1
|
King C, Rogers LG, Jansen J, Sivayokan B, Neyhard J, Warnes E, Hall SE, Plakke B. Adolescent treadmill exercise enhances hippocampal brain-derived neurotrophic factor (BDNF) expression and improves cognition in autism-modeled rats. Physiol Behav 2024; 284:114638. [PMID: 39004196 PMCID: PMC12032843 DOI: 10.1016/j.physbeh.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by repetitive behaviors and altered communication abilities. Exercise is a low-cost intervention that could improve cognitive function and improve brain plasticity mechanisms. Here, the valproic acid (VPA) model was utilized to induce ASD-like phenotypes in rodents. Animals were exercised on a treadmill and performance was evaluated on a cognitive flexibility task. Biomarkers related to exercise and plasticity regulation were quantified from the prefrontal cortex, hippocampus, and skeletal muscle. Exercised VPA animals had higher levels of hippocampal BDNF compared to sedentary VPA animals and upregulated antioxidant enzyme expression in skeletal muscle. Cognitive improvements were demonstrated in both sexes, but in different domains of cognitive flexibility. This research demonstrates the benefits of exercise and provides evidence that molecular responses to exercise occur in both the central nervous system and in the periphery. These results suggest that improving regulation of BDNF via exercise, even at low intensity, could provide better synaptic regulation and cognitive benefits for individuals with ASD.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Liza G Rogers
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jeremy Jansen
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Bhavana Sivayokan
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Jenna Neyhard
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Ellie Warnes
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephanie E Hall
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Osacka J, Kiss A, Bacova Z, Tillinger A. Effect of Haloperidol and Olanzapine on Hippocampal Cells’ Proliferation in Animal Model of Schizophrenia. Int J Mol Sci 2022; 23:ijms23147711. [PMID: 35887056 PMCID: PMC9323809 DOI: 10.3390/ijms23147711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
Aberrant neurogenesis in the subventricular zone (SVZ) and hippocampus (HIP) contributes to schizophrenia pathogenesis. Haloperidol (HAL) and olanzapine (OLA), commonly prescribed antipsychotics for schizophrenia treatment, affect neurogenesis too. The effect of HAL and OLA on an mHippoE-2 cell line was studied in vitro where we measured the cell number and projection length. In vivo, we studied the gene expression of DCX, Sox2, BDNF, and NeuN in the SVZ and HIP in an MK-801-induced animal schizophrenia model. Cells were incubated with HAL, OLA, and MK-801 for 24, 48, and 72 h. Animals were injected for 6 days with saline or MK801 (0.5 mg/kg), and from the 7th day with either vehicle HAL (1 mg/kg) or OLA (2 mg/kg), for the next 7 days. In vitro, HAL and OLA dose/time-dependently suppressed cells’ proliferation and shortened their projection length. HAL/OLA co-treatment with MK-801 for 24 h reversed HAL’s/OLA’s inhibitory effect. In vivo, HAL and OLA suppressed DCX and NeuN genes’ expression in the HIP and SVZ. MK-801 decreased DCX and NeuN genes’ expression in the HIP and OLA prevented this effect. The data suggest that subchronic HAL/OLA treatment can inhibit DCX and NeuN expression. In an MK-801 schizophrenia model, OLA reversed the MK-801 inhibitory effect on DCX and NeuN and HAL reversed the effect on DCX expression; however, only in the HIP.
Collapse
|
3
|
Effects of Treadmill Exercise on Social Behavior in Rats Exposed to Thimerosal with Respect to the Hippocampal Level of GluN1, GluN2A, and GluN2B. J Mol Neurosci 2022; 72:1345-1357. [PMID: 35597884 DOI: 10.1007/s12031-022-02027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Thimerosal (THIM) kills brain neurons via induction of apoptosis and necrosis and induces the pathological features of autism spectrum disorder (ASD) in rats. THIM also affects the function of glutamatergic receptors. On the other hand, exercise induces both improvement and impairment effects on memory, depending on intensity, type, and duration. Treadmill exercise can also alter the expression of glutamatergic receptors. In this study, we aimed to investigate the effect of THIM and three protocols of treadmill exercise on social interaction memory and hippocampal expression of GluN1, GluN2A, and GluN2B in rats. THIM was injected intramuscularly at the dose of 300 µg/kg. The three-chamber apparatus was used to evaluate social interaction memory, and western blotting was used to assess protein expression. The results showed that THIM impaired social memory. Exercise 1 impaired social affiliation in controls. Social memory was impaired in all exercise groups of controls. Exercise 1 + 2 impaired social affiliation in THIM rats. Social memory was impaired in all groups of THIM rats. Exercises 2 and 1 + 2 decreased the expression of GluN1, and exercise 1 increased the expression of GluN2A and GluN2B in controls. THIM increased the expression of GluN2B, while exercise 1 reversed this effect. All exercise protocols increased the expression of GluN2A, and exercises 2 and 1 + 2 increased the expression of GluN1 in THIM rats. In conclusion, both THIM and exercise impaired social memory. Of note, the results did not show a separate and influential role for glutamatergic subunits in modulating memory processes following THIM injection or exercise.
Collapse
|
4
|
Zhao J, Taylor CJ, Newcombe EA, Spanevello MD, O'Keeffe I, Cooper LT, Jhaveri DJ, Boyd AW, Bartlett PF. EphA4 Regulates Hippocampal Neural Precursor Proliferation in the Adult Mouse Brain by d-Serine Modulation of N-Methyl-d-Aspartate Receptor Signaling. Cereb Cortex 2020; 29:4381-4397. [PMID: 30590507 DOI: 10.1093/cercor/bhy319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
The hippocampal dentate gyrus (DG) is a major region of the adult rodent brain in which neurogenesis occurs throughout life. The EphA4 receptor, which regulates neurogenesis and boundary formation in the developing brain, is also expressed in the adult DG, but whether it regulates adult hippocampal neurogenesis is not known. Here, we show that, in the adult mouse brain, EphA4 inhibits hippocampal precursor cell proliferation but does not affect precursor differentiation or survival. Genetic deletion or pharmacological inhibition of EphA4 significantly increased hippocampal precursor proliferation in vivo and in vitro, by blocking EphA4 forward signaling. EphA4 was expressed by mature hippocampal DG neurons but not neural precursor cells, and an EphA4 antagonist, EphA4-Fc, did not activate clonal cultures of precursors until they were co-cultured with non-precursor cells, indicating an indirect effect of EphA4 on the regulation of precursor activity. Supplementation with d-serine blocked the increased precursor proliferation induced by EphA4 inhibition, whereas blocking the interaction between d-serine and N-methyl-d-aspartate receptors (NMDARs) promoted precursor activity, even at the clonal level. Collectively, these findings demonstrate that EphA4 indirectly regulates adult hippocampal precursor proliferation and thus plays a role in neurogenesis via d-serine-regulated NMDAR signaling.
Collapse
Affiliation(s)
- Jing Zhao
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Chanel J Taylor
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Estella A Newcombe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Mark D Spanevello
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Imogen O'Keeffe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Leanne T Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, St Lucia, QLD, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew W Boyd
- QIMR Berghofer Medical Research Institute, St Lucia, QLD, Australia.,School of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Nishii A, Amemiya S, Kubota N, Nishijima T, Kita I. Adaptive Changes in the Sensitivity of the Dorsal Raphe and Hypothalamic Paraventricular Nuclei to Acute Exercise, and Hippocampal Neurogenesis May Contribute to the Antidepressant Effect of Regular Treadmill Running in Rats. Front Behav Neurosci 2017; 11:235. [PMID: 29225572 PMCID: PMC5705550 DOI: 10.3389/fnbeh.2017.00235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 01/20/2023] Open
Abstract
Increasing clinical evidence suggests that regular physical exercise can prevent or reduce the incidence of stress-related psychiatric disorders including depressive symptoms. Antidepressant effect of regular exercise may be implicated in monoaminergic transmission including serotonergic transmission, activation of the hypothalamic-pituitary-adrenal (HPA) axis, and hippocampal neurogenesis, but few general concepts regarding the optimal exercise regimen for stimulating neural mechanisms involved in antidepressant properties have been developed. Here, we examined how 4 weeks of treadmill running at different intensities (0, 15, 25 m/min, 60 min/day, 5 times/week) alters neuronal activity in the dorsal raphe nucleus (DRN), which is the major source of serotonin (5-HT) neurons in the central nervous system, and the hypothalamic paraventricular nucleus (PVN), in which corticotropin-releasing factor (CRF) neurons initiate the activation of the HPA axis, during one session of acute treadmill running at different speeds (0, 15, 25 m/min, 30 min) in male Wistar rats, using c-Fos immunohistochemistry. We also examined neurogenesis in the hippocampus using immunohistochemistry for doublecortin (DCX) and assessed depressive-like behavior using the forced swim test after regular exercise for 4 weeks. In the pre-training period, acute treadmill running at low speed, but not at high speed, increased c-Fos positive nuclei in the DRN compared with the sedentary control. The number of c-Fos positive nuclei in the PVN during acute treadmill running was increased in a running speed-dependent manner. Regular exercise for 4 weeks, regardless of the training intensity, induced an enhancement of c-Fos expression in the DRN during not only low-speed but also high-speed acute running, and generally reduced c-Fos expression in the PVN during acute running compared with pre-training. Furthermore, regular treadmill running for 4 weeks enhanced DCX immunoreactivity in the hippocampal dentate gyrus (DG), and resulted in decreased depressive-like behavior, regardless of the training intensity. These results suggest that long-term repeated exercise, regardless of the training intensity, improves depressive-like behavior through adaptive changes in the sensitivity of DRN and PVN neurons to acute exercise, and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ayu Nishii
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Seiichiro Amemiya
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Natsuko Kubota
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Takeshi Nishijima
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Ichiro Kita
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
6
|
Singh S, Mishra A, Srivastava N, Shukla S. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats. ACS Chem Neurosci 2017; 8:592-605. [PMID: 27977132 DOI: 10.1021/acschemneuro.6b00354] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.
Collapse
Affiliation(s)
- Sonu Singh
- Pharmacology
Division, CSIR-Central Drug Research Institute (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
| | - Akanksha Mishra
- Pharmacology
Division, CSIR-Central Drug Research Institute (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
| | - Neha Srivastava
- Pharmacology
Division, CSIR-Central Drug Research Institute (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
| | - Shubha Shukla
- Pharmacology
Division, CSIR-Central Drug Research Institute (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, India
| |
Collapse
|
7
|
Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats. Exp Brain Res 2015; 233:2789-99. [DOI: 10.1007/s00221-015-4349-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/29/2015] [Indexed: 01/08/2023]
|
8
|
Inoue K, Okamoto M, Shibato J, Lee MC, Matsui T, Rakwal R, Soya H. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus. PLoS One 2015; 10:e0128720. [PMID: 26061528 PMCID: PMC4464753 DOI: 10.1371/journal.pone.0128720] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this positive regulation. This evidence might serve in further elucidating the mechanism behind ME-induced cognitive gain.
Collapse
Affiliation(s)
- Koshiro Inoue
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- School of Rehabilitation Science, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, 061–0293, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| | - Junko Shibato
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Hatanodai, Tokyo, 142–8555, Japan
| | - Min Chul Lee
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takashi Matsui
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Randeep Rakwal
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Hatanodai, Tokyo, 142–8555, Japan
- Organization for Educational Initiatives, University of Tsukuba, Tsukuba, 305–8577, Ibaraki, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| |
Collapse
|
9
|
Kim TW, Kang HS, Park JK, Lee SJ, Baek SB, Kim CJ. Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice. Mol Med Rep 2014; 10:2924-30. [PMID: 25323073 DOI: 10.3892/mmr.2014.2644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 03/31/2014] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a chronic and severe mental disorder characterized by the disintegration of cognitive thought processes and emotional responses. Despite the precise cause of schizophrenia remains unclear, it is hypothesized that a dysregulation of the N‑methyl‑D‑aspartate (NMDA) receptor in the brain is a major contributing factor to its development. Brain‑derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is implicated in learning and memory processes. In the present study, we investigated in vivo the effects of voluntary wheel running on behavioral symptoms associated with NMDA receptor expression, using MK‑801‑induced schizophrenic mice. Abilify (aripiprazole), a drug used to treat human schizophrenia patients, was used as the positive control. For the assessment of behavioral symptoms affecting locomotion, social interaction and spatial working memory, the open‑field, social interaction and Morris water maze tests were conducted. For investigating the biochemical parameters, NMDA receptor expression in the hippocampal CA2‑3 regions and prefrontal cortex was detected by NMDA immunofluorescence and BDNF expression in the hippocampus was measured using western blot analysis. MK‑801 injection for 14 days induced schizophrenia‑like behavioral abnormalities with decreased expression of the NMDA receptor and BDNF in the brains of mice. The results indicated that free access to voluntary wheel running for 2 weeks alleviated schizophrenia‑like behavioral abnormalities and increased the expression of NMDA receptor and BDNF, comparable to the effects of aripiprazole treatment. In the present study, the results suggest that NMDA receptor hypofunctioning induced schizophrenia‑like behaviors, and that voluntary wheel running was effective in reducing these symptoms by increasing NMDA receptor and BDNF expression, resulting in an improvement of disease related behavioral deficits.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun-Sik Kang
- Department of Exercise Physiology, School of Sport Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Joon-Ki Park
- Department of Exercise Physiology, Division of Exercise and Health Science, College of Arts and Physical Education, Incheon National University, Incheon 407-772, Republic of Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 608-711, Republic of Korea
| | - Sang-Bin Baek
- Department of Psychiatry, Gangneung Asan Hospital, Ulsan University, Gangneung, Gangwon 210-711, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
10
|
Nam SM, Chung TH, Kim JW, Jung HY, Yim HS, Kim DW, Yoo DY, Nam H, Choi JH, Hwang IK, Suh JG, Yoon YS. Comparison of N-Methyl-d-aspartate Receptor Subunit 1 and 4-Hydroxynonenal in the Hippocampus of Natural and Chemical-Induced Aging Accelerated Mice. Neurochem Res 2014; 39:1702-8. [DOI: 10.1007/s11064-014-1362-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 11/30/2022]
|
11
|
Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Ohishi T, Mitsumori K, Shibutani M. Glycidol Induces Axonopathy by Adult-Stage Exposure and Aberration of Hippocampal Neurogenesis Affecting Late-Stage Differentiation by Developmental Exposure in Rats. Toxicol Sci 2013; 134:140-54. [DOI: 10.1093/toxsci/kft092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Similar distribution changes of GABAergic interneuron subpopulations in contrast to the different impact on neurogenesis between developmental and adult-stage hypothyroidism in the hippocampal dentate gyrus in rats. Arch Toxicol 2012; 86:1559-69. [DOI: 10.1007/s00204-012-0846-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022]
|
13
|
Ogawa B, Wang L, Ohishi T, Taniai E, Akane H, Suzuki K, Mitsumori K, Shibutani M. Reversible aberration of neurogenesis targeting late-stage progenitor cells in the hippocampal dentate gyrus of rat offspring after maternal exposure to acrylamide. Arch Toxicol 2012; 86:779-90. [DOI: 10.1007/s00204-012-0801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022]
|