1
|
Kokubu E, Kikuchi Y, Yonezawa H, Sasaki H, Matsuzaka K, Ishihara K. Effect of Porphyromonas Gingivalis Infection on Epithelial Rests of Malassez. THE BULLETIN OF TOKYO DENTAL COLLEGE 2025; 66:13-23. [PMID: 39956574 DOI: 10.2209/tdcpublication.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The epithelial cell rests of Malassez (ERM) are located within the periodontal ligament. They are reportedly involved in maintaining homeostasis, particularly with regards to the thickness of the periodontal ligament. Their role in apical periodontitis lesions remains unclear, however. This study investigated the response of ERM to infection with Porphyromonas gingivalis. After being infected, the morphology of the P. gingivalis-infected cells was observed using confocal laser-scanning microscopy. The gene expression of P. gingivalis-infected and uninfected cells was investigated by RNA-sequencing analysis. Morphological observation showed the invasion and adhesion of P. gingivalis to the surface of ERM. The RNA analysis showed that the gene expression profile significantly differed between the infected and uninfected cells. At an expression level of ≥2 and false discovery rate of <0.1, the infected cells showed a decrease in 99 genes and an increase in 6 compared with in the non-infected cells. Most of the upregulated genes were unique to epithelial cells, such as endothelial cell-specific molecules and cytokeratin 5; the upregulated genes were associated with the immune response, however. These results indicate that ERM upregulate genes associated with epithelial cells and suppress those associated with the immune response following P. gingivalis infection.
Collapse
Affiliation(s)
- Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Hideo Yonezawa
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kenichi Matsuzaka
- Department of Pathology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| |
Collapse
|
2
|
Yang H, Mo N, Tong L, Dong J, Fan Z, Jia M, Yue J, Wang Y. Microglia lactylation in relation to central nervous system diseases. Neural Regen Res 2025; 20:29-40. [PMID: 38767474 PMCID: PMC11246148 DOI: 10.4103/nrr.nrr-d-23-00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Nan Mo
- Department of Clinical Laboratory, The Fourth Clinical Medical College of Zhejiang University of Traditional Chinese Medicine (Hangzhou First People’s Hospital), Hangzhou, Zhejiang Province, China
| | - Le Tong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Tong X, Burks HE, Ren Z, Koetsier JL, Roth-Carter QR, Green KJ. Crosstalk in Skin: Loss of Desmoglein 1 in Keratinocytes Inhibits BRAF V600E-Induced Cellular Senescence in Human Melanocytes. J Invest Dermatol 2024:S0022-202X(24)02955-5. [PMID: 39581457 PMCID: PMC12098711 DOI: 10.1016/j.jid.2024.10.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Melanoma arises from transformation of melanocytes in the basal layer of epidermis where they are surrounded by keratinocytes, with which they interact through cell contact and paracrine communication. Although research focuses on how the accumulation of oncogene and tumor suppressor gene mutations in melanocytes drive melanomagenesis, how alterations in keratinocytes serve as extrinsic drivers of melanoma initiation and progression is poorly understood. We recently identified keratinocyte desmoglein 1 (DSG1) as an mediator of keratinocyte:melanoma crosstalk. In this study, we address the extent to which DSG1 loss, which occurs in response to environmental stress such as UVR, affects early steps in melanomagenesis. RNA-sequencing analysis revealed that paracrine signals from DSG1-deficient keratinocytes mediate a transcriptional switch from a differentiated to undifferentiated cell state in melanocytes expressing BRAFV600E. Of 221 differentially expressed genes in BRAFV600E cells treated with conditioned media from DSG1-deficient keratinocytes, the laminin superfamily member Netrin-4 (NTN4), which inhibits senescence, stood out. Indeed, although BRAFV600E melanocytes treated with conditioned media from DSG1-deficient keratinocytes showed signs of senescence bypass, NTN4 knockdown reversed these effects, whereas ectopic Netrin-4 expression mimicked them. These results suggest that DSG1 loss in keratinocytes provides an extrinsic signal to push melanocytes toward oncogenic transformation once an initial mutation has been introduced.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Hope E Burks
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ziyou Ren
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer L Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Quinn R Roth-Carter
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Uekusa Y, Mukai M, Tsukada A, Iwase D, Aikawa J, Shibata N, Ohashi Y, Inoue G, Takaso M, Uchida K. Elevated Netrin-4 Expression and Its Action in Infrapatellar Fat Pad. Int J Mol Sci 2024; 25:11369. [PMID: 39518922 PMCID: PMC11545295 DOI: 10.3390/ijms252111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Knee osteoarthritis (KOA) is a degenerative joint disease characterized by inflammation and cartilage degradation. The infrapatellar fat pad (IFP), located beneath the patella within the knee joint, serves as a key anatomical structure involved in cushioning and supporting the knee. It is also an active endocrine organ that secretes various bioactive substances, potentially influencing the local inflammatory environment and contributing to KOA pathogenesis. Netrin-4 (NTN4), a protein primarily known for its role in neuronal guidance, has been implicated in various non-neuronal functions, including inflammatory processes and tissue remodeling. This study aims to explore the involvement of NTN4 in KOA, focusing on its expression in the IFP and its potential impact on disease progression. This study involved 82 patients with radiographically confirmed KOA undergoing total knee arthroplasty (TKA). The correlation between NTN4 expression and OA pathology, including Kellgren-Lawrence (K/L) grades, was investigated. NTN4-expressing cells were identified in the stromal vascular fraction, including fibroblastic, hematopoietic, and endothelial cells of the IFP. To elucidate the molecular effects of NTN4, RNA sequencing (RNA-seq) was performed on fibroblastic cells treated with recombinant NTN4. Subsequent quantitative PCR (qPCR) was used to validate the RNA-seq findings. NTN4 expression was significantly elevated in the IFP of patients with advanced KOA (K/L grades 3 and 4) compared to those with early-stage disease (K/L grade 2). Higher NTN4 expression was found in fibroblastic cells, and RNA-seq analysis revealed upregulation of genes associated with pro-inflammatory pathways, including IL-17 and TNF-α signaling, and matrix degradation. Notably, genes including IL6, MMP1, CXCL1, and CXCL8 were significantly elevated, as confirmed by qPCR, indicating NTN4's role in promoting an inflammatory and catabolic environment. Our findings suggest that NTN4 plays a significant role in the pathogenesis of KOA by promoting inflammation and matrix degradation within the IFP. Although NTN4 expression was not directly correlated with clinical symptoms, its elevated expression in fibroblastic cells and influence on inflammatory and degradative pathways suggest a potential mechanism for exacerbating joint damage. Targeting NTN4 could offer a novel therapeutic approach to mitigating inflammation and slowing disease progression in KOA, ultimately improving patient outcomes. Further research is needed to clarify NTN4's specific roles and therapeutic potential in OA management.
Collapse
Affiliation(s)
- Yui Uekusa
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Manabu Mukai
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Ayumi Tsukada
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Dai Iwase
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Jun Aikawa
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Naoya Shibata
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Yoshihisa Ohashi
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Gen Inoue
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Masashi Takaso
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Kentaro Uchida
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
- Medical Sciences Research Institute, Shonan University, Nishikubo 500, Chigasaki City 253-0083, Kanagawa, Japan
| |
Collapse
|
5
|
Zhang D, Zhu Z, Wen K, Zhang S, Liu J. Netrin‑4 promotes VE‑cadherin expression in endothelial cells through the NF‑κB signaling pathway. Exp Ther Med 2024; 28:351. [PMID: 39071904 PMCID: PMC11273250 DOI: 10.3892/etm.2024.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Netrin-4 (NTN4), a secreted protein from the Netrin family, has been recognized for its role in vascular development, endothelial homeostasis and angiogenesis. Vascular endothelial (VE)-cadherin is a specialized adhesion protein located at the intercellular junctions of endothelial cells (ECs), and regulates migration, proliferation and permeability. To date, the relationship between NTN4 and VE-cadherin in ECs remains unclear. In the present study, human umbilical vein ECs (HUVECs) were transfected with NTN4 overexpression plasmid, resulting in NTN4 overexpression. Reverse transcription-quantitative PCR and western blotting were used to determine gene and protein expression. CCK8, wound healing, and Transwell assays were performed to evaluate cell proliferation, migration and permeability. NTN4 overexpression decreased HUVEC viability and migration. In addition, NTN4 overexpression increased the expression of VE-cadherin and decreased the permeability of HUVECs. Subsequent studies showed that NTN4 overexpression increased the NF-κB protein level and decreased IκB-α protein expression in HUVECs. In HUVECs treated with NF-κB inhibitor pyrrolidine dithiocarbamate, the expression of VE-cadherin failed to increase with NTN4 overexpression. Taken together, the results indicated that NTN4 overexpression increased VE-cadherin expression through the activation of the NF-κB signaling pathway in HUVECs. The present findings revealed a novel regulatory mechanism for VE-cadherin expression and suggested a novel avenue for future research on the role of NTN4 in endothelial barrier-related diseases.
Collapse
Affiliation(s)
- Datong Zhang
- Department of Orthodontics, School of Dentistry, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Zhiying Zhu
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Keting Wen
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Shijie Zhang
- Department of Orthodontics, School of Dentistry, Shandong University, Jinan, Shandong 250100, P.R. China
- Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
6
|
Wang G, Zhuang T, Zhen F, Zhang C, Wang Q, Miao X, Qi N, Yao R. IGF2BP2 inhibits invasion and migration of clear cell renal cell carcinoma via targeting Netrin-4 in an m 6A-dependent manner. Mol Carcinog 2024; 63:1572-1587. [PMID: 38780170 DOI: 10.1002/mc.23746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, often leads to a poor prognosis due to metastasis. The investigation of N6-methyladenosine (m6A) methylation, a crucial RNA modification, and its role in ccRCC, particularly through the m6A reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), revealed significant insights. We found that IGF2BP2 was notably downregulated in ccRCC, which correlated with tumor aggressiveness and poor prognosis. Thus, IGFBP2 has emerged as an independent prognostic factor of ccRCC. Moreover, a strong positive correlation was observed between the expression of IGF2BP2 and Netrin-4. Netrin-4 was also downregulated in ccRCC, and its lower levels were associated with increased malignancy and poor prognosis. Overexpression of IGF2BP2 and Netrin-4 suppressed the invasion and migration of ccRCC cells, while Netrin-4 knockdown reversed these effects in ccRCC cell lines. RNA immunoprecipitation (RIP)-quantitative polymerase chain reaction validated the robust enrichment of Netrin-4 mRNA in anti-IGF2BP2 antibody immunoprecipitates. MeRlP showed significantly increased Netrin4 m6A levels after lGF2BP2 overexpression. Moreover, we found that IGF2BP2 recognized and bound to the m6A site within the coding sequence of Netrin-4, enhancing its mRNA stability. Collectively, these results showed that IGF2BP2 plays a suppressive role in the invasion and migration of ccRCC cells by targeting Netrin-4 in an m6A-dependent manner. These findings underscore the potential of IGF2BP2/Netrin-4 as a promising prognostic biomarker and therapeutic target in patients with ccRCC metastasis.
Collapse
Affiliation(s)
- Gui Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Tao Zhuang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Fei Zhen
- Department of Pathology, Hongze Huaian District People's Hospital, Hongze, China
| | - Chu Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Qichao Wang
- Department of Urology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Xu Miao
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Nienie Qi
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruiqin Yao
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. eLife 2024; 12:RP92644. [PMID: 38661532 PMCID: PMC11045223 DOI: 10.7554/elife.92644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible 'response biomarkers' in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple UniversityPhiladelphiaUnited States
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Sciences, University of VirginiaCharlottesvilleUnited States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| |
Collapse
|
8
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.12.528218. [PMID: 36824725 PMCID: PMC9949002 DOI: 10.1101/2023.02.12.528218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7 + satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12 , along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro . Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible "response biomarkers" in pre-clinical and clinical studies.
Collapse
|