1
|
Dey G, Yakobovich E, Loboda J, Sinai-Turyansky R, Abramovitch-Dahan C, Merquiol E, Sridharan N, Itzhak G, Turk B, Wald O, Turk D, Yona S, Levaot N, Blum G. Development and Application of Small Molecule-Peptide Conjugates as Cathepsin K-Specific Covalent Irreversible Inhibitors in Human Osteoclast and Lung Cancer. JACS AU 2025; 5:1104-1120. [PMID: 40151260 PMCID: PMC11938014 DOI: 10.1021/jacsau.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/29/2025]
Abstract
Cathepsin K (CTSK), a proteolytic enzyme that degrades the extracellular matrix, is recognized as a significant therapeutic target for osteoporosis, osteoarthritis, and rheumatoid arthritis. Due to adverse effects, no clinically approved drugs exist for CTSK. In order to develop safer therapeutics, highly selective CTSK inhibitors are required to elucidate the origins of side effects. Here, we developed various hybrid inhibitors by combining peptide sequences with small organic molecules. An acyloxymethyl ketone electrophile was incorporated as a bioisostere of the glycine-glycine cleavage site and inverse peptide sequences to enhance prime site interactions, as seen in the crystal structure. Additionally, a diphenyl group was incorporated to improve nonprime site interactions, culminating in highly selective and potent irreversible CTSK inhibitors with negligible off-target binding by closely related cathepsins. These novel inhibitors were also designed to attach to targeting moieties, further reducing off-target effects in vivo. Our findings demonstrate that these highly selective inhibitors are nontoxic, effectively inhibit bone resorption by human osteoclasts, block CTSK activity in cells and their nuclei, and inhibit activity in human lung cancer tissue. This study highlights significant advancements in designing CTSK inhibitors with potential clinical applications for lung cancer and osteoclast-related conditions.
Collapse
Affiliation(s)
- Gourab Dey
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Evalyn Yakobovich
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Jure Loboda
- Department
of Biochemistry and Molecular Biology, J.
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Sloveni
| | - Reut Sinai-Turyansky
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Chen Abramovitch-Dahan
- Department
of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Shderot Ben Gurion 1, Beer-Sheva 844394, Israel
| | - Emmanuelle Merquiol
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Nikhila Sridharan
- The
Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gal Itzhak
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Boris Turk
- Department
of Biochemistry and Molecular Biology, J.
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Sloveni
| | - Ori Wald
- Department
of Cardiothoracic Surgery, Hadassah Hebrew University Medical Center,
The Faculty of Medicine, The Hebrew University
of Jerusalem, Jerusalem 9112001, Israel
| | - Dusan Turk
- Department
of Biochemistry and Molecular Biology, J.
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Sloveni
| | - Simon Yona
- The
Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Noam Levaot
- Department
of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Shderot Ben Gurion 1, Beer-Sheva 844394, Israel
| | - Galia Blum
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| |
Collapse
|
2
|
Soundararajan A, Jaysankar K, Doud E, Pasteurin RP, Surma M, Pattabiraman PP. Loss of Cathepsin K impairs collagen biogenesis and enhances actin polymerization in trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637394. [PMID: 39990379 PMCID: PMC11844368 DOI: 10.1101/2025.02.10.637394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Trabecular meshwork (TM) dysfunction and extracellular matrix (ECM) dysregulation contribute to increased intraocular pressure (IOP) in primary open-angle glaucoma (POAG). Earlier, we provide a proof-of-concept study identifying the regulation and the role of Cathepsin K (CTSK), a potent collagenase, in ECM homeostasis, actin bundling, and IOP regulation. Better understanding of the loss of CTSK function in TM remains unclear. Using siRNA-mediated knockdown of CTSK (siCTSK) in human TM cells, this study investigated the role of CTSK in actin and ECM homeostasis using an unbiased proteomics approach. Loss of CTSK significantly disrupted collagen biogenesis and ECM homeostasis. CTSK depletion also increased intracellular calcium levels, with proteomics data suggesting possible involvement of calcium-regulatory proteins. Additionally, PRKD1 activation enhanced actin polymerization through the LIMK1/SSH1/cofilin pathway, promoting focal adhesion maturation. Despite increased apoptotic markers (CASP3, CASP7, TRADD, PPM1F), caspase 3/7 activation was not induced, suggesting apoptosis-independent cellular remodeling. Notably, RhoQ and myosin motor proteins were significantly downregulated, indicating altered mechanotransduction in TM cells. These findings highlight the role of CTSK in maintaining ECM homeostasis, calcium signaling, and cytoskeletal regulation in TM. Its depletion induces actin polymerization, which may influence aqueous humor outflow. Targeting CTSK-related pathways may provide novel therapeutic strategies for regulating IOP and preventing glaucoma progression.
Collapse
|
3
|
Venugopalan V, Rehders M, Weber J, Rodermund L, Al-Hashimi A, Bargmann T, Golchert J, Reinecke V, Homuth G, Völker U, Verrey F, Kirstein J, Heuer H, Schweizer U, Braun D, Wirth EK, Brix K. Lack of L-type amino acid transporter 2 in murine thyroid tissue induces autophagy. J Mol Endocrinol 2023; 70:JME-22-0060. [PMID: 36129170 DOI: 10.1530/jme-22-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
Abstract
Proteolytic cleavage of thyroglobulin (Tg) for thyroid hormone (TH) liberation is followed by TH release from thyroid follicles into the circulation, enabled by TH transporters. The existence of a functional link between Tg-processing cathepsin proteases and TH transporters has been shown to be independent of the hypothalamus-pituitary-thyroid axis. Thus, lack of cathepsin K, combined with genetic defects in the TH transporters Mct8 and Mct10, that is the Ctsk-/-/Mct8-/y/Mct10-/- genotype, results in persistent Tg proteolysis due to autophagy induction. Because amino acid transport by L-type amino acid transporter 2 (Lat2) has been described to regulate autophagy, we asked whether Lat2 availability is affected in Ctsk-/-/Mct8-/y/Mct10-/- thyroid glands. Our data revealed that while mRNA amounts and subcellular localization of Lat2 remained unaltered in thyroid tissue of Ctsk-/-/Mct8-/y/Mct10-/- mice in comparison to WT controls, the Lat2 protein amounts were significantly reduced. These data suggest a direct link between Lat2 function and autophagy induction in Ctsk-/-/Mct8-/y/Mct10-/- mice. Indeed, thyroid tissue of Lat2-/- mice showed enhanced endo-lysosomal cathepsin activities, increased autophagosome formation, and enhanced autophagic flux. Collectively, these results suggest a mechanistic link between insufficient Lat2 protein function and autophagy induction in the thyroid gland of male mice.
Collapse
Affiliation(s)
| | - Maren Rehders
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Jonas Weber
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Lisa Rodermund
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Alaa Al-Hashimi
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Tonia Bargmann
- School of Science, Jacobs University Bremen, Bremen, Germany
| | - Janine Golchert
- Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Vivien Reinecke
- Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Francois Verrey
- Physiologisches Institut, Universität Zürich, Zürich, Switzerland
| | - Janine Kirstein
- Fachbereich 2 Biologie/Chemie, Faculty of Cell Biology, Universität Bremen, Bremen, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, Universitätsklinikum Essen, Essen, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Eva K Wirth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Endocrinology and Metabolism, Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Klaudia Brix
- School of Science, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
4
|
Chai W, Hao W, Liu J, Han Z, Chang S, Cheng L, Sun M, Yan G, Liu Z, Liu Y, Zhang G, Xing L, Chen H, Liu P. Visualizing Cathepsin K-Cre Expression at the Single-Cell Level with GFP Reporters. JBMR Plus 2022; 7:e10706. [PMID: 36699636 PMCID: PMC9850439 DOI: 10.1002/jbm4.10706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Cre/lox system is a fundamental tool for functional genomic studies, and a number of Cre lines have been generated to target genes of interest spatially and temporally in defined cells or tissues; this approach has greatly expanded our knowledge of gene functions. However, the limitations of this system have recently been recognized, and we must address the challenge of so-called nonspecific/off-target effects when a Cre line is utilized to investigate a gene of interest. For example, cathepsin K (Ctsk) has been used as a specific osteoclast marker, and Cre driven by its promoter is widely utilized for osteoclast investigations. However, Ctsk-Cre expression has recently been identified in other cell types, such as osteocytes, periosteal stem cells, and tenocytes. To better understand Ctsk-Cre expression and ensure appropriate use of this Cre line, we performed a comprehensive analysis of Ctsk-Cre expression at the single-cell level in major organs and tissues using two green fluorescent protein (GFP) reporters (ROSA nT-nG and ROSA tdT) and a tissue clearing technique in young and aging mice. The expression profile was further verified by immunofluorescence staining and droplet digital RT-PCR. The results demonstrate that Ctsk-Cre is expressed not only in osteoclasts but also at various levels in osteoblast lineage cells and other major organs/tissues, particularly in the brain, kidney, pancreas, and blood vessels. Furthermore, Ctsk-Cre expression increases markedly in the bone marrow, skeletal muscle, and intervertebral discs in aging mice. These data will be valuable for accurately interpreting data obtained from in vivo studies using Ctsk-Cre mice to avoid potentially misleading conclusions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wenhuan Chai
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Weiwei Hao
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Jintao Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zhenglin Han
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Shiyu Chang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Liben Cheng
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Mingxin Sun
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guofang Yan
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zemin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Yin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guodong Zhang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Li Xing
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Hongqian Chen
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Peng Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Characterization of Cysteine Cathepsin Expression in the Central Nervous System of Aged Wild-Type and Cathepsin-Deficient Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The association of cathepsin proteases in neurobiology is increasingly recognized. Our previous studies indicated that cathepsin-K-deficient (Ctsk−/−) mice have learning and memory impairments. Alterations in cathepsin expression are known to result in compensatory changes in levels of related cathepsins. To gain insight into the therapeutic usefulness of cathepsin inhibitors in aging individuals with osteoporosis or neurodegenerative diseases, we studied for variations in cathepsin expression and activity in aged (18–20 months) versus young (5–7 months) wild-type (WT) and cathepsin-deficient mice brains. There were age-dependent increases in cathepsin B, D, and L and cystatin C protein levels in various brain regions, mainly of WT and Ctsk−/− mice. This corresponded with changes in activity levels of cathepsins B and L, but not cathepsin D. In contrast, very little age-dependent variation was observed in cathepsin-B- and cathepsin-L-deficient mouse brain, especially at the protein level. The observed alterations in cathepsin protein amounts and activity are likely contributing to changes in important aging-related processes such as autophagy. In addition, the results provide insight into the potential impact of cathepsin inhibitor therapy in aged individuals, as well as in long-term use of cathepsin inhibitor therapy.
Collapse
|
6
|
Gao G, Hu S, Zhang K, Wang H, Xie Y, Zhang C, Wu R, Zhao X, Zhang H, Wang Q. Genome-Wide Gene Expression Profiles Reveal Distinct Molecular Characteristics of the Goose Granulosa Cells. Front Genet 2021; 12:786287. [PMID: 34992633 PMCID: PMC8725158 DOI: 10.3389/fgene.2021.786287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Granulosa cells (GCs) are decisive players in follicular development. In this study, the follicle tissues and GCs were isolated from the goose during the peak-laying period to perform hematoxylin-eosin staining and RNA-seq, respectively. Moreover, the dynamic mRNA and lncRNA expression profiles and mRNA-lncRNA network analysis were integrated to identify the important genes and lncRNAs. The morphological analysis showed that the size of the GCs did not significantly change, but the thickness of the granulosa layer cells differed significantly across the developmental stages. Subsequently, 14,286 mRNAs, 3,956 lncRNAs, and 1,329 TUCPs (transcripts with unknown coding potential) were detected in the GCs. We identified 37 common DEGs in the pre-hierarchical and hierarchical follicle stages, respectively, which might be critical for follicle development. Moreover, 3,089 significant time-course DEGs (Differentially expressed genes) and 13 core genes in 4 clusters were screened during goose GCs development. Finally, the network lncRNA G8399 with CADH5 and KLF2, and lncRNA G8399 with LARP6 and EOMES were found to be important for follicular development in GCs. Thus, the results would provide a rich resource for elucidating the reproductive biology of geese and accelerate the improvement of the egg-laying performance of geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keshan Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Changlian Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xianzhi Zhao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Hongmei Zhang
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| |
Collapse
|
7
|
Venugopalan V, Al-Hashimi A, Weber J, Rehders M, Qatato M, Wirth EK, Schweizer U, Heuer H, Verrey F, Brix K. The Amino Acid Transporter Mct10/Tat1 Is Important to Maintain the TSH Receptor at Its Canonical Basolateral Localization and Assures Regular Turnover of Thyroid Follicle Cells in Male Mice. Int J Mol Sci 2021; 22:5776. [PMID: 34071318 PMCID: PMC8198332 DOI: 10.3390/ijms22115776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.
Collapse
Affiliation(s)
- Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Eva K. Wirth
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, D-10115 Berlin, Germany;
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Nußallee 11, D-53115 Bonn, Germany;
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Universitätsklinikum Essen, Hufelandstr. 55, D-45147 Essen, Germany;
| | - François Verrey
- Physiologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| |
Collapse
|
8
|
Role of Kallikrein 7 in Body Weight and Fat Mass Regulation. Biomedicines 2021; 9:biomedicines9020131. [PMID: 33572949 PMCID: PMC7912635 DOI: 10.3390/biomedicines9020131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Increased plasma and adipose tissue protease activity is observed in patients with type 2 diabetes and obesity. It has been proposed that specific proteases contribute to the link between obesity, adipose tissue inflammation and metabolic diseases. We have recently shown that ablation of the serine protease kallikrein-related peptidase 7 (Klk7) specifically in adipose tissue preserves systemic insulin sensitivity and protects mice from obesity-related AT inflammation. Here, we investigated whether whole body Klk7 knockout (Klk7-/-) mice develop a phenotype distinct from that caused by reduced Klk7 expression in adipose tissue. Compared to littermate controls, Klk7-/- mice gain less body weight and fat mass both under chow and high fat diet (HFD) feeding, are hyper-responsive to exogenous insulin and exhibit preserved adipose tissue function due to adipocyte hyperplasia and lower inflammation. Klk7-/- mice exhibit increased adipose tissue thermogenesis, which is not related to altered thyroid function. These data strengthen our recently proposed role of Klk7 in the regulation of body weight, energy metabolism, and obesity-associated adipose tissue dysfunction. The protective effects of Klk7 deficiency in obesity are likely linked to a significant limitation of adipocyte hypertrophy. In conclusion, our data indicate potential application of specific KLK7 inhibitors to regulate KLK7 activity in the development of obesity and counteract obesity-associated inflammation and metabolic diseases.
Collapse
|
9
|
Venugopalan V, Al-Hashimi A, Rehders M, Golchert J, Reinecke V, Homuth G, Völker U, Manirajah M, Touzani A, Weber J, Bogyo MS, Verrey F, Wirth EK, Schweizer U, Heuer H, Kirstein J, Brix K. The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. Int J Mol Sci 2021; 22:ijms22010462. [PMID: 33466458 PMCID: PMC7796480 DOI: 10.3390/ijms22010462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.
Collapse
Affiliation(s)
- Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Vivien Reinecke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Mythili Manirajah
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Adam Touzani
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Matthew S. Bogyo
- Department of Pathology, School of Medicine, Stanford University, 300 Pasteur Dr., Stanford, CA 94305-5324, USA;
| | - Francois Verrey
- Physiologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;
| | - Eva K. Wirth
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hessische Str. 3-4, Germany and DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, D-10115 Berlin, Germany;
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nußallee 11, D-53115 Bonn, Germany;
| | - Heike Heuer
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen (AöR), Universität Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany;
| | - Janine Kirstein
- Fachbereich 2 Biologie/Chemie, Faculty of Cell Biology, Universität Bremen, Leobener Straße 5, D-28359 Bremen, Germany;
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
- Correspondence: ; Tel.: +49-421-200-3246
| |
Collapse
|
10
|
Brix K, Szumska J, Weber J, Qatato M, Venugopalan V, Al-Hashimi A, Rehders M. Auto-Regulation of the Thyroid Gland Beyond Classical Pathways. Exp Clin Endocrinol Diabetes 2020; 128:437-445. [PMID: 32074633 DOI: 10.1055/a-1080-2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.
Collapse
Affiliation(s)
- Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.,Present address of JS is Department of Internal Medicine III, Cardiology, Angiology and Respiratory Medicine, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
11
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|