitatory synaptic strength by attenuating rapid desensitization of AMPA receptors and may thus have beneficial therapeutic effects to ameliorate memory deficits in patients with cognitive impairments, including AD. The present study evaluated the effects of the two drugs in normal, intact, young adult monkeys to determine whether they can result in cognitive enhancement in a system that is presumably functioning optimally. Six young pigtail macaques (Macaca nemestrina) were trained on delayed non-matching-to-sample task, a measure of visual recognition memory, up to criterion of 90% correct responses on each of the four delays (10s, 30s, 60s, and 90s). They were then tested on two versions of the task: Task 1 included the four delays intermixed within a session and the monkeys performed it with the accuracy of 90%. Task 2 included, in each of 24 trials, a list of six objects presented in succession. Two objects from the list were then presented for choice paired with novel objects and following two of the four delays intermixed within a session. This task with a higher mnemonic demand yielded an average performance of 64% correct. Oral administration of huperzine A did not significantly affect the monkeys' performance on either task. However, a significant negative correlation was found between the baseline performance on each delay and the change in performance under huperzine A, suggesting that under conditions in which the subjects were performing poorly (55-69%), the drug resulted in improved performance, whereas no improvement was obtained when the baseline was close to 90%. In fact, when the subjects were performing very well, huperzine A tended to reduce the performance accuracy, indicating that in a system that functions optimally, the increased availability of acetylcholine does not improve performance or memory, especially when the animals are close to the maximum performance. In contrast, oral administration of IDRA 21 significantly improved performance on Task 2, especially on the longest delay. This finding supports the potential use of this drug in treatment of cognitive and memory disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Ludise Malkova
- Department of Pharmacology and the Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, 3900 Reservoir Rd. NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
8
|
Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res 2010; 221:527-36. [PMID: 20170686 DOI: 10.1016/j.bbr.2010.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 01/12/2023]
Abstract
Acetylcholine release links the activity of presynaptic neurons with their postsynaptic targets and thus represents the intercellular correlate of cholinergic neurotransmission. Here, we review the regulation and functional significance of acetylcholine release in the mammalian cerebral cortex, with a particular emphasis on information derived from in vivo microdialysis studies over the past three decades. This information is integrated with anatomical and behavioral data to derive conclusions regarding the role of cortical cholinergic transmission in normal behavioral and how its dysregulation may contribute to cognitive correlates of several neuropsychiatric conditions. Some unresolved issues regarding the regulation and significance of cortical acetylcholine release and the promise of new methodology for advancing our knowledge in this area are also briefly discussed.
Collapse
|
9
|
Gao X, Zheng CY, Yang L, Tang XC, Zhang HY. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 2009; 46:1454-62. [PMID: 19272446 DOI: 10.1016/j.freeradbiomed.2009.02.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/19/2009] [Accepted: 02/13/2009] [Indexed: 01/09/2023]
Abstract
Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Zhang HY, Zheng CY, Yan H, Wang ZF, Tang LL, Gao X, Tang XC. Potential therapeutic targets of huperzine A for Alzheimer's disease and vascular dementia. Chem Biol Interact 2008; 175:396-402. [PMID: 18565502 DOI: 10.1016/j.cbi.2008.04.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/29/2022]
Abstract
Huperzine A (HupA), a novel Lycopodium alkaloid isolated from Chinese folk medicine Huperzia serrata (Qian Ceng Ta), is a potent, selective and well-tolerated inhibitor of acetylcholinesterase (AChE). It has been proven to significantly improve the learning and memory impairment in Alzheimer's disease (AD) and vascular dementia (VaD) patients in China. Interestingly, our recent data indicate that HupA also possesses other protective functions. This paper will give an overview on the protective effects of HupA, which includes regulating beta-amyloid precursor protein (APP) metabolism, protecting against Abeta-mediated oxidative stress, apoptosis and mitochondrial dysfunction, as well as anti-inflammation. The multiple neuroprotective effects of HupA might yield additional beneficial effects in AD and VaD therapy.
Collapse
Affiliation(s)
- Hai Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|