1
|
Muñoz-Galdeano T, Reigada D, Soto A, Barreda-Manso MA, Ruíz-Amezcua P, Nieto-Díaz M, Maza RM. Identification of a New Role of miR-199a-5p as Factor Implied in Neuronal Damage: Decreasing the Expression of Its Target X-Linked Anti-Apoptotic Protein (XIAP) After SCI. Int J Mol Sci 2024; 25:12374. [PMID: 39596440 PMCID: PMC11594351 DOI: 10.3390/ijms252212374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal cord injury (SCI) results in a cascade of primary and secondary damage, with apoptosis being a prominent cause of neuronal cell death. The X-linked inhibitor of apoptosis (XIAP) plays a critical role in inhibiting apoptosis, but its expression is reduced following SCI, contributing to increased neuronal vulnerability. This study investigates the regulatory role of miR-199a-5p on XIAP expression in the context of SCI. Using bioinformatic tools, luciferase reporter assays, and in vitro and in vivo models of SCI, we identified miR-199a-5p as a post-transcriptional regulator of XIAP. Overexpression of miR-199a-5p significantly reduced XIAP protein levels, although no changes were observed at the mRNA level, suggesting translational repression. In vivo, miR-199a-5p expression was upregulated at 3 and 7 days post-injury, while XIAP expression inversely decreased in both neurons and oligodendrocytes, being particularly significant in the latter at 7 dpi. These findings suggest that miR-199a-5p contributes to the downregulation of XIAP and may exacerbate neuronal apoptosis after SCI. Targeting miR-199a-5p could offer a potential therapeutic strategy to modulate XIAP levels and reduce apoptotic cell death in SCI.
Collapse
|
2
|
Shi L, Zha H, Huang H, Xia Y, Li H, Huang J, Yue R, Li C, Zhu J, Song Z. miR-199a-5p aggravates renal ischemia-reperfusion and transplant injury by targeting AKAP1 to disrupt mitochondrial dynamics. Am J Physiol Renal Physiol 2024; 327:F910-F929. [PMID: 39265082 DOI: 10.1152/ajprenal.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a complex pathophysiological process and a major cause of delayed graft function (DGF) after transplantation. MicroRNA (miRNA) has important roles in the pathogenesis of IRI and may represent promising therapeutic targets for mitigating renal IRI. miRNA sequencing was performed to profile microRNA expression in mouse kidneys after cold storage and transplantation (CST). Lentivirus incorporating a miR-199a-5p modulator was injected into mouse kidney in situ before syngenetic transplantation and unilateral IRI to determine the effect of miR-199a-5p in vivo. miR-199a-5p mimic or inhibitor was transfected cultured tubular cells before ATP depletion recovery treatment to examine the role of miR-199a-5p in vitro. Sequencing data and microarray showed upregulation of miR-199a-5p in mice CST and human DGF samples. Lentivirus incorporating a miR-199a-5p mimic aggravated renal IRI, and protective effects were obtained with a miR-199a-5p inhibitor. Treatment with the miR-199a-5p inhibitor ameliorated graft function loss, tubular injury, and immune response after CST. In vitro experiments revealed exacerbation of mitochondria dysfunction upon ATP depletion and repletion model in the presence of the miR-199a-5p mimic, whereas dysfunction was attenuated when the miR-199a-5p inhibitor was applied. miR-199a-5p was shown to target A-kinase anchoring protein 1 (AKAP1) by double luciferase assay and miR-199a-5p activation reduced dynamin-related protein 1 (Drp1)-s637 phosphorylation and mitochondrial length. Overexpression of AKAP1 preserved Drp1-s637 phosphorylation and reduced mitochondrial fission. miR-199a-5p activation reduced AKAP1 expression, promoted Drp1-s637 dephosphorylation, aggravated the disruption of mitochondrial dynamics, and contributed to renal IRI.NEW & NOTEWORTHY This study identifies miR-199a-5p as a key regulator in renal ischemia-reperfusion injury through microRNA sequencing in mouse models and human delayed graft function. miR-199a-5p worsens renal IRI by aggravating graft dysfunction, tubular injury, and immune response, while its inhibition shows protective effects. miR-199a-5p downregulates A-kinase anchoring protein 1 (AKAP1), reducing dynamin-related protein 1 (Drp1)-s637 phosphorylation, increasing mitochondrial fission, and causing dysfunction. Targeting the miR-199a-5p/AKAP1/Drp1 axis offers therapeutic potential for renal IRI, as AKAP1 overexpression preserves mitochondrial integrity by maintaining Drp1-s637 phosphorylation.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Huimin Li
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruchi Yue
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
3
|
Banack SA, Dunlop RA, Mehta P, Mitsumoto H, Wood SP, Han M, Cox PA. A microRNA diagnostic biomarker for amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae268. [PMID: 39280119 PMCID: PMC11398878 DOI: 10.1093/braincomms/fcae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Blood-based diagnostic biomarkers for amyotrophic lateral sclerosis will improve patient outcomes and positively impact novel drug development. Critical to the development of such biomarkers is robust method validation, optimization and replication with adequate sample sizes and neurological disease comparative blood samples. We sought to test an amyotrophic lateral sclerosis biomarker derived from diverse samples to determine if it is disease specific. Extracellular vesicles were extracted from blood plasma obtained from individuals diagnosed with amyotrophic lateral sclerosis, primary lateral sclerosis, Parkinson's disease and healthy controls. Immunoaffinity purification was used to create a neural-enriched extracellular vesicle fraction. MicroRNAs were measured across sample cohorts using real-time polymerase chain reaction. A Kruskal-Wallis test was used to assess differences in plasma microRNAs followed by post hoc Mann-Whitney tests to compare disease groups. Diagnostic accuracy was determined using a machine learning algorithm and a logistic regression model. We identified an eight-microRNA diagnostic signature for blood samples from amyotrophic lateral sclerosis patients with high sensitivity and specificity and an area under the curve calculation of 98% with clear statistical separation from neurological controls. The eight identified microRNAs represent disease-related biological processes consistent with amyotrophic lateral sclerosis. The direction and magnitude of gene fold regulation are consistent across four separate patient cohorts with real-time polymerase chain reaction analyses conducted in two laboratories from diverse samples and sample collection procedures. We propose that this diagnostic signature could be an aid to neurologists to supplement current clinical metrics used to diagnose amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MND/ALS Research Center, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Moon Han
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | | |
Collapse
|
4
|
Li J, Wang Z, Tan H, Tang M. ALKBH5-mediated m6A demethylation of pri-miR-199a-5p exacerbates myocardial ischemia/reperfusion injury by regulating TRAF3-mediated pyroptosis. J Biochem Mol Toxicol 2024; 38:e23710. [PMID: 38605440 DOI: 10.1002/jbt.23710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| | - Zhirong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| | - Huayi Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| | - Mi Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| |
Collapse
|
5
|
Xu B, Zhang D, Yang B, Chen X, Jin Z, Qin X, Ma G, Sun K, Zhu L, Wei X, Yin H. Emerging trends in the blood spinal-cord barrier: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e37125. [PMID: 38306548 PMCID: PMC10843562 DOI: 10.1097/md.0000000000037125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The blood-spinal cord barrier (BSCB) is a unique protective barrier located between the circulatory system and the central nervous system. BSCB plays a vital role in various diseases. However, there is little systematic research and recording in this field by bibliometrics analysis. We aim to visualize this field through bibliometrics to analyze the hotspots and trends of BSCB and in order to facilitate an understanding of future developments in basic and clinical research. METHODS To conduct a bibliometric study of original publications and their references, the keywords Blood Spinal-Cord Barrier and BSCB are searched and filtered from the Web of Science database (2000-2022), focusing on citations, authors, journals, and countries/regions. Additionally, clustering of the references and co-citation analysis was completed, including a total of 1926 articles and comments. RESULTS From the results, 193 authors were identified, among which Sharma Hs played a key role. As far as the analysis result of the clustering of the references is concerned, the most common type in cluster analysis is spinal cord injury (SCI) which is a current and developing research field. The keywords are also the specific content under these clusters. The most influential organization is Univ Calif San Francisco, and "Proceedings of The National Academy of Sciences of The United States of America" magazine is the most cited magazine. CONCLUSION SUBSECTIONS The research on BSCB is booming focusing mainly on "BSCB in SCI" including "activation," "pathway," and "drug delivery" which is also the trend of future research.
Collapse
Affiliation(s)
- Bo Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dian Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Yang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhefeng Jin
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaokuan Qin
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoliang Ma
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Key Laboratory of Bone Setting Technology of Traditional Chinese Medicine, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Yin
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Jin H, Jiang W, Zheng X, Li L, Fang Y, Yang Y, Hu X, Chu L. MiR-199a-5p enhances neuronal differentiation of neural stem cells and promotes neurogenesis by targeting Cav-1 after cerebral ischemia. CNS Neurosci Ther 2023; 29:3967-3979. [PMID: 37349971 PMCID: PMC10651989 DOI: 10.1111/cns.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
AIMS MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hua‐Qian Jin
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Wei‐Feng Jiang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin‐Tian Zheng
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Li
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Fang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Yang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiao‐Wei Hu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Li‐Sheng Chu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
7
|
Zhao M, Li J, Gao Z, Guo D, Yang Y, Wang F, Wang L, Yang Y, He X, Li H, Chang S. miR-145a-5p/Plexin-A2 promotes the migration of OECs and transplantation of miR-145a-5p engineered OECs promotes the functional recovery in rats with SCI. Neurobiol Dis 2023; 182:106129. [PMID: 37068642 DOI: 10.1016/j.nbd.2023.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Olfactory ensheathing cells (OECs) serve as a bridge by migrating at the site of spinal cord injury (SCI) to facilitate the repair of the neural structure and neural function. However, OEC migration at the injury site not only faces the complex and disordered internal environment but also is closely associated with the migration ability of OECs. METHODS We extracted OECs from the olfactory bulb of SD rats aged <7 days old. We verified the micro ribonucleic acid (miR)-145a-5p expression level in the gene chip after SCI and OEC transplantation using quantitative reverse transcription (qRT)-polymerase chain reaction (PCR). The possible target gene Plexin-A2 of miR-145a-5p was screened using bioinformatics and was verified using dual-luciferase reporter assay, Western blot, and qRT-PCR. The effect of miR-145a-5p/plexin-A2 on OEC migration ability was verified by wound healing assay, Transwell cell migration assay, and immunohistochemistry. Nerve regeneration was observed at the injured site of the spinal cord after OEC transplantation using tissue immunofluorescence and magnetic resonance imaging, diffusion tensor imaging, and the Basso-Beattie-Bresnahan locomotor rating scale were further used for imaging and functional evaluation. RESULTS miR-145a-5p expression in the injured spinal cord tissue after SCI considerably decreased, while Plexin-A2 expression significantly increased. OEC transplantation can reverse miR-145a-5p and Plexin-A2 expression after SCI. miR-145a-5p overexpression enhanced the intrinsic migration ability of OECs. As a target gene of miR-145a-5p, Plexin-A2 hinders OEC migration. OEC transplantation overexpressing miR-145a-5p after SCI can increase miR-145a-5p levels in the spinal cord, reduce Plexin-A2 expression in the OECs and the spinal cord tissue, and promote OEC migration and distribution at the injured site. OEC transplantation overexpressing miR-145a-5p can promote the regeneration and repair of neural morphology and neural function. CONCLUSIONS Our study demonstrated that miR-145a-5p could promote OEC migration to the injured spinal cord after cell transplantation by down-regulating the target gene Plexin-A2, thereby repairing the neural structure and function after SCI in rats.
Collapse
Affiliation(s)
- MinChao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Jiaxi Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an 710068, Shaanxi, China
| | - Dong Guo
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Yubing Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Fang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710100, China
| | - Yang Yang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China; Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Su'e Chang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
8
|
Li Y, Zhang S, Cui K, Cao L, Fan Y, Fang B. miR-872-5p/FOXO3a/Wnt signaling feed-forward loop promotes proliferation of endogenous neural stem cells after spinal cord ischemia-reperfusion injury in rats. FASEB J 2023; 37:e22760. [PMID: 36607643 DOI: 10.1096/fj.202200962rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The activation of endogenous neural stem cells (NSCs) is considered an important mechanism of neural repair after mechanical spinal cord injury; however, whether endogenous NSC proliferation can also occur after spinal cord ischemia-reperfusion injury (SCIRI) remains unclear. In this study, we aimed to verify the existence of endogenous NSC proliferation after SCIRI and explore the underlying molecular mechanism. NSC proliferation was observed after SCIRI in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) in vitro, accompanied by a decrease in forkhead box protein O 3a (FOXO3a) expression. This downward trend was regulated by the increased expression of microRNA-872-5p (miR-872-5p). miR-872-5p affected NSC proliferation by targeting FOXO3a to increase the expression of β-catenin and T-cell factor 4 (TCF4). In addition, TCF4 in turn acted as a transcription factor to increase the expression level of miR-872-5p, and knockdown of FOXO3a enhanced the binding of TCF4 to the miR-872-5p promoter. In conclusion, SCIRI in vivo and OGD/R in vitro stimulated the miR-872-5p/FOXO3a/β-catenin-TCF4 pathway, thereby promoting NSC proliferation. At the same time, FOXO3a affected TCF4 transcription factor activity and miR-872-5p expression, forming a positive feedback loop that promotes NSC proliferation.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Shaoqiong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Kaile Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Linyan Cao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yiting Fan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Huang X, Xu X, Wang C, Wang Y, Yang Y, Yao T, Bai R, Pei X, Bai F, Li P. Using bioinformatics technology to mine the expression of serum exosomal miRNA in patients with traumatic brain injury. Front Neurosci 2023; 17:1145307. [PMID: 37144089 PMCID: PMC10151740 DOI: 10.3389/fnins.2023.1145307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is considered the most common traumatic neurological disease, is associated with high mortality and long-term complications, and is a global public health issue. However, there has been little progress in serum markers for TBI research. Therefore, there is an urgent need for biomarkers that can sufficiently function in TBI diagnosis and evaluation. Methods Exosomal microRNA (ExomiR), a stable circulating marker in the serum, has aroused widespread interest among researchers. To explore the level of serum ExomiR after TBI, we quantified ExomiR expression levels in serum exosomes extracted from patients with TBI using next-generation sequencing (NGS) and explored potential biomarkers using bioinformatics screening. Results Compared with the control group, there were 245 ExomiR (136 up-regulated and 109 down-regulated) in the serum of the TBI group that changed significantly. We observed serum ExomiRs expression profiles associated with neurovascular remodeling, the integrity of the blood-brain barrier, neuroinflammation, and a cascade of secondary injury, including eight up-regulated ExomiRs (ExomiR-124-3p, ExomiR-137-3p, ExomiR-9-3p, ExomiR-133a-5p, ExomiR-204-3p, ExomiR-519a-5p, ExomiR-4732-5p, and ExomiR-206) and 2 down-regulated ExomiR (ExomiR-21-3p and ExomiR-199a-5). Discussion The results revealed that serum ExomiRs might become a new research direction and breakthrough for the diagnosis and pathophysiological treatment of patients with TBI.
Collapse
Affiliation(s)
- Xintao Huang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- *Correspondence: Xintao Huang,
| | - Xinjuan Xu
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Ce Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajun Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianle Yao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xile Pei
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feirong Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Panpan Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The First School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Chen F, Wang D, Jiang Y, Ma H, Li X, Wang H. Dexmedetomidine postconditioning alleviates spinal cord ischemia-reperfusion injury in rats via inhibiting neutrophil infiltration, microglia activation, reactive gliosis and CXCL13/CXCR5 axis activation. Int J Neurosci 2023; 133:1-12. [PMID: 33499703 DOI: 10.1080/00207454.2021.1881089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Spinal cord ischemia-reperfusion (I/R) injury is an unresolved complication and its mechanisms are still not completely understood. Here, we studied the neuroprotective effects of dexmedetomidine (DEX) postconditioning against spinal cord I/R injury in rats and explored the possible mechanisms. MATERIALS AND METHODS In the study, rats were randomly divided into five groups: sham group, I/R group, DEX0.5 group, DEX2.5 group, and DEX5 group. I/R injury was induced in experimental rats; 0.5 μg/kg, 2.5 μg/kg, 5 μg/kg DEX were intravenously injected upon reperfusion respectively. Neurological function, histological assessment, and the disruption of blood-spinal cord barrier (BSCB) were evaluated via the BBB scoring, hematoxylin and eosin staining, Evans Blue (EB) extravasation and spinal cord edema, respectively. Neutrophil infiltration was evaluated via Myeloperoxidase (MPO) activity. Microglia activation and reactive gliosis was evaluated via ionized calcium-binding adapter molecule-1(IBA-1) and glial fibrillary acidic protein (GFAP) immunofluorescence, respectively. The expression of C-X-C motif ligand 13 (CXCL13), C-X-C chemokine receptor type 5(CXCR5), caspase-3 was determined by western blotting. The expression levels of interleukin 6(IL-6), tumor necrosis factor-α(TNF-α), IL-1β were determined by ELISA assay. RESULTS DEX postconditioning preserved neurological assessment scores, improved histological assessment scores, attenuated BSCB leakage after spinal cord I/R injury. Neutrophil infiltration, microglia activation and reactive gliosis were also inhibited by DEX postconditioning. The expression of CXCL13, CXCR5, caspase-3, IL-6, TNF-α, IL-1β were reduced by DEX postconditioning. CONCLUSIONS DEX postconditioning alleviated spinal cord I/R injury, which might be mediated via inhibition of neutrophil infiltration, microglia activation, reactive gliosis and CXCL13/CXCR5 axis activation.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yanhua Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Zhang GY, Gao Y, Guo XY, Wang GH, Guo CX. MiR-199a-5p promotes ferroptosis-induced cardiomyocyte death responding to oxygen-glucose deprivation/reperfusion injury via inhibiting Akt/eNOS signaling pathway. Kaohsiung J Med Sci 2022; 38:1093-1102. [PMID: 36254861 DOI: 10.1002/kjm2.12605] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is associated with the poor outcome and higher mortality after myocardial infarction. Recent studies have revealed that miR-199a-5p participates in the process of myocardial I/R injury, but the precise roles and molecular mechanisms of miR-199a-5p in myocardial I/R injury remain not well-studied. Ferroptosis has been proposed to promote cardiomyocyte death, closely associated with myocardial I/R injury. Herein, the present study aimed to explore the function and mechanisms by which miR-199a-5p regulates whether miR-199a-5p contributes to ferroptosis-induced cardiomyocyte death responding to oxygen-glucose deprivation/reoxygenation (OGD/R) injury, an in vitro model of myocardial I/R injury focusing on Akt/eNOS signaling pathway. The results found that ferroptosis-induced cardiomyocyte death occurs and is accompanied by an increase in miR-199a-5p level in OGD/R-treated H9c2 cells. MiR-199a-5p inhibitor ameliorated ferroptosis-induced cardiomyocyte death as evidenced by the increased cell viability, the reduced reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, malondialdehyde (MDA) and Fe2+ contents, and the up-regulated glutathione (GSH)/glutathione disulphide (GSSG) ratio as well as glutathione peroxidase 4 (Gpx4) protein expression in H9c2 cells-exposed to OGD/R, while miR-199a-5p mimic had the opposite effects. In addition, OGD/R led to the inhibition of Akt/eNOS signaling pathway, which was also blocked by miR-199a-5p inhibitor and aggravated by miR-199a-5p mimic. Furthermore, LY294002, an inhibitor of Akt/eNOS signaling pathway, abrogated miR-199a-5p inhibitor-induced the reduction of ferroptosis-induced cardiomyocyte death. In summary, our findings demonstrated that miR-199a-5p plays a central role in stimulating ferroptosis-induced cardiomyocyte death during ischemic/hypoxic injury via inhibiting Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Guo-Yong Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Gao
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin-Ying Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guo-Hong Wang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Cai-Xia Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Ebrahimy N, Gasterich N, Behrens V, Amini J, Fragoulis A, Beyer C, Zhao W, Sanadgol N, Zendedel A. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sci 2022; 304:120726. [PMID: 35750202 DOI: 10.1016/j.lfs.2022.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI. MATERIALS AND METHODS The expression of selected four validated miRNA-target pairs (miRNA223-3p, miRNA155-5p, miRNA145-5p, and miRNA124-3p) was examined at different time points (6 h, 12 h, 1 day, 3 day and 7 day) after SCI. Further, using GFAP-specific kelch-like ECH-associated protein 1 deletion (Keap1-/-) and whole-body Nrf2-/- knockout mice, we investigated the potential interplay between each miRNA and the Keap1/Nrf2 signaling system. KEY FINDINGS The expression of all miRNAs except miRNA155-5p significantly increased 24 h after SCI and decreased after 7 days. Interestingly, Keap1-/- mice only showed significant increase in the miRNA145-5p after 24 h SCI compared to the WT group. In addition, Keap1-/- mice showed significant decrease in CXCL10/12 (CXCL12 increased in Nrf2-/- mice), and TNF-α, and an increase in Mn-SOD and NQO-1 (Mn-SOD and NQO-1 decreased in Nrf2-/- mice) compared to WT mice. SIGNIFICANCE Our results suggest that astrocytic hyperactivation of Nrf2 exert neuroprotective effects at least in part through the upregulation of miRNA145-5p, a negative regulator of astrocyte proliferation, and induction of ARE in early phase of SCI. Further studies are needed to investigate the potential interplay between Nrf2 and miRNA145-5p in neuroinflammatory condition.
Collapse
Affiliation(s)
- Nahal Ebrahimy
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Weiyi Zhao
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nima Sanadgol
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany.
| |
Collapse
|
13
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
14
|
Zhang ZL, Wang D, Chen FS. MicroRNA-101a-3p mimic ameliorates spinal cord ischemia/reperfusion injury. Neural Regen Res 2022; 17:2022-2028. [PMID: 35142692 PMCID: PMC8848611 DOI: 10.4103/1673-5374.335164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases, but its role in spinal cord ischemia/reperfusion injury remains unclear. In this study, we established a rat model of spinal cord ischemia/reperfusion injury by clamping the aortic arch for 14 minutes followed by reperfusion for 24 hours. Results showed that miR-101a-3p expression in L4–L6 spinal cord was greatly decreased, whereas MYCN expression was greatly increased. Dual-luciferase reporter assay results showed that miR-101a-3p targeted MYCN. MYCN immunoreactivity, which was primarily colocalized with neurons in L4–L6 spinal tissue, greatly increased after spinal cord ischemia/reperfusion injury. However, intrathecal injection of an miR-101a-3p mimic within 24 hours before injury decreased MYCN, p53, caspase-9 and interleukin-1β expression, reduced p53 immunoreactivity, reduced the number of MYCN/NeuN-positive cells and the number of necrotic cells in L4–L6 spinal tissue, and increased Tarlov scores. These findings suggest that the miR-101a-3p mimic improved spinal ischemia/reperfusion injury-induced nerve cell apoptosis and inflammation by inhibiting MYCN and the p53 signaling pathway. Therefore, miR-101a-3p mimic therapy may be a potential treatment option for spinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zai-Li Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Feng-Shou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
15
|
Lu Z, Li L, Wei L, Cai J, Wu J. Long non-coding RNA LOC366613 alleviates the cerebral ischemic injury via regulating the miR-532-5p/phosphatase and tensin homolog axis. Bioengineered 2021; 12:2511-2522. [PMID: 34251959 PMCID: PMC8806633 DOI: 10.1080/21655979.2021.1930966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022] Open
Abstract
Cerebral infarction (CI) has become a leading cause of death in China. Long non-coding RNAs (lncRNAs) are intensively involved in the progression of CI. Here, we aimed to investigate the effects of lncRNA LOC366613 (LOC366613) on cerebral I/R injury, as well as its possible mechanism. Transient middle cerebral artery occlusion (MCAO) was used to establish a mouse model of cerebral I/R, and the PC12 cell line was used to establish an in vitro oxygen-glucose deprivation (OGD) injury model. The MTT assay was used to determine cell viability, and qRT-PCR was used to determine RNA levels. Western blotting was conducted to detect protein expression levels. The TUNEL assay and flow cytometry were used to measure cell apoptosis, and 2,3,5-triphenyltetrazolium chloride (TTC) was used to determine cerebral infarct volume. Finally, RNA pull-down and luciferase activity assays were used to examine interactions between miR-532-5p and LOC366613, as well as between miR-532-5p and phosphatase and tensin homolog (PTEN). LOC366613 was overexpressed in patients with cerebral I/R injury. In PC12 cells, knockdown of LOC366613 reduced the apoptosis rate and lactic acid dehydrogenase (LDH) expression, while increasing cell viability. Moreover, miR-532-5p was shown to be a target of LOC366613, as predicted. Downregulation of miR-532-5p reversed the effects of LOC366613 knockdown on PC12 cell apoptosis, LDH release, and cell viability. Finally, PTEN was verified as a target of miR-532-5p. LOC366613 participates in cerebral I/R injury by regulating the miR-532-5p/PTEN axis, potentially providing a new CI treatment target.
Collapse
Affiliation(s)
- Zhenze Lu
- Guangzhou Medical University Graduate School
- Neurology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital
| | - Ling Li
- Neurology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University
| | - Jifu Cai
- Neurology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital
| |
Collapse
|
16
|
Ling X, Lu J, Yang J, Qin H, Zhao X, Zhou P, Zheng S, Zhu P. Non-Coding RNAs: Emerging Therapeutic Targets in Spinal Cord Ischemia-Reperfusion Injury. Front Neurol 2021; 12:680210. [PMID: 34566835 PMCID: PMC8456115 DOI: 10.3389/fneur.2021.680210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Paralysis or paraplegia caused by transient or permanent spinal cord ischemia–reperfusion injury (SCIRI) remains one of the most devastating post-operative complications after thoracoabdominal aortic surgery, even though perioperative strategies and surgical techniques continue to improve. Uncovering the molecular and cellular pathophysiological processes in SCIRI has become a top priority. Recently, the expression, function, and mechanism of non-coding RNAs (ncRNAs) in various diseases have drawn wide attention. Non-coding RNAs contain a variety of biological functions but do not code for proteins. Previous studies have shown that ncRNAs play a critical role in SCIRI. However, the character of ncRNAs in attenuating SCIRI has not been systematically summarized. This review article will be the first time to assemble the knowledge of ncRNAs regulating apoptosis, inflammation, autophagy, and oxidative stress to attenuate SCIRI. A better understanding of the functional significance of ncRNAs following SCIRI could help us to identify novel therapeutic targets and develop potential therapeutic strategies. All the current research about the function of nRNAs in SCIRI will be summarized one by one in this review.
Collapse
Affiliation(s)
- Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanjun Qin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingqi Zhao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Cao Y, Cao Z, Wang W, Jie X, Li L. MicroRNA‑199a‑5p regulates FOXC2 to control human vascular smooth muscle cell phenotypic switch. Mol Med Rep 2021; 24:627. [PMID: 34212977 PMCID: PMC8281299 DOI: 10.3892/mmr.2021.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
Varicose veins are among the most common disorders of the vascular system; however, the pathogenesis of varicose veins remains unclear. The present study aimed to investigate the roles of microRNA (miR)‑199a‑5p in varicose veins and in the phenotypic transition of vascular smooth muscle cells (VSMCs). Bioinformatics analysis confirmed that miR‑199a‑5p had target sites on the forkhead box C2 (FOXC2) 3'‑untranslated region. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting were used to detect the expression levels of miR‑199a‑5p and FOXC2 in varicose vein and normal great saphenous vein tissues. Cell Counting Kit‑8 and Transwell migration assays were performed to validate the effects of miR‑199a‑5p on VSMCs. Contractile markers, such as smooth muscle 22α, calponin, smooth muscle actin and myosin heavy chain 11 were used to detect phenotypic transition. RT‑qPCR revealed that miR‑199a‑5p was downregulated in varicose veins compared with expression in normal great saphenous veins, whereas FOXC2 was upregulated in varicose veins. In addition, biomarkers of the VSMC contractile phenotype were downregulated in varicose veins. Overexpression of miR‑199a‑5p by mimics suppressed VSMC proliferation and migration, whereas depletion of miR‑199a‑5p enhanced VSMC proliferation and migration. Notably, the effects caused by miR‑199a‑5p could be reversed by FOXC2 overexpression. Dual luciferase reporter analysis confirmed that FOXC2 was a target of miR‑199a‑5p. In conclusion, miR‑199a‑5p may be a novel regulator of phenotypic switching in VSMCs by targeting FOXC2 during varicose vein formation.
Collapse
Affiliation(s)
- Yushi Cao
- Department of Hepatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhongwen Cao
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiangyu Jie
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Lei Li
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
18
|
Jiang Y, Wang T, He J, Liao Q, Wang J. Influence of miR-1 on Nerve Cell Apoptosis in Rats with Cerebral Stroke via Regulating ERK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9988534. [PMID: 34458374 PMCID: PMC8397560 DOI: 10.1155/2021/9988534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
To explore the effect of miR-1 on neuronal apoptosis in rats with stroke through the ERK signaling pathway. Methods. Forty male rats (180-220 g) were selected and randomly divided into the sham, model, miR-1 inhibitor, and miR-1 mimic groups (10 rats per group) by average body weight. Cerebral ischemia/reperfusion (I/R) models were established using a modified middle cerebral artery wire thrombosis (MCAO) method in rats in the model group, miR-1 inhibitor group, and miR-1 mimic group. After the successful model establishment, the miR-1inhibitor group and miR-1 mimic group were intravenously injected with miR-1 inhibitor and miR-1 mimic, respectively, once a day for 3 days. The sham and model groups were given the same dose of normal saline. TTC staining was applied to detect the cerebral infarct size and calculate the infarct volume. Histopathological changes in the hippocampus of rat brains were observed by HE staining. Flow cytometry was used to detect neuronal apoptosis in rat brains. The mRNA expressions of miR-1, ERK1/2, Bcl-2, and Bax in rat brain tissues were determined by QRT PCR, and the protein levels of ERK1/2, Bcl-2, Bax, and caspase-3 were determined by Western blot analysis. Results. Compared with the sham group, the neurological impairment score, cerebral infarct size, and volume of rats in the model group were significantly increased (p < 0.05). Compared with the model group, the neurological impairment score, cerebral infarct size, and volume were significantly increased in the miR-1 mimic group and significantly decreased in the miR-1 inhibitor group (p < 0.05). In the model group, the hippocampal tissue of rats had malaligned cells, neuron cell atrophy became smaller, the intercellular spaces became larger, and vacuoles appeared. Compared with the model group, the miR-1 inhibitor group could effectively alleviate the pathological changes in the hippocampus, and the miR-1 mimic group could significantly add to the pathological changes in the rat hippocampus. Compared with the sham group, the mRNA expression of miR-1 and Bax in the brain of model rats increased significantly (p < 0.05), and the mRNA expression of ERK1/2 decreased significantly; Compared with the model group, the miR-1 and Bax mRNA expressions in the brain tissues of rats in the miR-1 inhibitor group were significantly decreased, the ERK1/2 and bcl-2 mRNA expressions were significantly increased, and the miR-1 and Bax mRNA expressions in the brain tissues of rats in the miR-1 inhibitor group were significantly decreased, and the Bcl-2 mRNA expression was significantly increased (p < 0.05). Compared with the sham group, neuronal apoptosis was increased in the brain tissues of rats in the model group and miR-1 mimic group. Compared with the model group, neuronal apoptosis was decreased in the brain tissues of rats in the miR-1 inhibitor group. Compared with the sham group, the ERK1/2 proteins in the model group were significantly decreased, the Bcl-2, Bax, and caspase-3 proteins were significantly increased, and the ERK1/2, Bcl-2, Bax, and caspase-3 proteins in the miR-1 inhibitor group and miR-1 mimic group were significantly increased. Compared with the model group, the protein levels of ERK1/2 and Bcl-2 in the miR-1 inhibitor group were significantly increased, the proteins of Bax and caspase-3 were significantly decreased, and the protein levels of ERK1/2 and Bcl-2 in the miR-1 inhibitor group were significantly increased (p < 0.05). Conclusions. miR-1 can interfere with neuronal apoptosis in rats with stroke through the ERK signaling pathway.
Collapse
Affiliation(s)
- Yuanding Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China
| | - Tao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China
| | - Jian He
- Department of Neurosurgery, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China
| | - Quan Liao
- Department of Neurosurgery, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China
| | - Jingjing Wang
- Department of Hemodialyses Room, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China
| |
Collapse
|
19
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
20
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
21
|
Chen F, Han J, Li X, Zhang Z, Wang D. Identification of the biological function of miR-9 in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11440. [PMID: 34035993 PMCID: PMC8126262 DOI: 10.7717/peerj.11440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord ischemia–reperfusion injury (SCII) is still a serious problem, and the mechanism is not fully elaborated. In the rat SCII model, qRT-PCR was applied to explore the altered expression of miR-9 (miR-9a-5p) after SCII. The biological function of miR-9 and its potential target genes based on bioinformatics analysis and experiment validation in SCII were explored next. Before the surgical procedure of SCII, miR-9 mimic and inhibitor were intrathecally infused. miR-9 mimic improved neurological function. In addition, miR-9 mimic reduced blood-spinal cord barrier (BSCB) disruption, inhibited apoptosis and decreased the expression of IL-6 and IL-1β after SCII. Gene Ontology (GO) analysis demonstrated that the potential target genes of miR-9 were notably enriched in several biological processes, such as “central nervous system development”, “regulation of growth” and “response to cytokine”. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the potential target genes of miR-9 were significantly enriched in several signaling pathways, including “Notch signaling pathway”, “MAPK signaling pathway”, “Focal adhesion” and “Prolactin signaling pathway”. We further found that the protein expression of MAP2K3 and Notch2 were upregulated after SCII while miR-9 mimic reduced the increase of MAP2K3 and Notch2 protein. miR-9 mimic or MAP2K3 inhibitor reduced the release of IL-6 and IL-1β. miR-9 mimic or si-Notch2 reduced the increase of cleaved-caspase3. Moreover, MAP2K3 inhibitor and si-Notch2 reversed the effects of miR-9 inhibitor. In conclusion, overexpression of miR-9 improves neurological outcomes after SCII and might inhibit BSCB disruption, neuroinflammation, and apoptosis through MAP2K3-, or Notch2-mediated signaling pathway in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoqian Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zaili Zhang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11454. [PMID: 34123589 PMCID: PMC8164840 DOI: 10.7717/peerj.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe complications such as paraplegia and paralysis. Aberrant miRNA expression is involved in the development of SCII. Differences in the experimenters, filtering conditions, control selection, and sequencing platform may lead to different miRNA expression results. This study systematically analyzes the available SCII miRNA expression data to explore the key differently expressed miRNAs (DEmiRNAs) and the underlying molecular mechanism in SCII. A systematic bioinformatics analysis was performed on 23 representative rat SCII miRNA datasets from PubMed. The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and TFactS databases were utilized for functional enrichment and transcription factor binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9 of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the target genes of the upregulated DEmiRNAs revealed that the involved pathways were mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis on the target genes of the downregulated DEmiRNAs revealed that the involved pathways were mainly the Chemokine and MAPK signaling pathways. GO enrichment analysis indicated that the target genes of the upregulated DEmiRNAs were markedly enriched in biological processes such as brain development and the positive regulation of transcription from RNA polymerase II promoter. Target genes of the downregulated DEmiRNAs were mainly enriched in biological processes such as intracellular signal transduction and negative regulation of cell proliferation. According to the transcription factor analysis, the four transcription factors, including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568 was especially interesting. While SCII causes severe neurological deficits of lower extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2 expression levels showed a opposite trend as cleaved caspase-3. The expression of GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII were identified, and the underlying molecular mechanisms were validated. The DEmiRNAs could serve as potential intervention targets for SCII. Moreover, inhibition of miR-3568 preserved hind limb function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| |
Collapse
|
23
|
ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocr Regul 2021; 55:72-82. [PMID: 34020533 DOI: 10.2478/enr-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Collapse
|
24
|
Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, Zhang GZ, Ma ZJ, Kang XW. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med 2021; 16:465-476. [PMID: 33955796 DOI: 10.2217/rme-2020-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is a severe CNS injury that results in abnormalities in, or loss of, motor, sensory and autonomic nervous function. miRNAs belong to a new class of noncoding RNA that regulates the production of proteins and biological function of cells by silencing translation or interfering with the expression of target mRNAs. Following SCI, miRNAs related to oxidative stress, inflammation, autophagy, apoptosis and many other secondary injuries are differentially expressed, and these miRNAs play an important role in the progression of secondary injuries after SCI. The purpose of this review is to elucidate the differential expression and functional roles of miRNAs after SCI, thus providing references for further research on miRNAs in SCI.
Collapse
Affiliation(s)
- Xu-Dong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Feng-Guang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Ming-Qiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Yi-Dian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Da-Xue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China
| |
Collapse
|
25
|
Sun F, Zhang H, Huang T, Shi J, Wei T, Wang Y. miRNA-221 Regulates Spinal Cord Injury-Induced Inflammatory Response through Targeting TNF- α Expression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6687963. [PMID: 33928162 PMCID: PMC8049790 DOI: 10.1155/2021/6687963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the roles of miR-221 in spinal cord injury (SCI) as well as the underlying mechanism. METHODS A mouse model of SCI was generated and used to examine dynamic changes in grip strength of the mouse upper and lower limbs. The expression of miR-221 and tumor necrosis factor-α (TNF-α) was detected by RT-qPCR and Western blot. Levels of inflammation and oxidative stress in microglia cells of the injured mice overexpressing miR-221 were then measured by ELISA. Bioinformatics analysis and dual-luciferase reporter assay were conducted to identify the miR-221 target. RESULTS We successfully constructed SCI mouse model. The results of qRT-PCR showed that miR-221 was gradually upregulated in the spinal cord tissue of mice in the SCI group with the prolonged injury time. At the same time, the mRNA and protein of TNF-α gradually decreased. We further confirmed through cell experiments that the inflammatory factors TNF-α and IL-6, as well as iNOS and eROS, were upregulated in spinal cord microglia cells of SCI mice, and upregulation of miR-122 can inhibit their expression. Finally, the luciferase reporter experiment confirmed that miR-122 targeted TNF-α. CONCLUSIONS We present evidence that miR-221 promotes functional recovery of the injured spinal cord through targeting TNF-α, while alleviating inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Feng Sun
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, China
- Department of Orthopaedic Surgery, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang Province 150088, China
| | - Haiwei Zhang
- Department of Imaging, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang Province 150088, China
| | - Tianwen Huang
- Department of Orthopaedic Surgery, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang Province 150088, China
| | - Jianhui Shi
- Department of Orthopaedics, Heilongjiang Provincial Hospital, No. 82, Zhongshan Road, Harbin, Heilongjiang Province 150036, China
| | - Tianli Wei
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, China
| | - Yansong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, China
| |
Collapse
|
26
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
27
|
Zhang H, Piao M, Guo M, Meng L, Yu H. MicroRNA-211-5p attenuates spinal cord injury via targeting of activating transcription factor 6. Tissue Cell 2021; 68:101459. [PMID: 33238217 DOI: 10.1016/j.tice.2020.101459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
The recovery of spinal cord injury (SCI) involves multiple factors, of which miRNAs take an important part. In this study, we evaluated the function of microRNA-211-5p (miR-211-5p) on SCI in a rat model. SCI model was established using modified Allen's weight-drop method and Basso-Bcattie-Bresnahan score was applied to assess the locomotor function. MiR-211-5p agomir was utilized to increase miR-211-5p expression and endoplasmic reticulum (ER) stress inhibitor, 4-PBA (4-phenylbutyric acid), was utilized to suppress ER stress. Neuron apoptosis and the expressions of miR-211-5p, activating transcription factor 6 (ATF6), apoptosis-related proteins, pro-inflammatory cytokines and endoplasmic reticulum stress-related proteins were detected. Dual luciferase reporter gene assay was performed to verify the binding between miR-211-5p and ATF6. The results showed that miR-211-5p directly targeted ATF6. MiR-211-5p was down-regulated and ATF6 was up-regulated in SCI rats. Both interferences with miR-211-5p agomir and 4-PBA effectively attenuated neuron apoptosis and reversed the expressions of apoptosis, inflammation and endoplasmic reticulum stress-related molecules post SCI in rats. These findings demonstrated that miR-211-5p could effectively alleviate SCI-induced neuron apoptosis and inflammation via directly targeting ATF-6 and regulating ER stress.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
28
|
Wang D, Chen F, Fang B, Zhang Z, Dong Y, Tong X, Ma H. MiR-128-3p Alleviates Spinal Cord Ischemia/Reperfusion Injury Associated Neuroinflammation and Cellular Apoptosis via SP1 Suppression in Rat. Front Neurosci 2020; 14:609613. [PMID: 33424542 PMCID: PMC7785963 DOI: 10.3389/fnins.2020.609613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Neuroinflammation and cellular apoptosis caused by spinal cord ischemia/reperfusion (I/R) injury result in neurological dysfunction. MicroRNAs (miRs) have crucial functions in spinal cord I/R injury pathogenesis according to previous evidences. Herein, whether miR-128-3p contributes to spinal cord I/R injury by regulating specificity protein 1 (SP1) was assessed. METHODS A rat model of spinal cord I/R injury was established by occluding the aortic arch for 14 min. Then, miR-128-3p's interaction with SP1 was detected by dual-luciferase reporter assays. Next, miR-128-3p mimic and inhibitor, as well as adenovirus-delivered shRNA specific for SP1 were injected intrathecally for assessing the effects of miR-128-3p and SP1 on rats with spinal cord I/R injury. SP1, Bax and Bcl-2 expression levels in I/R injured spinal cord tissues were evaluated by Western blotting, while IL-1β, TNF-α, and IL-6 were quantitated by ELISA. Tarlov scores were obtained to detect hind-limb motor function. Evans blue (EB) dye extravasation was utilized to examine blood-spinal cord barrier (BSCB) permeability. Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining was performed for neuronal apoptosis assessment. RESULTS MiR-128-3p expression was decreased, while SP1 amounts were increased in rat spinal cord tissue specimens following I/R. SP1 was identified as a miR-128-3p target and downregulated by miR-128-3p. MiR-128-3p overexpression or SP1 silencing alleviated I/R-induced neuroinflammation and cell apoptosis, and improved Tarlov scores, whereas pretreatment with miR-128-3p inhibitor aggravated the above injuries. CONCLUSION Overexpression of miR-128-3p protects neurons from neuroinflammation and apoptosis during spinal cord I/R injury partially by downregulating SP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Zhang Z, Li X, Chen F, Li Z, Wang D, Ren X, Ma H. Downregulation of LncRNA Gas5 inhibits apoptosis and inflammation after spinal cord ischemia-reperfusion in rats. Brain Res Bull 2020; 168:110-119. [PMID: 33316370 DOI: 10.1016/j.brainresbull.2020.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord ischemia-reperfusion injury(SCII)affects nerve function through many mechanisms, which are complex and not fully understood. Recently, accumulating evidence has indicated that long noncoding RNAs (lncRNAs) play an increasingly important role in SCII. We investigated the role of lncRNA growth arrest-specific 5(Gas5) in a rat SCII model, and its effects on apoptosis and inflammation possibly by modulating MMP-7, cleaved caspase-3 and IL-1β. LncRNA Gas5 and MMP-7 were knocked down by intrathecal siRNA injection. Neurological assessment and TUNEL assay were performed. The RNA and protein expression levels of lncRNA Gas5, MMP-7, cleaved caspase-3 and IL-1β were determined by PCR and Western blotting, respectively. MMP-7 localization was visualized by double-immunofluorescence. SCII induced functional impairment in the hind limb, and the expression of lncRNA Gas5 was highest at 24 h after SCII. LncRNA Gas5 downregulation inhibited the RNA and protein expression of MMP-7, as well as the protein expression of cleaved caspase-3 and IL-1β. LncRNA Gas5 downregulation reduced the number of TUNEL-positive and MMP-7-positive double-labeled cells. Therefore, lncRNA Gas5 downregulation alleviated hind limb functional impairment and improved neuronal apoptosis after SCII. MMP-7 downregulation also inhibited apoptosis and inflammation and alleviated damage. Pretreatment with intrathecal injection of si-lncRNA Gas5 and si-MMP-7 reduced the expression levels of cleaved caspase-3 and IL-1β, protecting nerve function after SCII. These results show that lncRNA Gas5 plays an important role in SCII, perhaps by inhibiting MMP-7, cleaved caspase-3 and IL-1β. LncRNA Gas5 downregulation could be a promising therapeutic approach in the SCII treatment.
Collapse
Affiliation(s)
- Zaili Zhang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoqian Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Zhe Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoyan Ren
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong Ma
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
30
|
Jia H, Li Z, Chang Y, Fang B, Zhou Y, Ma H. Downregulation of Long Noncoding RNA TUG1 Attenuates MTDH-Mediated Inflammatory Damage via Targeting miR-29b-1-5p After Spinal Cord Ischemia Reperfusion. J Neuropathol Exp Neurol 2020; 80:254-264. [PMID: 33225366 DOI: 10.1093/jnen/nlaa138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs and microRNAs (miRNAs) play a vital role in spinal cord ischemia reperfusion (IR) injury. The aim of this study was to identify the potential interactions between taurine upregulated gene 1 (TUG1) and miRNA-29b-1-5p in a rat model of spinal cord IR. The IR injury was established by 14-minute occlusion of aortic arch. TUG1 and metadherin (MTDH) knockdown were induced by respective siRNAs, and miR-29b-1-5p expression was modulated using specific inhibitor or mimics. The interactions between TUG1, miR-29b-1-5p, and the target genes were determined using the dual-luciferase reporter assay. We found that IR respectively downregulated and upregulated miR-29b-1-5p and TUG1, and significantly increased MTDH expression. MTDH was predicted as a target of miR-29b-1-5p and its knockdown downregulated NF-κB and IL-1β levels. A direct interaction was observed between TUG1 and miR-29b-1-5p, and knocking down TUG1 upregulated the latter. Furthermore, overexpression of miR-29b-1-5p or knockdown of TUG1 alleviated blood-spinal cord barrier leakage and improved hind-limb motor function by suppressing MTDH and its downstream pro-inflammatory cytokines. Knocking down TUG1 also alleviated MTDH/NF-κB/IL-1β pathway-mediated inflammatory damage after IR by targeting miR-29b-1-5p, whereas blocking the latter reversed the neuroprotective effect of TUG1 knockdown and restored MTDH/NF-κB/IL-1β levels.
Collapse
Affiliation(s)
- Hui Jia
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Li
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Chang
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Fang
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Banack SA, Dunlop RA, Cox PA. An miRNA fingerprint using neural-enriched extracellular vesicles from blood plasma: towards a biomarker for amyotrophic lateral sclerosis/motor neuron disease. Open Biol 2020; 10:200116. [PMID: 32574550 PMCID: PMC7333885 DOI: 10.1098/rsob.200116] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biomarkers for amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) are currently not clinically available for disease diagnosis or analysis of disease progression. If identified, biomarkers could improve patient outcomes by enabling early intervention and assist in the determination of treatment efficacy. We hypothesized that neural-enriched extracellular vesicles could provide microRNA (miRNA) fingerprints with unequivocal signatures of neurodegeneration. Using blood plasma from ALS/MND patients and controls, we extracted neural-enriched extracellular vesicle fractions and conducted next-generation sequencing and qPCR of miRNA components of the transcriptome. We here report eight miRNA sequences which significantly distinguish ALS/MND patients from controls in a replicated experiment using a second cohort of patients and controls. miRNA sequences from patient blood samples using neural-enriched extracellular vesicles may yield unique insights into mechanisms of neurodegeneration and assist in early diagnosis of ALS/MND.
Collapse
Affiliation(s)
- Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| | - Rachael Anne Dunlop
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| |
Collapse
|
32
|
Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, Wang QY, Zhang JP. MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5. J Neurochem 2020; 156:106-120. [PMID: 32406529 DOI: 10.1111/jnc.15042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Cell death after spinal cord ischemia/reperfusion (I/R) can occur through necrosis, apoptosis, and autophagy, resulting in changes to the immune environment. However, the molecular mechanism of this immune regulation is not clear. Accumulating evidence indicates that microRNAs (miRs) play a crucial role in the pathogenesis of spinal cord I/R injury. Here, we hypothesized miR-22-3p may be involved in spinal cord I/R injury by interacting with interferon regulatory factor (IRF) 5. Rat models of spinal cord I/R injury were established by 12-min occlusion of the aortic arch followed by 48-hr reperfusion, with L4-6 segments of spinal cord tissues collected. MiR-22-3p agomir, a lentivirus-delivered siRNA specific for IRF5, or a lentivirus expressing wild-type IRF5 was injected intrathecally to rats with I/R injury to evaluate the effects of miR-22-3p and IRF5 on hindlimb motor function. Macrophages isolated from rats were treated with miR-22-3p mimic or siRNA specific for IRF5 to evaluate their effects on macrophage polarization. The levels of IL-1β and TNF-α in spinal cord tissues were detected by ELISA. miR-22-3p was down-regulated, whereas IRF5 was up-regulated in rat spinal cord tissues following I/R. IRF5 was a target gene of miR-22-3p and could be negatively regulated by miR-22-3p. Silencing IRF5 or over-expressing miR-22-3p relieved inflammation, elevated Tarlov score, and reduced the degree of severity of spinal cord I/R injury. Increased miR-22-3p facilitated M2 polarization of macrophages and inhibited inflammation in tissues by inhibiting IRF5, thereby attenuating spinal cord I/R injury. Taken together, these results demonstrate that increased miR-22-3p can inhibit the progression of spinal cord I/R injury by repressing IRF5 in macrophages, highlighting the discovery of a promising new target for spinal cord I/R injury treatment.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Qin Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hon-Ling Jin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| |
Collapse
|
33
|
Zhou Z, Li H, Li H, Zhang J, Fu K, Cao C, Deng F, Luo J. Comprehensive analysis of the differential expression profile of microRNAs in rats with spinal cord injury treated by electroacupuncture. Mol Med Rep 2020; 22:751-762. [PMID: 32468009 PMCID: PMC7339738 DOI: 10.3892/mmr.2020.11161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
Abnormal microRNA (miRNA) expression has been implicated in spinal cord injury (SCI), but the underlying mechanisms are poorly understood. To observe the effect of electroacupuncture (EA) on miRNA expression profiles in SCI rats and investigate the potential mechanisms involved in this process, Sprague-Dawley rats were divided into sham, SCI and SCI+EA groups (n=6 each). Basso, Beattie and Bresnahan (BBB) scoring and hematoxylin-eosin staining of cortical tissues were used to evaluate spinal cord recovery with EA treatment 21 days post-surgery across the three groups. To investigate miRNA expression profiles, 6 Sprague-Dawley rats were randomly divided into SCI and SCI+EA groups (n=3 in each group) and examined using next-generation sequencing. Integrated miRNA-mRNA-pathway network analysis was performed to elucidate the interaction network of the candidate miRNAs, their target genes and the involved pathways. Behavioral scores suggested that hindlimb motor functions improved with EA treatments. Apoptotic indices were lower in the SCI+EA group compared with the SCI group. It was also observed that 168 miRNAs were differentially expressed between the SCI and SCI+EA groups, with 29 upregulated and 139 downregulated miRNAs in the SCI+EA group. Changes in miRNA expression are involved in SCI physiopathology, including inflammation and apoptosis. Reverse transcription-quantitative PCR measurement of the five candidate miRNAs, namely rno-miR-219a-5p, rno-miR-486, rno-miR-136-5p, rno-miR-128-3p, and rno-miR-7b, was consistent with RNA sequencing data. Integrated miRNA-mRNA-pathway analysis suggested that the MAPK, Wnt and NF-κB signaling pathways were involved in EA-mediated recovery from SCI. The present study evaluated the miRNA expression profiles involved in EA-treated SCI rats and demonstrated the potential mechanism and functional role of miRNAs in SCI in rats.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hejian Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hongchun Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Kaiwen Fu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Cao Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
34
|
Gao Z, Zhao Y, He X, Leng Z, Zhou X, Song H, Wang R, Gao Z, Wang Y, Liu J, Niu B, Li H, Ouyang P, Chang S. Transplantation of sh-miR-199a-5p-Modified Olfactory Ensheathing Cells Promotes the Functional Recovery in Rats with Contusive Spinal Cord Injury. Cell Transplant 2020; 29:963689720916173. [PMID: 32252553 PMCID: PMC7586279 DOI: 10.1177/0963689720916173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) function as gene expression switches, and participate in diverse pathophysiological processes of spinal cord injury (SCI). Olfactory ensheathing cells (OECs) can alleviate pathological injury and facilitate functional recovery after SCI. However, the mechanisms by which OECs restore function are not well understood. This study aims to determine whether silencing miR-199a-5p would enhance the beneficial effects of the OECs. In this study, we measured miR-199a-5p levels in rat spinal cords with and without injury, with and without OEC transplants. Then, we transfected OECs with the sh-miR-199a-5p lentiviral vector to reduce miR-199a-5p expression and determined the effects of these OECs in SCI rats by Basso-Beattie-Bresnahan (BBB) locomotor scores, diffusion tensor imaging (DTI), and histological methods. We used western blotting to measure protein levels of Slit1, Robo2, and srGAP2. Finally, we used the dual-luciferase reporter assay to assess the relationship between miR-199-5p and Slit1, Robo2, and srGAP2 expression. We found that SCI significantly increased miR-199a-5p levels (P < 0.05), and OEC transplants significantly reduced miR-199a-5p expression (P < 0.05). Knockdown of miR-199a-5p in OECs had a better therapeutic effect on SCI rats, indicated by higher BBB scores and fractional anisotropy values on DTI, as well as histological findings. Reducing miR-199a-5p levels in transplanted OECs markedly increased spinal cord protein levels of Slit1, Robo2, and srGAP2. Our results demonstrated that transplantation of sh-miR-199a-5p-modified OECs promoted functional recovery in SCI rats, suggesting that miR-199a-5p knockdown was more beneficial to the therapeutic effects of OEC transplants. These findings provided new insights into miRNAs-mediated therapeutic mechanisms of OECs, which helps us to develop therapeutic strategies based on miRNAs and optimize cell therapy for SCI.
Collapse
Affiliation(s)
- Zhengchao Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yingjie Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zikuan Leng
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoqian Zhou
- Department of Radiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Hui Song
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rui Wang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zhongyang Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yiqun Wang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiantao Liu
- Department of Spine and Spinal Cord Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Binbin Niu
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Medical College, Xi’an, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Pengrong Ouyang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Su’e Chang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
35
|
Chen F, Li X, Li Z, Qiang Z, Ma H. Altered expression of MiR-186-5p and its target genes after spinal cord ischemia-reperfusion injury in rats. Neurosci Lett 2019; 718:134669. [PMID: 31805371 DOI: 10.1016/j.neulet.2019.134669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Spinal cord ischemia-reperfusion (I/R) injury remains an unresolved problem, and the mechanism is not fully elaborated. In a rat model of spinal cord I/R injury, we performed microarray analysis to examine the altered expression of microRNAs (miRs) at 24 h after the modelling. miR-186-5p was chosen for further study. An miR mimic or anti-miR oligonucleotide was intrathecally infused before the surgical procedure. The participation of miR-186-5p and its potential target genes based on bioinformatics analysis were analysed next. Pre-treatment with the miR-186-5p mimic improved neurological function and histological assessment scores; reduced Evans Blue extravasation; attenuated spinal cord oedema; and decreased interleukin 15 (IL-15), IL-6, IL-1β, and tumour necrosis factor-α (TNF-α) expression at 24 h after the modelling. KEGG analysis showed that the group of potential target genes of miR-186-5p was notably enriched in several signalling cascades, such as the Wnt, Hippo, and PI3K-AKT pathways. Gene Ontology (GO) analysis revealed that the group of potential target genes of miR-186-5p was significantly enriched in several biological processes, such as 'Wnt signalling pathway', 'regulation of inflammatory response', and 'Toll-like receptor signalling pathway'. We further found that Wnt5a, TLR3, and chemokine (C-X-C motif) ligand 13 (CXCL13) were upregulated after the modelling and the miR-186-5p mimic reduced the induction of the aforementioned target genes. These data provide evidence that upregulation of miR-186-5p improves neurological outcomes induced by spinal cord I/R injury and may inhibit neuroinflammation through Wnt5a-, TLR3-, or CXCL13-mediated signal pathway in spinal cord I/R injury.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Ziyun Qiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
36
|
Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocr Regul 2019; 53:250-262. [DOI: 10.2478/enr-2019-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Objective. The aim of the present investigation was to study the effect of hypoxia on the expression of genes encoding endothelin-1 (EDN1) and its cognate receptors (EDNRA and EDNRB) as well as endothelin converting enzyme 1 (ECE1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioma growth through ERN1 and hypoxia.
Methods. The expression level of EDN1, EDNRA, EDNRB, and ECE1 genes as well as micro-RNA miR-19, miR-96, and miR-206 was studied in control and ERN1 knockdown U87 glioma cells under hypoxia by quantitative polymerase chain reaction.
Results. It was shown that the expression level of EDN1, EDNRA, EDNRB, and ECE1 genes was up-regulated in ERN1 knockdown glioma cells in comparison with the control glioma cells, being more significant for endothelin-1. We also observed down-regulation of microRNA miR-206, miR-96, and miR-19a, which have specific binding sites in mRNA EDN1, EDNRA, and EDNRB, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Furthermore, inhibition of ERN1 endoribonuclease lead to up-regulation of EDNRA and ECE1 gene expressions and down-regulation of the expression level of EDN1 and EDNRB genes in glioma cells. Thus, the expression of EDNRA and ECE1 genes is regulated by ERN1 endoribonuclease, but EDN1 and EDNRB genes preferentially by ERN1 protein kinase. We have also shown that hypoxia enhanced the expression of EDN1, EDNRA, and ECE1 genes and that knockdown of ERN1 signaling enzyme function significantly modified the response of all studied gene expressions to hypoxia. Thus, effect of hypoxia on the expression level of EDN1 and ECE1 genes was significantly or completely reduced in ERN1 knockdown glioma cells since the expression of EDNRA gene was down-regulated under hypoxia. Moreover, hypoxia is induced the expression of EDNRB gene in ERN1 knockdown glioma cells.
Conclusions. Results of this investigation demonstrate that ERN1 knockdown significantly increased the expression of endothelin-1 and its receptors as well as ECE1 genes by different mechanisms and that all studied gene expressions were sensitive to hypoxia. It is possible that hypoxic regulation of the expression of these genes is a result of complex interaction of variable ERN1 related transcription and regulatory factors with HIF1A and possibly contributed to the control of glioma growth.
Collapse
|
37
|
MiRNA-199a-5p Protects Against Cerebral Ischemic Injury by Down-Regulating DDR1 in Rats. World Neurosurg 2019; 131:e486-e494. [DOI: 10.1016/j.wneu.2019.07.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/20/2022]
|
38
|
Yin J, Yin Z, Wang B, Zhu C, Sun C, Liu X, Gong G. Angiopoietin-1 Protects Spinal Cord Ischemia and Reperfusion Injury by Inhibiting Autophagy in Rats. Neurochem Res 2019; 44:2746-2754. [PMID: 31630316 DOI: 10.1007/s11064-019-02893-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord ischemia and reperfusion (SCIR) injury can induce autophagy, which is involved in the survival of neurons. However, whether autophagy plays a neuroprotective or a detrimental role in SCIR injury remains controversial. Angiopoietin-1 (Ang-1), an endothelial growth factor, has been shown to have neuroprotective effects. The present study aimed to explore the neuroprotective mechanisms of Ang-1 in neuronal cells in a rat model of SCIR injury in vivo. Ang-1 protein and rapamycin were injected intrathecally. Basso Beattie Bresnahan (BBB) scoring and hematoxylin and eosin staining were used to assess the degree of SCIR injury. Proteins that reflected the level of autophagy expression, such as Beclin-1 and LC3, were evaluated by western blotting. The results indicated that SCIR injury resulted in loss in lower limb motor function. Ang-1 protein inhibited the expression of Beclin-1 and LC3, which improved the BBB score and alleviated spinal cord injury. In contrast, rapamycin, an autophagy activator, caused the opposite effect. This study provides evidence that Ang-1 plays a neuroprotective role by inhibiting of autophagy expression in SCIR injury. Overall, findings could be useful for the treatment of SCIR injury.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, 222000, People's Republic of China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Chao Sun
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China.
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, 211002, Nanjing, People's Republic of China.
| |
Collapse
|
39
|
Chen F, Li X, Li Z, Zhou Y, Qiang Z, Ma H. The roles of chemokine (C-X-C motif) ligand 13 in spinal cord ischemia-reperfusion injury in rats. Brain Res 2019; 1727:146489. [PMID: 31589828 DOI: 10.1016/j.brainres.2019.146489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) remains an unresolved complication and its underlying mechanism has not been fully elucidated. In this study, we studied the role of chemokine (C-X-C motif) ligand 13 (CXCL13) in a rat model of SCII. We examined the time course and cellular distribution of CXCL13 protein in rats after SCII. The effects of siRNA targeting CXCL13 or C-X-C chemokine receptor type 5 (CXCR5) in SCII were also investigated. Neurological function, histological assessment, and disruption of the blood-spinal cord barrier (BSCB) were evaluated. The expression levels of CXCL13, CXCR5, phosphorylated extracellular signal-regulated kinase (p-ERK), caspase-3, interleukin 6 (IL-6), TNF-α, and IL-1β were determined. We found that SCII resulted in impaired hind limb function and increased the expression of CXCL13. In addition, CXCL13 expression demonstrated the most pronounced effect at 24 h after SCII. We reveal that CXCL13 protein was co-expressed with the mature neuron marker NeuN and the microglial marker IBA-1 in spinal cord tissues of model rats. SCII also increased the expression of CXCR5, p-ERK, caspase-3, IL-6, TNF-α, and IL-1β at 24 h after SCII. Pre-treatment with CXCL13 siRNA protected the rats against SCII and decreased the expression of signalling pathway proteins and proinflammatory cytokines mentioned above. CXCR5 siRNA also showed similar protective effects. These findings indicate that CXCL13 is involved in SCII. The CXCL13/CXCR5 axis promotes the development of SCII, possibly via ERK-mediated pathways. Targeting the mechanism of CXCL13 involved in the development of SCII might be a potential approach for the treatment of this condition.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Ziyun Qiang
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155 Nangjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
40
|
Yong YX, Yang H, Lian J, Xu XW, Han K, Hu MY, Wang HC, Zhou LM. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle 2019; 18:1868-1881. [PMID: 31204565 DOI: 10.1080/15384101.2019.1632133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. Therefore, the purpose of present study was to explore the effect of microRNA-199b-3p (miR-199b-3p) on the cerebral microvascular endothelial cells (CMECs) in middle cerebral artery occlusion-reperfusion (MCAO-R) mice by regulating MAPK/ERK/EGR1 axis. Mice were used to establish MCAO-R models and to measure the expression of miR-199b-3p and the MAPK/ERK/EGR1 axis-related genes. CMECs were extracted from the MCAO-R mice. A series of mimic or inhibitor for miR-199b-3p, or U0126 (an inhibitor for the MAPK/ERK/EGR1 axis) were introduced to treat these CMECs. The levels of miR-199b-3p and MAPK/ERK/EGR1 axis-related genes in tissues and cells were detected. The effects miR-199b-3p on the process of CMECs, including cell viability, cell cycle and cell apoptosis were evaluated. miR-199b-3p expressed poorly in the brain tissues after MCAO-R, along with activated MAPK/ERK/EGR1 axis and increased CMECs apoptosis. CMECs transfected with miR-199b-3p mimics and U0126 manifested with increased cell viability, more cells arrested at the S stage, and inhibited apoptosis of CMECs. In conclusion, these key results demonstrated up-regulated miR-199b-3p could protect mice against ischemic stroke by inhibiting the apoptosis of CMECs through blockade of MAPK/ERK/EGR1 axis.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- a Guizhou Medical University , Guiyang , P. R. China.,b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua Yang
- a Guizhou Medical University , Guiyang , P. R. China.,c Institute of Medical Sciences, Guizhou Medical University , Guiyang , P.R. China.,d Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University , Guiyang , P. R. China
| | - Jia Lian
- e Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P.R. China
| | - Xiao-Wei Xu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ke Han
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ming-Yi Hu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua-Cheng Wang
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Lie-Min Zhou
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| |
Collapse
|
41
|
Ha Sen Ta Na, Nuo M, Meng QT, Xia ZY. The Pathway of Let-7a-1/2-3p and HMGB1 Mediated Dexmedetomidine Inhibiting Microglia Activation in Spinal Cord Ischemia-Reperfusion Injury Mice. J Mol Neurosci 2019; 69:106-114. [PMID: 31190218 DOI: 10.1007/s12031-019-01338-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Microglial cell activation after spinal cord ischemia-reperfusion injury (SCIRI) commonly causes the secondary nerve motion function injury. This study aims to study the mechanism by which the drug dexmedetomidine (DEX) inhibits microglial cell activation and improves motion function of SCIRI mice. Mice SCIRI model was established, and microglia from spinal cord were isolated and cultured for subsequent molecule analysis of let-7a-1-3p, let-7a-2-3p, HMGB1, TNF-α, and IL-6. DEX was given by intraperitoneal injection. Mice motion function was evaluated by Basso mouse score. In vitro microglial cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to imitate ischemia-reperfusion injury stimulation. DEX injection improves the mouse motion function in SCIRI model and upregulates let-7a-1/2-3p expression in the isolated activated microglia from SCIRI mice. In OGD/R-stimulated microglia, DEX treatment also caused the inactivation of cells, the upregulation of let-7a-1/2-3p expression, and the downregulation of HMGB1 expression. While the co-silencing of let-7a-1/2-3p in microglia in addition to DEX treatment restored the activation of microglia. HMGB1 is a targeted gene for let-7a-1/2-3p and negatively regulated by them. HMGB1 knockdown abrogates the pro-activation impact on microglial cell by let-7a-1/2-3p silencing. DEX inhibits the activation of microglial cell in the spinal cord of SCIRI mice, mediated by the let-7a-1/2-3p/HMGB1 pathway.
Collapse
Affiliation(s)
- Ha Sen Ta Na
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ming Nuo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
42
|
Wang X, Su X, Gong F, Yin J, Sun Q, Lv Z, Liu B. MicroRNA-30c abrogation protects against spinal cord ischemia reperfusion injury through modulating SIRT1. Eur J Pharmacol 2019; 851:80-87. [DOI: 10.1016/j.ejphar.2019.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
|
43
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
44
|
Ren Z, Yu J, Wu Z, Si W, Li X, Liu Y, Zhou J, Deng R, Chen D. MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model Through Targeting Snap25. Front Mol Neurosci 2018; 11:388. [PMID: 30483048 PMCID: PMC6243094 DOI: 10.3389/fnmol.2018.00388] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Vascular dementia (VD) is the most common form of dementia in elderly people. However, little is understood about the role of microRNAs (miRNAs) involved in cognitive impairment in early VD. Here, a VD model induced by chronic cerebral ischemia and fetal bovine serum (FBS)-free cell model that detects synapse formation was established to investigate the function of miRNAs in early VD. The microarray analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) showed that miR-210-5p increased significantly in the hippocampus of rats with 4 weeks of ischemia. The VD model rats also displayed significant cognitive deficits and synaptic loss. The overexpression of miR-210-5p decreased the synaptic number in primary hippocampal neurons, whereas specific suppression of miR-210-5p resulted in the formation of more synapses. Additionally, intracerebroventricular (ICV) injection of miR-210-5p agomir to VD rats aggravated phenotypes of cognitive impairment and synaptic loss. These VD-induced phenotypes were effectively attenuated by miR-210-5p antagomir. Moreover, bioinformatic prediction revealed that synaptosomal-associated protein of 25 KDa (Snap25) mRNA is targeted by miR-210-5p. The miR-210-5p decreased the luciferase activities of 3’ untranslated region (3’UTR) of Snap25 mRNA. Mutation of predicted miR-210-5p binding sites in the 3’ UTR of Snap25 mRNA abolished the miR-210-5p-induced decrease in luciferase activity. Western blot and immunofluorescence staining confirmed that miR-210-5p targets Snap25. Finally, RT-quantitative PCR (qPCR) and immunofluorescence staining detected that miR-210-5p agomir downregulated Snap25 expression in the cornu ammonis1 (CA1) region of hippocampi in VD rats, whereas miR-210-5p antagomir upregulated Snap25 expression. Altogether, miR-210-5p contributes to cognitive impairment in chronic ischemia-induced VD model through the regulation of Snap25 expression, which potentially provides an opportunity to develop a new therapeutic strategy for VD.
Collapse
Affiliation(s)
- Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junlong Yu
- College of Basic Medicine, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianqian Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rudong Deng
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|