1
|
Kang K, Chen SH, Wang DP, Chen F. Inhibition of Endoplasmic Reticulum Stress Improves Chronic Ischemic Hippocampal Damage Associated with Suppression of IRE1α/TRAF2/ASK1/JNK-Dependent Apoptosis. Inflammation 2024; 47:1479-1490. [PMID: 38401021 PMCID: PMC11343861 DOI: 10.1007/s10753-024-01989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral ischemia is a complex form of stress, of which the most common hemodynamic characteristic is chronic cerebral hypoperfusion (CCH). Lasting endoplasmic reticulum (ER) stress can drive neurological disorders. Targeting ER stress shows potential neuroprotective effects against stroke. However, the role of ER stress in CCH pathological processes and the effects of targeting ER stress on brain ischemia are unclear. Here, a CCH rat model was established by bilateral common carotid artery occlusion. Rats were treated with 4-PBA, URB597, or both for 4 weeks. Neuronal morphological damage was detected using hematoxylin-eosin staining. The expression levels of the ER stress-ASK1 cascade-related proteins GRP78, IRE1α, TRAF2, CHOP, Caspase-12, ASK1, p-ASK1, JNK, and p-JNK were assessed by Western blot. The mRNA levels of TNF-α, IL-1β, and iNOS were assessed by RT-PCR. For oxygen-glucose deprivation experiments, mouse hippocampal HT22 neurons were used. Apoptosis of the hippocampus and HT22 cells was detected by TUNEL staining and Annexin V-FITC analysis, respectively. CCH evoked ER stress with increased expression of GRP78, IRE1α, TRAF2, CHOP, and Caspase-12. Co-immunoprecipitation experiments confirmed the interaction between TRAF2 and ASK1. ASK1/JNK signaling, inflammatory cytokines, and neuronal apoptosis were enhanced, accompanied by persistent ER stress; these were reversed by 4-PBA and URB597. Furthermore, the ASK1 inhibitor GS4997 and 4-PBA displayed synergistic anti-apoptotic effects in cells with oxygen-glucose deprivation. In summary, ER stress-induced apoptosis in CCH is associated with the IRE1α/TRAF2/ASK1/JNK signaling pathway. Targeting the ER stress-ASK1 cascade could be a novel therapeutic approach for ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, 330029, Jiangxi, China
| | - Da-Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Wu QR, Yang H, Zhang HD, Cai YJ, Zheng YX, Fang H, Wang ZF, Kuang SJ, Rao F, Huang HL, Deng CY, Chen CB. IP3R2-mediated Ca 2+ release promotes LPS-induced cardiomyocyte pyroptosis via the activation of NLRP3/Caspase-1/GSDMD pathway. Cell Death Discov 2024; 10:91. [PMID: 38378646 PMCID: PMC10879485 DOI: 10.1038/s41420-024-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Pyroptosis plays a crucial role in sepsis, and the abnormal handling of myocyte calcium (Ca2+) has been associated with cardiomyocyte pyroptosis. Specifically, the inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is a Ca2+ release channel in the endoplasmic reticulum (ER). However, the specific role of IP3R2 in sepsis-induced cardiomyopathy (SIC) has not yet been determined. Thus, this study aimed to investigate the underlying mechanism by which IP3R2 channel-mediated Ca2+ signaling contributes to lipopolysaccharide (LPS)-induced cardiac pyroptosis. The SIC model was established in rats by intraperitoneal injection of LPS (10 mg/kg). Cardiac dysfunction was assessed using echocardiography, and the protein expression of relevant signaling pathways was analyzed using ELISA, RT-qPCR, and western blot. Small interfering RNAs (siRNA) and an inhibitor were used to explore the role of IP3R2 in neonatal rat cardiomyocytes (NRCMs) stimulated by LPS in vitro. LPS-induced NLRP3 overexpression and GSDMD-mediated pyroptosis in the rats' heart. Treatment with the NLRP3 inhibitor MCC950 alleviated LPS-induced cardiomyocyte pyroptosis. Furthermore, LPS increased ATP-induced intracellular Ca2+ release and IP3R2 expression in NRCMs. Inhibiting IP3R activity with xestospongin C (XeC) or knocking down IP3R2 reversed LPS-induced intracellular Ca2+ release. Additionally, inhibiting IP3R2 reversed LPS-induced pyroptosis by suppressing the NLRP3/Caspase-1/GSDMD pathway. We also found that ER stress and IP3R2-mediated Ca2+ release mutually regulated each other, contributing to cardiomyocyte pyroptosis. IP3R2 promotes NLRP3-mediated pyroptosis by regulating ER Ca2+ release, and the mutual regulation of IP3R2 and ER stress further promotes LPS-induced pyroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Qing-Rui Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Hui-Dan Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Yong-Jiang Cai
- School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Yan-Xiang Zheng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Heng Fang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zi-Fan Wang
- School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Fang Rao
- School of Medicine, South China University of Technology, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Huan-Lei Huang
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chun-Yu Deng
- School of Medicine, South China University of Technology, 510006, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080, Guangzhou, Guangdong, China.
- School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Chun-Bo Chen
- School of Medicine, South China University of Technology, 510006, Guangzhou, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, 518000, Shenzhen, Guangdong Province, China.
| |
Collapse
|
3
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2023; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| |
Collapse
|
4
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
5
|
Wang S, Li C, Sun P, Shi J, Wu X, Liu C, Peng Z, Han H, Xu S, Yang Y, Tian Y, Li J, He H, Li J, Wang Z. PCV2 Triggers PK-15 Cell Apoptosis Through the PLC-IP3R-Ca 2+ Signaling Pathway. Front Microbiol 2021; 12:674907. [PMID: 34211446 PMCID: PMC8239299 DOI: 10.3389/fmicb.2021.674907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum (ER) plays an essential role in Ca2+ concentration balance and protein biosynthesis. During infection, the virus needs to complete its life process with the help of ER. At the same time, ER also produces ER stress (ERS), which induces apoptosis to resist virus infection. Our study explored the Ca2+ concentration, ERS, and the apoptosis mechanism after porcine circovirus 2 (PCV2) infection. We show here that PCV2 infection induces the increased cytoplasmic Ca2+ level and PK-15 cell ER swelling. The colocalization of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptor (IP3R) in the cytoplasm was observed by laser confocal microscopy. Western blot and quantitative polymerase chain reaction experiments confirmed that PLC and IP3R expression levels increased after PCV2 infection, and Ca2+ concentration in the cytoplasm increased after virus infection. These results suggest that PCV2 infection triggers ERS of PK-15 cells via the PLC–IP3R–Ca2+ signaling pathway to promote the release of intracellular Ca2+ and led to cell apoptosis.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chen Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Panpan Sun
- Qingdao Agricultural University, Qingdao, China
| | - Jianli Shi
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chang Liu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhe Peng
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hong Han
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shaojian Xu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Yang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yao Tian
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Jiaxin Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Zhao Wang
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
6
|
Sun LF, Yang YL, Wang MY, Zhao HS, Xiao TX, Li MX, Wang BB, Huang C, Ren PG, Zhang JV. Inhibition of Col6a5 Improve Lipid Metabolism Disorder in Dihydrotestosterone-Induced Hyperandrogenic Mice. Front Cell Dev Biol 2021; 9:669189. [PMID: 34109177 PMCID: PMC8181728 DOI: 10.3389/fcell.2021.669189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
Hyperandrogenism is a key pathological feature of polycystic ovarian syndrome (PCOS). Excess androgen can lead to PCOS-like cell hypertrophy in the ovaries and adipose tissue of rodents. Here, we established a dihydrotestosterone (DHT)-induced hyperandrogenic mouse model to analyze the differences in gene expression and signaling pathways of the ovaries and gonad fat pads of mice treated with or without DHT by RNA microarray analysis. From the results, we focused on the overlapping differentially expressed gene—Col6a5—and the major differentially enriched signaling pathway—lipid metabolism. We employed DHT-induced mouse ovarian stromal cell, adipogenic 3T3-L1 cell and hepatic cell line NCTC1469 models to investigate whether androgens directly mediate lipid accumulation and hypertrophy. We found that DHT increased lipid droplet accumulation in ovarian stromal cells and adipogenic 3T3-L1 cells but not NCTC1469 cells. DHT significantly altered stromal cell cholesterol metabolism and steroidogenesis, as indicated by changes in cholesterol levels and the expression of related genes, but these effects were not observed in 3T3-L1 cells. Moreover, Col6a5 expression was significantly increased in ovaries and gonadal fat pads of DHT-treated mice, and Col6a5 inhibition alleviated DHT-induced excess lipid accumulation and hypertrophy of ovarian stromal cells and adipogenic 3T3-L1 cells, even improved lipid metabolism in overnourished NCTC1469 cells. Our results indicate that Col6a5 plays important roles in the pathogenesis of DHT-induced lipid metabolism disorder and the hypertrophy of ovarian stromal cells and adipocytes.
Collapse
Affiliation(s)
- Li-Feng Sun
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ya-Li Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Mei-Yue Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua-Shan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tian-Xia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng-Xia Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bao-Bei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Gerace E, Scartabelli T, Pellegrini-Giampietro DE, Landucci E. Tolerance Induced by (S)-3,5-Dihydroxyphenylglycine Postconditioning is Mediated by the PI3K/Akt/GSK3β Signalling Pathway in an In Vitro Model of Cerebral Ischemia. Neuroscience 2020; 433:221-229. [DOI: 10.1016/j.neuroscience.2019.12.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
|
8
|
Mesentier-Louro LA, Shariati MA, Dalal R, Camargo A, Kumar V, Shamskhou EA, de Jesus Perez V, Liao YJ. Systemic hypoxia led to little retinal neuronal loss and dramatic optic nerve glial response. Exp Eye Res 2020; 193:107957. [PMID: 32032627 PMCID: PMC7673281 DOI: 10.1016/j.exer.2020.107957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
Vision loss is a devastating consequence of systemic hypoxia, but the cellular mechanisms are unclear. We investigated the impact of acute hypoxia in the retina and optic nerve. We induced systemic hypoxia (10% O2) in 6-8w mice for 48 h and performed in vivo imaging using optical coherence tomography (OCT) at baseline and after 48 h to analyze structural changes in the retina and optic nerve. We analyzed glial cellular and molecular changes by histology and immunofluorescence and the impact of pretreatment with 4-phenylbutyric acid (4-PBA) in oligodendroglia survival. After 48 h hypoxia, we found no change in ganglion cell complex thickness and no loss of retinal ganglion cells. Despite this, there was significantly increased expression of CCAAT-enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum stress, in the retina and optic nerve. In addition, hypoxia induced obvious increase of GFAP expression in the anterior optic nerve, where it co-localized with CHOP, and significant loss of Olig2+ oligodendrocytes. Pretreatment with 4-PBA, which has been shown to reduce endoplasmic reticulum stress, rescued total Olig2+ oligodendrocytes and increased the pool of mature (CC-1+) but not of immature (PDGFRa+) oligodendrocytes. Consistent with a selective vulnerability of the retina and optic nerve in hypoxia, the most striking changes in the 48 h murine model of hypoxia were in glial cells in the optic nerve, including increased CHOP expression in the astrocytes and loss of oligodendrocytes. Our data support a model where glial dysfunction is among the earliest events in systemic hypoxia - suggesting that glia may be a novel target in treatment of hypoxia.
Collapse
Affiliation(s)
| | - Mohammed Ali Shariati
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Alexandra Camargo
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Varun Kumar
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Elya Ali Shamskhou
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Vinicio de Jesus Perez
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA; Department of Neurology, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Kumar V, Mesentier-Louro LA, Oh AJ, Heng K, Shariati MA, Huang H, Hu Y, Liao YJ. Increased ER Stress After Experimental Ischemic Optic Neuropathy and Improved RGC and Oligodendrocyte Survival After Treatment With Chemical Chaperon. Invest Ophthalmol Vis Sci 2019; 60:1953-1966. [PMID: 31060051 PMCID: PMC6735778 DOI: 10.1167/iovs.18-24890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Increased endoplasmic reticulum (ER) stress is one of the earliest subcellular changes in neuro-ophthalmic diseases. In this study, we investigated the expression of key molecules in the ER stress pathways following nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in adults over 50, and assessed the impact of chemical chaperon 4-phenylbutyric acid (4-PBA) in vivo. Methods We induced AION using photochemical thrombosis in adult mice and performed histologic analyses of key molecules in the ER stress pathway in the retina and optic nerve. We also assessed the effects of daily intraperitoneal injections of 4-PBA after AION. Results In the retina at baseline, there was low proapoptotic transcriptional regulator C/EBP homologous protein (CHOP) and high prosurvival chaperon glucose-regulated protein 78 (GRP78) expression in retinal ganglion cells (RGCs). One day after AION, there was significantly increased CHOP and reduced GRP78 expressions in the ganglion cell layer. In the optic nerve at baseline, there was little CHOP and high GRP78 expression. One day after AION, there was significantly increased CHOP and no change in GRP78 expression. Treatment immediately after AION using daily intraperitoneal injection of chemical chaperone 4-PBA for 19 days significantly rescued Brn3A+ RGCs and Olig2+ optic nerve oligodendrocytes. Conclusions We showed for the first time that acute AION resulted in increased ER stress and differential expression of ER stress markers CHOP and GRP78 in the retina and optic nerve. Rescue of RGCs and oligodendrocytes with 4-PBA provides support for ER stress reduction as possible treatment for AION.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | | | - Angela Jinsook Oh
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Kathleen Heng
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Mohammad Ali Shariati
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Yang Hu
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States.,Department of Neurology, Stanford University, School of Medicine, Stanford, California, United States
| |
Collapse
|
10
|
Gao Z, Wang H, Zhang B, Wu X, Zhang Y, Ge P, Chi G, Liang J. Trehalose inhibits H 2O 2-induced autophagic death in dopaminergic SH-SY5Y cells via mitigation of ROS-dependent endoplasmic reticulum stress and AMPK activation. Int J Med Sci 2018; 15:1014-1024. [PMID: 30013443 PMCID: PMC6036158 DOI: 10.7150/ijms.25656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023] Open
Abstract
Autophagy is a catabolic process to maintain intracellular homeostasis via removal of cytoplasmic macromolecules and damaged cellular organelles through lysosome-mediated degradation. Trehalose is often regarded as an autophagy inducer, but we reported previously that it could prevent ischemic insults-induced autophagic death in neurons. Thus, we further investigated in this study whether trehalose could protect human dopaminergic SH-SY5Y cells against H2O2-induced lethal autophagy. We found pretreatment with trehalose not only prevented H2O2-induced death in SH-SY5Y cells, but also reversed H2O2-induced upregulation of LC3II, Beclin1 and ATG5 and downregulation of p62. Then, we proved that either autophagy inhibitor 3MA or genetic knockdown of ATG5 prevented H2O2-triggered death in SH-SY5Y cells. These indicated that trehalose could inhibit H2O2-induced autophagic death in SH-SY5Y cells. Further, we found that trehalose inhibited H2O2-induced AMPK activation and endoplasmic reticulum (ER) stress. Moreover, inhibition of AMPK activation with compound C or alleviation of ER stress with chemical chaperone 4-PBA obviously attenuated H2O2-induced changes in autophagy-related proteins. Notably, we found that trehalose inhibited H2O2-induced increase of intracellular ROS and reduction in the activities of CAT and SOD. Consistently, our data revealed as well that mitigation of intracellular ROS levels with antioxidant NAC markedly attenuated H2O2-induced AMPK activation and ER stress. Therefore, we demonstrated in this study that trehalose prevented H2O2-induced autophagic death in SH-SY5Y cells via mitigation of ROS-dependent endoplasmic reticulum stress and AMPK activation.
Collapse
Affiliation(s)
- Zhijie Gao
- Department of Neurosurgery, First hospital of Jilin University, Changchun 130021, China
| | - Helei Wang
- Department of Gastrointestinal Surgery, First hospital of Jilin University, Changchun 130021, China
| | - Bo Zhang
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun 130021, China
| | - Xuemei Wu
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun 130021, China
| | - Yanfeng Zhang
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First hospital of Jilin University, Changchun 130021, China
- Research center of neuroscience, First hospital of Jilin University, Changchun 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jianmin Liang
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun 130021, China
- Research center of neuroscience, First hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Guo HL, Hassan HM, Ding PP, Wang SJ, Chen X, Wang T, Sun LX, Zhang LY, Jiang ZZ. Pyrazinamide-induced hepatotoxicity is alleviated by 4-PBA via inhibition of the PERK-eIF2α-ATF4-CHOP pathway. Toxicology 2017; 378:65-75. [PMID: 28063906 DOI: 10.1016/j.tox.2017.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022]
Abstract
Pyrazinamide (PZA)-induced serious liver injury, but the exact mechanism of PZA-induces hepatotoxicity remains controversial. Endoplasmic reticulum (ER) stress-caused cell apoptosis plays a critical role in the development of drug-induced liver injury (DILI). However, the direct connection between PZA toxicity and ER stress is unknown. In this study, we describe the role of ER stress in PZA induced hepatotoxicity in vivo and in vitro. We found that PZA induces apoptosis in HepG2 cells, and causes liver damage in rats, characterized by increased serum ALT, AST and TBA levels. PZA impairs antioxidant defenses, although this effect did not play an important role in resulting liver injury. The ER stress related proteins GRP78, p-PERK, p-eIF2α, ATF4, CHOP and caspase12 were activated after PZA exposure both in vivo and in vitro. Furthermore, as an ER stress inhibitor, sodium 4-phenylbutyrate (4-PBA) could ameliorate PZA toxicity in HepG2 cells and rat liver. These results have potential implications for the pathogenesis of PZA-induced hepatotoxicity in which ER stress especially PERK-eIF2α-ATF4-CHOP pathway participates in hepatocellular injury.
Collapse
Affiliation(s)
- Hong-Li Guo
- Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad-Medani, Sudan
| | - Ping-Ping Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Shao-Jie Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Li-Xin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Zhang W, Chen L, Shen Y, Xu J. Rifampicin-induced injury in L02 cells is alleviated by 4-PBA via inhibition of the PERK-ATF4-CHOP pathway. Toxicol In Vitro 2016; 36:186-196. [DOI: 10.1016/j.tiv.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 02/07/2023]
|
13
|
Chiang CK, Wang CC, Lu TF, Huang KH, Sheu ML, Liu SH, Hung KY. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury. Sci Rep 2016; 6:34167. [PMID: 27665710 PMCID: PMC5035926 DOI: 10.1038/srep34167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney.
Collapse
Affiliation(s)
- Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics &Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Fong Lu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Lin CL. Attenuation of endoplasmic reticulum stress as a treatment strategy against ischemia/reperfusion injury. Neural Regen Res 2016; 10:1930-1. [PMID: 26889173 PMCID: PMC4730809 DOI: 10.4103/1673-5374.169615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, China
| |
Collapse
|