1
|
Varshney V, Gabble BC, Bishoyi AK, Varma P, Qahtan SA, Kashyap A, Panigrahi R, Nathiya D, Chauhan AS. Exploring Exosome-Based Approaches for Early Diagnosis and Treatment of Neurodegenerative Diseases. Mol Neurobiol 2025:10.1007/s12035-025-05026-w. [PMID: 40347374 DOI: 10.1007/s12035-025-05026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/02/2025] [Indexed: 05/12/2025]
Abstract
Neurodegenerative diseases (NDs), like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), present an increasingly significant global health burden, primarily due to the lack of effective early diagnostic tools and treatments. Exosomes-nano-sized extracellular vesicles secreted by nearly all cell types-have emerged as promising candidates for both biomarkers and therapeutic agents in NDs. This review examines the biogenesis, molecular composition, and diverse functions of exosomes in NDs. Exosomes play a crucial role in mediating intercellular communication. They are capable of reflecting the biochemical state of their parent cells and have the ability to cross the blood-brain barrier (BBB). In doing so, they facilitate the propagation of pathological proteins, such as amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn), while also enabling the targeted delivery of neuroprotective compounds. Recent advancements in exosome isolation and engineering have opened up new possibilities for diagnostic and therapeutic strategies. These range from the discovery of non-invasive biomarkers to innovative approaches in gene therapy and drug delivery systems. However, challenges related to standardization, safety, and long-term effects must be addressed before exosomes can be translated into clinical applications. This review highlights both the promising potential and the obstacles that must be overcome to leverage exosomes in the treatment of NDs and the transformation of personalized medicine.
Collapse
Affiliation(s)
- Vibhav Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq.
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | - Pooja Varma
- Department of Psychology, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sarraa Ahmad Qahtan
- Department of Anesthesia Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha O Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Korleski J, Sall S, Luly KM, Johnson MK, Johnson AL, Khela H, Lal B, Taylor TC, Ashby JM, Alonso H, Li A, Zhou W, Smith-Connor K, Hughes R, Tzeng SY, Laterra J, Green JJ, Lopez-Bertoni H. Multipronged SMAD pathway targeting by lipophilic poly(β-amino ester) miR-590-3p nanomiRs inhibits mesenchymal glioblastoma growth and prolongs survival. Signal Transduct Target Ther 2025; 10:145. [PMID: 40301302 PMCID: PMC12041600 DOI: 10.1038/s41392-025-02223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
ASBSTRACT Despite aggressive therapy, glioblastoma (GBM) recurs in almost all patients and treatment options are very limited. Despite our growing understanding of how cellular transitions associate with relapse in GBM, critical gaps remain in our ability to block these molecular changes and treat recurrent disease. In this study we combine computational biology, forward-thinking understanding of miRNA biology and cutting-edge nucleic acid delivery vehicles to advance targeted therapeutics for GBM. Computational analysis of RNA sequencing from clinical GBM specimens identified TGFβ type II receptor (TGFBR2) as a key player in the mesenchymal transition associated with worse outcome in GBM. Mechanistically, we show that elevated levels of TGFBR2 is conducive to reduced temozolomide (TMZ) sensitivity. This effect is, at least partially, induced by stem-cell driving events coordinated by the reprogramming transcription factors Oct4 and Sox2 that lead to open chromatin states. We show that blocking TGFBR2 via molecular and pharmacological approaches decreases stem cell capacity and sensitivity of clinical recurrent GBM (rGBM) isolates to TMZ in vitro. Network analysis uncovered miR-590-3p as a tumor suppressor that simultaneously inhibits multiple oncogenic nodes downstream of TGFBR2. We also developed novel biodegradable lipophilic poly(β-amino ester) nanoparticles (LiPBAEs) for in vivo microRNA (miRNAs) delivery. Following direct intra-tumoral infusion, these nanomiRs efficiently distribute through the tumors. Importantly, miR-590-3p nanomiRs inhibited the growth and extended survival of mice bearing orthotopic human rGBM xenografts, with an apparent 30% cure rate. These results show that miRNA-based targeted therapeutics provide new opportunities to treat rGBM and bypass the resistance to standard of care therapy.
Collapse
Affiliation(s)
- Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Internal Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
| | - Kathryn M Luly
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Maya K Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Biology, Johns Hopkins University, Baltimore, USA
| | - Amanda L Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Harmon Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - T C Taylor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Jean Micheal Ashby
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hector Alonso
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
| | - Alice Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | | | - Russell Hughes
- Single Cell & Transcriptomics Core at the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jordan J Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, USA.
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, USA.
| |
Collapse
|
3
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
4
|
Fernández-Tabanera E, García-García L, Rodríguez-Martín C, Cervera ST, González-González L, Robledo C, Josa S, Martínez S, Chapado L, Monzón S, Melero-Fernández de Mera RM, Alonso J. CD44 Modulates Cell Migration and Invasion in Ewing Sarcoma Cells. Int J Mol Sci 2023; 24:11774. [PMID: 37511533 PMCID: PMC10381016 DOI: 10.3390/ijms241411774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The chimeric EWSR1::FLI1 transcription factor is the main oncogenic event in Ewing sarcoma. Recently, it has been proposed that EWSR1::FLI1 levels can fluctuate in Ewing sarcoma cells, giving rise to two cell populations. EWSR1::FLI1low cells present a migratory and invasive phenotype, while EWSR1::FLI1high cells are more proliferative. In this work, we described how the CD44 standard isoform (CD44s), a transmembrane protein involved in cell adhesion and migration, is overexpressed in the EWSR1::FLI1low phenotype. The functional characterization of CD44s (proliferation, clonogenicity, migration, and invasion ability) was performed in three doxycycline-inducible Ewing sarcoma cell models (A673, MHH-ES1, and CADO-ES1). As a result, CD44s expression reduced cell proliferation in all the cell lines tested without affecting clonogenicity. Additionally, CD44s increased cell migration in A673 and MHH-ES1, without effects in CADO-ES1. As hyaluronan is the main ligand of CD44s, its effect on migration ability was also assessed, showing that high molecular weight hyaluronic acid (HMW-HA) blocked cell migration while low molecular weight hyaluronic acid (LMW-HA) increased it. Invasion ability was correlated with CD44 expression in A673 and MHH-ES1 cell lines. CD44s, upregulated upon EWSR1::FLI1 knockdown, regulates cell migration and invasion in Ewing sarcoma cells.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015 Madrid, Spain
| | - Laura García-García
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Saint T Cervera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Laura González-González
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Santiago Josa
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Selene Martínez
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Luis Chapado
- Bioinformatics Unit, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Sara Monzón
- Bioinformatics Unit, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Raquel M Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| |
Collapse
|
5
|
Feng S, Wang K, Shao Z, Lin Q, Li B, Liu P. Network of miR-373/miR-520s-CD44 Axis Significantly Inhibits the Growth and Invasion of Human Glioblastoma Cells. Arch Med Res 2022; 53:550-561. [PMID: 36115716 DOI: 10.1016/j.arcmed.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The expression and regulation of microRNAs (miRNAs) play an important role in glioblastoma (GBM) tumorigenesis, progression and prognosis. Little is known about the role of the miRNA regulatory network of GBM risk-related genes in GBM growth and invasiveness. METHODS The UALCAN and Oncomine gene expression dataset were used to explore gene expression profiles in human GBM. The Kaplan-Meier method was performed to evaluate the prognostic values of the GBM-related genes. Multiple bioinformatics databases were analysed to predict the GBM-related genes targeted by miRNAs. A luciferase reporter assay and other molecular cell function experiments were conducted to reveal the mechanisms of interaction between the identified miRNAs and their targets. RESULTS The CD44 expression is significantly higher in GBM tissues than that in normal tissues, and negatively correlated with survival duration in GBM patients. In normal physiological conditions, CD44 expression is lower in various parts of the central nervous system than in other organ systems. The mRNA encoding CD44 is a direct target of miR-373 and miR-520s, and this finding was verified by molecular biology experiments. We further found that miR-373 and miR-520s expression was negatively associated with CD44 expression in GBM specimens, and that the miR-373 or miR-520s-CD44 interaction network significantly affected the growth and invasiveness of GBM cells. CONCLUSION The miR-373 and miR-520s exert their functions by suppressing CD44 expression in GBM cells, and their expression, together with that of CD44, could thus serve as a valuable biomarker of GBM prognosis.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, China; Department of Neurosurgery, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Kun Wang
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, China; Department of Neurosurgery, Qingdao West Coast New District People's Hospital, Qingdao, China.
| | - Zhiwei Shao
- Intensive Care Unit, Qingdao Huangdao District People's Hospital, Qingdao, China
| | - Qiang Lin
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, China; Department of Neurosurgery, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Peng Liu
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, China; Department of Neurosurgery, Qingdao West Coast New District People's Hospital, Qingdao, China.
| |
Collapse
|
6
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Yin QH, Zhou Y, Li ZHY. miR-373 Suppresses Cell Proliferation and Apoptosis via Regulation of SIRT1/PGC-1α/NRF2 Axis in Pancreatic Cancer. CELL JOURNAL 2021; 23:199-210. [PMID: 34096221 PMCID: PMC8181315 DOI: 10.22074/cellj.2021.7038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 11/09/2022]
Abstract
Objective Our study aimed to investigate function and mechanism of miR-373 in proliferation and apoptosis of
pancreatic cancer (PC) cells by regulating NAD+-dependent histone deacetylase sirtulin 1 (SIRT1).
Materials and Methods This experimental study included two PC cell lines AsPC-1 and PANC-1 in which expression
levels of miR-373 and SIRT1 were manipulated. The level of miR-373 was detected by reverse transcription quantitative
polymerase chain reaction (RT-qPCR) method. Expression levels of SIRT1, BCL-2, BAX, cleaved CASPASE-8/9/3,
PARP, PGC-1α, NRF2, eNOS and iNOS were examined via RT-qPCR and western blotting, respectively. The binding
sites of miR-373 on the SIRT1 were examined via dual-luciferase assay. Cell proliferation and apoptosis were examined
by MTT assay, colony formation assay, Annexin-V/PI staining and TUNEL assay. The oxidative metabolic changes were
monitored by reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) detection.
Results miR-373 could specifically target the 3’-UTR of SIRT1 and reduce its expression in PC cells. Either elevated
expression of miR-373 or partial loss of SIRT1 inhibited cell proliferation and induced cell apoptosis. Accumulation of
BAX and cleaved CASPASE-8/9/3, inhibition of PGC-1α/NRF2 pathway, increase oxidative stress and reduction of
BCL-2 as well as uncleaved PARP were found in the presence of miR-373 or the absence of SIRT1. Overexpression
of SIRT1 could reduce anti-proliferative and pro-apoptotic effects of miR-373.
Conclusion Overall, this study concluded that miR-373-dependent SIRT1 inhibition displays anti-proliferative and pro-
apoptotic roles in PC cells via PGC-1α/NRF2 pathway, which highlights miR-373 as a potential target for PC treatment.
Collapse
Affiliation(s)
- Qing-Hua Yin
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha 410000, P.R.China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha 410000, P.R.China
| | - Z Hi Yuan Li
- Department of Gastrointestinal Surgery, The Central Hospital of Hengyang City, Hengyang 421001, P.R.China
| |
Collapse
|
8
|
Karkhane M, Lashgarian HE, Hormozi M, Fallahi S, Cheraghipour K, Marzban A. Oncogenesis and Tumor Inhibition by MicroRNAs and its Potential Therapeutic Applications: A Systematic Review. Microrna 2021; 9:198-215. [PMID: 31686643 DOI: 10.2174/2211536608666191104103834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs appear as small molecule modifiers, which improve many new findings and mechanical illustrations for critically important biological phenomena and pathologic events. The best-characterized non-coding RNA family consists of about 2600 human microRNAs. Rich evidence has revealed their crucial importance in maintaining normal development, differentiation, growth control, aging, modulation of cell survival or apoptosis, as well as migration and metastasis as microRNAs dysregulation leads to cancer incidence and progression. By far, microRNAs have recently emerged as attractive targets for therapeutic intervention. The rationale for developing microRNA therapeutics is based on the premise that aberrantly expressed microRNAs play a significant role in the emergence of a variety of human diseases ranging from cardiovascular defects to cancer, and that repairing these microRNA deficiencies by either antagonizing or restoring microRNA function may yield a therapeutic benefit. Although microRNA antagonists are conceptually similar to other inhibitory therapies, improving the performance of microRNAs by microRNA replacement or inhibition that is a less well- described attitude. In this assay, we have condensed the last global knowledge and concepts regarding the involvement of microRNAs in cancer emergence, which has been achieved from the previous studies, consisting of the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response and the disruption of profile expression in human cancer. Here, we have reviewed the special characteristics of microRNA replacement and inhibition therapies and discussed explorations linked with the delivery of microRNA mimics in turmeric cells. Besides, the achievement of biomarkers based on microRNAs in clinics is considered as novel non-invasive biomarkers in diagnostic and prognostic assessments.
Collapse
Affiliation(s)
- Maryam Karkhane
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Hormozi
- Department of Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
9
|
Gomari MM, Farsimadan M, Rostami N, Mahmoudi Z, Fadaie M, Farhani I, Tarighi P. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108374. [PMID: 34083044 DOI: 10.1016/j.mrrev.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Among cell surface markers, CD44 is considered the main marker for identifying and isolating the cancer stem cells (CSCs) among other cells and has attracted significant attention in a variety of research areas. Many studies have shown the essential roles of CD44 in initiation, metastasis, and tumorigenesis in different types of cancer; however, the validity of CD44 as a therapeutic or diagnostic target has not been fully confirmed in some other studies. Whereas the association of specific single nucleotide polymorphisms (SNPs) in the CD44 gene and related variants with cancer risk have been observed in clinical investigations, the significance of these findings remains controversial. Here, we aimed to provide an up-to-date overview of recent studies on the association of CD44 polymorphisms and its variants with different kinds of cancer to determine whether or not it can be used as an appropriate candidate for cancer tracking.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Zahra Mahmoudi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Farhani
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Xu H, Zhang B, Yang Y, Li Z, Zhao P, Wu W, Zhang H, Mao J. LncRNA MIR4435-2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR-1224-5p/TGFBR2 axis. J Cell Mol Med 2020; 24:6362-6372. [PMID: 32319715 PMCID: PMC7294147 DOI: 10.1111/jcmm.15280] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) belongs to the high-grade (IV) gliomas with extremely poor prognosis. Accumulating evidence uncovered the key roles of long non-coding RNAs (lncRNAs) in GBM development. This study aimed to determine the biological actions and the clinical relevance of lncRNA MIR4435-2 Host Gene (MIR4435-2HG) in GBM. Data from GEPIA database showed that MIR4435-2HG was up-regulated in GBM tissues and high expression of MIR4435-2HG correlated with shorter overall survival of GBM patients. Further experimental assays verified the up-regulation of MIR4435-2HG in GBM tissues and cell lines. In vitro cell studies and in vivo animal studies showed that knockdown of MIR4435-2HG resulted in the inhibition of GBM cell proliferation and invasion and in vivo tumour growth, while MIR4435-2HG overexpression driven GBM progression. Furthermore, MIR44435-2HG was found to sponge miR-1224-5p and suppress miR-1224-5p expression; overexpression of miR-1224-5p attenuated the enhancement in GBM cell proliferation and invasion induced by MIR4435-2HG overexpression. In a subsequent study, miR-1224-5p was found to target transforming growth factor-beta receptor type 2 (TGFBR2) and repressed TGFBR2 expression, and in vitro assays showed that miR-1224-5p exerted tumour-suppressive effects via targeting TGFBR2. More importantly, TGFRB2 knockdown antagonized hyper-proliferation and invasion of GBM cells with MIR4435-2HG overexpression. Clinically, the down-regulation of miR-1224-5p and up-regulation of TGFBR2 were verified in the GBM clinical samples. Taken together, the present study suggests the oncogenic role of MIR4435-2HG in GBM and underlies the key function of MIR4435-2HG-driven GBM progression via targeting miR-1224-5p/TGFBR2 axis.
Collapse
Affiliation(s)
- Hongchao Xu
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Beilin Zhang
- Department of NeurologyThe First Teaching Hospital of Jilin UniversityChangchunChina
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncologythe Clinical Innovation& Research Center (CIRC), Shenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityThe First Affiliated Hospital of Southern UniversityShenzhenChina
| | - Zihuang Li
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Pan Zhao
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Weiqing Wu
- Department of Physical ExaminationThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Huirong Zhang
- Clinical Medical Research CenterThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
- Department of Health managementThe First Affiliated Hospital of Southern UniversityShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Jie Mao
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhenChina
| |
Collapse
|
12
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
13
|
Li F, Li F, Chen W. Propofol Inhibits Cell Proliferation, Migration, and Invasion via mir-410-3p/Transforming Growth Factor-β Receptor Type 2 (TGFBR2) Axis in Glioma. Med Sci Monit 2020; 26:e919523. [PMID: 31960827 PMCID: PMC6993559 DOI: 10.12659/msm.919523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Propofol is a common intravenous anesthetic used to induce and maintain anesthesia. Numerous studies have reported that propofol plays an anti-tumor role in diverse human cancers, including glioma. In this research, we explored the roles of propofol and its related molecular mechanisms in glioma. MATERIAL AND METHODS U251 and A172 cells were exposed to different doses of propofol for 24 h. Cell proliferation, migration, and invasion in glioma were evaluated using MTT assay and Transwell assay, respectively. The levels of microRNA-410-3p (miR-410-3p) and transforming growth factor-ß receptor type 2 (TGFBR2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) assay and Western blot assay, respectively. The association between miR-410-3p and TGFBR2 was predicted by TargetScan and confirmed by dual-luciferase reporter assay. RESULTS Propofol inhibited the proliferation, migration, and invasion of glioma cells in a concentration-dependent way. miR-410-3p was induced and TGFBR2 was inhibited by different concentrations of propofol treatment. Moreover, TGFBR2 was confirmed to be a target gene of miR-410-3p and TGFBR2 was inversely modulated by miR-410-3p in glioma cells. Depletion of miR-410-3p reversed the inhibition of propofol treatment on U251 and A172 cell growth and metastasis, but the effects were further abolished by knocking down the expression of TGFBR2. CONCLUSIONS Propofol can suppress cell growth and metastasis by regulating the miR-410-3p/TGFBR2 axis in glioma.
Collapse
Affiliation(s)
- Fengli Li
- Department of Anesthesiology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Fengliang Li
- Department of Psychiatry, Third Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Wei Chen
- Department of Neurosurgery, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
14
|
Zhou XY, Liu H, Ding ZB, Xi HP, Wang GW. lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics 2020; 112:1021-1029. [DOI: 10.1016/j.ygeno.2019.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/12/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
|
15
|
Zhang LW, Zhang J, Wang K, Wang RB. Serum microRNA-30c-5p and microRNA-373 expressions as potential biomarkers for Parkinson's disease. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1741453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Lin-wei Zhang
- Neurology Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Jin Zhang
- Thoracic Surgery Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Kang Wang
- Neurology Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Ren-bin Wang
- Neurology Department of China, Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
17
|
Fänder J, Kielstein H, Büttner M, Koelblinger P, Dummer R, Bauer M, Handke D, Wickenhauser C, Seliger B, Jasinski-Bergner S. Characterizing CD44 regulatory microRNAs as putative therapeutic agents in human melanoma. Oncotarget 2019; 10:6509-6525. [PMID: 31741714 PMCID: PMC6849650 DOI: 10.18632/oncotarget.27305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
The multistructural and multifunctional transmembrane glycoprotein CD44 is overexpressed in many tumors of distinct origin including malignant melanoma and contributes to a poor prognosis by affecting cell proliferation, cell migration, and also the sensitivity for apoptosis induction. Previous studies reported so far 15 CD44 regulatory microRNAs (miRs) in different cell systems. Using a novel method for miR affinity purification miR-143-3p was identified as most potent binder to the 3' untranslated region (UTR) of CD44. Overexpression of miR-143-3p in melanoma cells inhibits CD44 translation, which is accompanied by a reduced proliferation, migration and enhanced daunorubicin induced apoptosis of melanoma cells in vitro. Analyses of discordant CD44 and miR-143-3p expression levels in human melanocytic nevi and dermal melanoma samples demonstrated medium to high CD44 levels with no association to tumor grading or staging. The CD44 expression correlated to PD-L1, but not to MART-1 expression in malignant melanoma. Interestingly, the CD44 expression was inversely correlated to the infiltration of pro-inflammatory immune effector cells. In conclusion, the tumor suppressive miR-143-3p was identified as the most potent CD44 inhibitory miR, which affects growth characteristics of melanoma cells suggesting the implementation of miR-143-3p as as a potential anti-CD44 therapy of malignant melanoma.
Collapse
Affiliation(s)
- Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Maximilian Büttner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Peter Koelblinger
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Marcus Bauer
- Institute for Pathology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Diana Handke
- Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute for Pathology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Jasinski-Bergner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.,Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
18
|
Han X, Wang X, Li H, Zhang H. Mechanism of microRNA-431-5p- EPB41L1 interaction in glioblastoma multiforme cells. Arch Med Sci 2019; 15:1555-1564. [PMID: 31749885 PMCID: PMC6855151 DOI: 10.5114/aoms.2019.88274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is a kind of malignant brain tumor prevalent in adults, with the characteristics well adapted to poorly immunogenic and hypoxic conditions. Effective treatment of GBM is impeded due to the high proliferation, migration and invasion of GBM cells. GBM cells migrate by degrading the extracellular matrix, so it is difficult to have GBM cells eradicated completely by surgery. This study aims to confirm that miR-431-5p could influence the proliferation, invasion and migration of human glioblastoma multiforme cells by targeting EPB41L1 (erythrocyte membrane protein band 4.1). MATERIAL AND METHODS The expression levels of miR-431-5p and EPB41L1 were detected in GBM cells and tissues using qRT-PCR. Dual luciferase reporter gene assay and western blot were applied to confirm the targeting relationship between miR-431-5p and EPB41L1. GBM cell line U87 was used in MTT, flow cytometry, Transwell, and wound healing assays to determine cell proliferation, migration and invasion. RESULTS MiR-431-5p was overexpressed in GBM tissues while EPB41L1 was under-expressed. The results of dual luciferase reporter gene assay and western blot demonstrated that miR-431-5p could target EPB41L1 and suppress its expression. Down-regulating the expression of miR-431-5p or up-regulating the expression of EPB41L1 could inhibit the proliferation, invasion and migration but promote the apoptosis of GBM cells. CONCLUSIONS MiR-431-5p facilitated the progression of GBM by inhibiting EPB41L1 expression.
Collapse
Affiliation(s)
- Xiaoyong Han
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Xirui Wang
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Hui Li
- Department of Surgery, Dongguang County Chinese Traditional Medicine Hospital, CangZhou, Hebei, China
| | - Hui Zhang
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| |
Collapse
|
19
|
MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer. Noncoding RNA 2019; 5:ncrna5010020. [PMID: 30813461 PMCID: PMC6468660 DOI: 10.3390/ncrna5010020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian brain is made up of billions of neurons and supporting cells (glial cells), intricately connected. Molecular perturbations often lead to neurodegeneration by progressive loss of structure and malfunction of neurons, including their death. On the other side, a combination of genetic and cellular factors in glial cells, and less frequently in neurons, drive oncogenic transformation. In both situations, microenvironmental niches influence the progression of diseases and therapeutic responses. Dynamic changes that occur in cellular transcriptomes during the progression of developmental lineages and pathogenesis are controlled through a variety of regulatory networks. These include epigenetic modifications, signaling pathways, and transcriptional and post-transcriptional mechanisms. One prominent component of the latter is small non-coding RNAs, including microRNAs, that control the vast majority of these networks including genes regulating neural stemness, differentiation, apoptosis, projection fates, migration and many others. These cellular processes are also profoundly dependent on the microenvironment, stemness niche, hypoxic microenvironment, and interactions with associated cells including endothelial and immune cells. Significantly, the brain of all other mammalian organs expresses the highest number of microRNAs, with an additional gain in expression in the early stage of neurodegeneration and loss in expression in oncogenesis. However, a mechanistic explanation of the concept of an apparent inverse correlation between the odds of cancer and neurodegenerative diseases is only weakly developed. In this review, we thus will discuss widespread de-regulation of microRNAome observed in these two major groups of brain pathologies. The deciphering of these intricacies is of importance, as therapeutic restoration of pre-pathological microRNA landscape in neurodegeneration must not lead to oncogenesis and vice versa. We thus focus on microRNAs engaged in cellular processes that are inversely regulated in these diseases. We also aim to define the difference in microRNA networks between pro-survival and pro-apoptotic signaling in the brain.
Collapse
|
20
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
21
|
Bai X, Yang M, Xu Y. MicroRNA-373 promotes cell migration via targeting salt-inducible kinase 1 expression in melanoma. Exp Ther Med 2018; 16:4759-4764. [PMID: 30542430 DOI: 10.3892/etm.2018.6784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/13/2017] [Indexed: 01/09/2023] Open
Abstract
It is well established that altered expression of microRNAs (miRs) is critical in numerous human cancer types. Nevertheless, the molecular mechanisms of many miRs are yet to be elucidated. In the present study, reverse transcription-quantitative polymerase chain reaction and western blot analyses, and cell migration assays were performed to verify dysregulation of miR-373 in melanoma and its biological function. The transcriptional level of miR-373 was identified to be upregulated in melanoma tissues and cell lines compared with nevus and normal melanocytes. miR-373 was identified to function as an oncomiR, promoting melanoma cell migration. Notably, miR-373 was observed to suppress its downstream gene salt-inducible kinase 1 (SIK1) through directly binding the 3'-untranslated region of SIK1 expression. Furthermore, reduced SIK1 expression was identified to be responsible for the oncogenic effect of miR-373. In conclusion, the present study indicates that miR-373 functions as an oncomiR to promote melanoma progression through targeting SIK1 expression. This may provide a new therapeutic approach for melanoma.
Collapse
Affiliation(s)
- Xinping Bai
- Department of Plastic Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ming Yang
- Department of Plastic Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yi Xu
- Department of Plastic Surgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
22
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
23
|
The Potential Contribution of microRNAs in Anti-cancer Effects of Aurora Kinase Inhibitor (AZD1152-HQPA). J Mol Neurosci 2018; 65:444-455. [DOI: 10.1007/s12031-018-1118-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
|
24
|
Hua Y, Chen H, Wang L, Wang F, Wang P, Ning Z, Li Y, Liu L, Chen Z, Meng Z. Low serum miR-373 predicts poor prognosis in patients with pancreatic cancer. Cancer Biomark 2018; 20:95-100. [PMID: 28759959 DOI: 10.3233/cbm-170231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) are emerging as novel biomarkers for various types of cancer including pancreatic cancer (PC). OBJECTIVE We aimed to explore the diagnostic and prognostic significance of serum miR-373 in PC. METHODS In the current study, we recruited a total of 103 PC patients, 30 patients with benign pancreatic tumor, 20 patients with chronic pancreatitis and 50 healthy volunteers. Total RNA was isolated from all the blood samples, and relative miR-373 expression levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Our findings demonstrated that serum miR-373 expression was greatly down-regulated in PC patients. The area under the receiver-operating characteristic (ROC) curve (AUC) for serum miR-373 was 0.852 for discriminating PC patients from normal control subjects. In addition, a positive correlation was observed between reduced serum miR-373 level and several clinical parameters, including TNM stage, lymph node metastasis and distant metastasis. Moreover, PC patients with lower serum miR-373 level had shorter 5 year overall survival. Finally, serum miR-373 was proved to be an independent predictor for PC. CONCLUSIONS Taken together, serum miR-373 might serve as a promising biomarker for the early detection and prognosis prediction of PC.
Collapse
Affiliation(s)
- Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Libing Wang
- Biochip Research Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Feng Wang
- Department of Hepatobiliary Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Lu G, Du L, Guo Y, Xing B, Lu J, Wei Y. Expression and role of microRNA-1271 in the pathogenesis of osteosarcoma. Exp Ther Med 2017; 15:1934-1940. [PMID: 29434787 PMCID: PMC5776517 DOI: 10.3892/etm.2017.5649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the current study was to investigate the expression and role of microRNA (miR)-1271 in the pathogenesis of osteosarcoma, and the associated underlying mechanisms. Tissue samples from 45 patients with osteosarcoma were collected, while the 143B, MG-63 and U-2 OS osteosarcoma cell lines were also cultured. The expression levels of miR-1271 in the tissues and cells were detected with reverse transcription-quantitative polymerase chain reaction, and 143B osteosarcoma cells were subjected to miR-1271 manipulation. In addition, the cell proliferation, cell cycle progression, and migration and invasion abilities were assessed by Cell Counting Kit-8 assay, flow cytometry and Transwell chamber assay, respectively. Tissue inhibitor of metalloproteinases 2 (TIMP2) expression level was also detected with western blot analysis. Dual-luciferase reporter assay was performed to investigate the interaction between miR-1271 and TIMP2. The results revealed that miR-1271 expression was significantly elevated in the osteosarcoma tissue and was closely correlated with the clinical TNM staging. The expression levels of miR-1271 were also upregulated in the osteosarcoma cells, with the highest expression observed in 143B cells. Inhibition of miR-1271 significantly inhibited the cell proliferation, G1/S phase transition, and the migration and invasion abilities of 143B cells, while it also resulted in upregulated TIMP2 expression in these cells. Furthermore, overexpression of TIMP2 significantly inhibited the cell proliferation, G1/S phase transition, and migration and invasion abilities of 143B cells. Dual-luciferase reporter assay demonstrated that miR-1271 targeted on the 3′-untranslated region of TIMP2 mRNA. In conclusion, the expression levels of miR-1271 were significantly elevated in osteosarcoma tissues and cells. miR-1271 downregulated the expression of TIMP2 to promote the proliferation and enhance the migration and invasion abilities of 143B osteosarcoma cells, functioning as an oncogene.
Collapse
Affiliation(s)
- Gongbiao Lu
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Lin Du
- College of Nursing, Jining Medical University, Jining, Shandong 272013, P.R. China
| | - Yi Guo
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Baohua Xing
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Jishou Lu
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Yanchun Wei
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
26
|
Xu X, Bao Z, Liu Y, Ji J, Liu N. MicroRNA-98 Attenuates Cell Migration and Invasion in Glioma by Directly Targeting Pre-B Cell Leukemia Homeobox 3. Cell Mol Neurobiol 2017; 37:1359-1371. [PMID: 28124208 PMCID: PMC11482209 DOI: 10.1007/s10571-017-0466-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The extraordinary invasion of human GBM into adjacent normal brain tissues contributes to treatment failure. However, the mechanisms that control this process remain poorly understood. Increasing evidence has demonstrated that microRNAs are strongly implicated in the migration and invasion of GBM. In this study, we found that microRNA-98 (miR-98) was markedly downregulated in human glioma tissues and cell lines. Functional experiments indicated that restored expression of miR-98 attenuated glioma cell invasion and migration, whereas depletion of miR-98 promoted glioma cell invasion and migration. Subsequent investigation showed that pre-B-cell leukemia homeobox 3 (PBX3), an important transcription factor that controls tumor invasion, was a direct and functional target of miR-98 in GBM cells. Consistently, an orthotopic mouse model also demonstrated the suppressive effects of miR-98 overexpression on tumor invasion and PBX3 expression. Silencing of PBX3 using small interfering RNA inhibited the migratory and invasive capacities of glioma cells, whereas reintroduction of PBX3 into glioma cells reversed the anti-invasive function of miR-98. Furthermore, depletion of PBX3 phenocopied the effects of miR-98 overexpression in vivo. Finally, quantitative real-time polymerase chain reaction results showed that miR-98 was negatively correlated with PBX3 expression in 24 glioma tissues. Thus, we propose that PBX3 modulation by miR-98 has an important role in regulating GBM invasion and may serve as therapeutic target for GBM.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Thawani JP, Amirshaghaghi A, Yan L, Stein JM, Liu J, Tsourkas A. Photoacoustic-Guided Surgery with Indocyanine Green-Coated Superparamagnetic Iron Oxide Nanoparticle Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201701300. [PMID: 28748623 PMCID: PMC5884067 DOI: 10.1002/smll.201701300] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/14/2017] [Indexed: 05/15/2023]
Abstract
A common cause of local tumor recurrence in brain tumor surgery results from incomplete surgical resection. Adjunctive technologies meant to facilitate gross total resection have had limited efficacy to date. Contrast agents used to delineate tumors preoperatively cannot be easily or accurately used in the real-time operative setting. Although multimodal imaging contrast agents are developed to help the surgeon discern tumor from normal tissue in the operating room, these contrast agents are not readily translatable. This study has developed a novel contrast agent comprised solely of two Food and Drug Administration approved components, indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) nanoparticles-with no additional amphiphiles or carrier materials, to enable preoperative detection by magnetic resonance (MR) imaging and intraoperative photoacoustic (PA) imaging. The encapsulation efficiency of both ICG and SPIO within the formulated clusters is ≈100%, and the total ICG payload is 20-30% of the total weight (ICG + SPIO). The ICG-SPIO clusters are stable in physiologic conditions; can be taken up within tumors by enhanced permeability and retention; and are detectable by MR. In a preclinical surgical resection model in mice, following injection of ICG-SPIO clusters, animals undergoing PA-guided surgery demonstrate increased progression-free survival compared to animals undergoing microscopic surgery.
Collapse
Affiliation(s)
- Jayesh P. Thawani
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joel M. Stein
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Radiology, Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jessica Liu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Corresponding Author: Andrew Tsourkas, PhD, , Phone: 215-898-8167, Fax: 215-573-2071, Address: 210 S. 33 Street, 240 Skirkanich Hall, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Grisard E, Nicoloso MS. Following MicroRNAs Through the Cancer Metastatic Cascade. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:173-228. [PMID: 28729025 DOI: 10.1016/bs.ircmb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately a decade ago the first MicroRNAs (MiRNAs) participating in cancer metastasis were identified and metastmiRs were initially only a handful. Since those first reports, MiRNA research has explosively thrived, mainly due to their revolutionary mechanism of action and the hope of having at hand a novel tool to control cancer aggressiveness. This has ultimately led to delineate an almost impenetrable regulatory network: hundreds of MiRNAs transversally dominating every aspect of normal and cancer biology, each MiRNA having hundreds of targets and context-dependent activity. Providing a comprehensive description of MiRNA roles in cancer metastasis is a daunting task; nevertheless, we still believe that grasping the big picture of MiRNAs in cancer metastasis can give a different perspective on the potential insights and approaches that MiRNAs can offer to understand cancer complexity (e.g., as predictive and prognostic markers) and to tackle cancer metastasis (e.g., as therapeutic targets or tools). This chapter presents a schematic overview of the role of MiRNAs in governing cancer metastasis, describing step by step the cellular and molecular processes whereby cancer cells conquer distant organs and can grow as secondary tumors at different distant sites, and for each step, we will introduce how MiRNAs impinge on each one of them. We deeply apologize with our colleagues for any of their research work that, for clarity, for our effort to streamline and due to space limitations, we did not cite.
Collapse
|
29
|
van Kampen JGM, van Hooij O, Jansen CF, Smit FP, van Noort PI, Schultz I, Schaapveld RQJ, Schalken JA, Verhaegh GW. miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting ADAM9 and TGFBR2. Cancer Res 2017; 77:2008-2017. [PMID: 28209612 DOI: 10.1158/0008-5472.can-16-2609] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
Reversing epithelial-to-mesenchymal transition (EMT) in cancer cells has been widely considered as an approach to combat cancer progression and therapeutic resistance, but a limited number of broadly comprehensive investigations of miRNAs involved in this process have been conducted. In this study, we screened a library of 1120 miRNA for their ability to transcriptionally activate the E-cadherin gene CDH1 in a promoter reporter assay as a measure of EMT reversal. By this approach, we defined miR-520f as a novel EMT-reversing miRNA. miR-520f expression was sufficient to restore endogenous levels of E-cadherin in cancer cell lines exhibiting strong or intermediate mesenchymal phenotypes. In parallel, miR-520f inhibited invasive behavior in multiple cancer cell systems and reduced metastasis in an experimental mouse model of lung metastasis. Mechanistically, miR-520f inhibited tumor cell invasion by directly targeting ADAM9, the TGFβ receptor TGFBR2 and the EMT inducers ZEB1, ZEB2, and the snail transcriptional repressor SNAI2, each crucial factors in mediating EMT. Collectively, our results show that miR-520f exerts anti-invasive and antimetastatic effects in vitro and in vivo, warranting further study in clinical settings. Cancer Res; 77(8); 2008-17. ©2017 AACR.
Collapse
Affiliation(s)
- Jasmijn G M van Kampen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Cornelius F Jansen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | | | | | - Iman Schultz
- InteRNA Technologies B.V., Utrecht, the Netherlands
| | | | - Jack A Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
30
|
Hu S, Chen H, Zhang Y, Wang C, Liu K, Wang H, Luo J. MicroRNA-520c inhibits glioma cell migration and invasion by the suppression of transforming growth factor-β receptor type 2. Oncol Rep 2017; 37:1691-1697. [DOI: 10.3892/or.2017.5421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
|