1
|
Keneskhanova Z, McWilliam KR, Cosentino RO, Barcons-Simon A, Dobrynin A, Smith JE, Subota I, Mugnier MR, Colomé-Tatché M, Siegel TN. Genomic determinants of antigen expression hierarchy in African trypanosomes. Nature 2025:10.1038/s41586-025-08720-w. [PMID: 40074895 DOI: 10.1038/s41586-025-08720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025]
Abstract
Antigenic variation is an immune evasion strategy used by many different pathogens. It involves the periodic, non-random switch in the expression of different antigens throughout an infection. How the observed hierarchy in antigen expression is achieved has remained a mystery1,2. A key challenge in uncovering this process has been the inability to track transcriptome changes and potential genomic rearrangements in individual cells during a switch event. Here we report the establishment of a highly sensitive single-cell RNA sequencing approach for the model protozoan parasite Trypanosoma brucei. This approach has revealed genomic rearrangements that occur in individual cells during a switch event. Our data show that following a double-strand break in the transcribed antigen-coding gene-an important trigger for antigen switching-the type of repair mechanism and the resultant antigen expression depend on the availability of a homologous repair template in the genome. When such a template was available, repair proceeded through segmental gene conversion, creating new, mosaic antigen-coding genes. Conversely, in the absence of a suitable template, a telomere-adjacent antigen-coding gene from a different part of the genome was activated by break-induced replication. Our results show the critical role of repair sequence availability in the antigen selection mechanism. Furthermore, our study demonstrates the power of highly sensitive single-cell RNA sequencing methods in detecting genomic rearrangements that drive transcriptional changes at the single-cell level.
Collapse
Affiliation(s)
- Zhibek Keneskhanova
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kirsty R McWilliam
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Atai Dobrynin
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jaclyn E Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ines Subota
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Monica R Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria Colomé-Tatché
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Davis JA, Chakrabarti K. Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1710. [PMID: 34973045 DOI: 10.1002/wrna.1710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Telomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
Xu Z, Green B, Benoit N, Sobel JD, Schatz MC, Wheelan S, Cormack BP. Cell wall protein variation, break-induced replication, and subtelomere dynamics in Candida glabrata. Mol Microbiol 2021; 116:260-276. [PMID: 33713372 DOI: 10.1111/mmi.14707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023]
Abstract
Candida glabrata is an opportunistic pathogen of humans, responsible for up to 30% of disseminated candidiasis. Adherence of C. glabrata to host cells is mediated by adhesin-like proteins (ALPs), about half of which are encoded in the subtelomeres. We performed a de novo assembly of two C. glabrata strains, BG2 and BG3993, using long single-molecule real-time (SMRT) reads, and constructed high-quality telomere-to-telomere assemblies of all 13 chromosomes to assess differences between C. glabrata strains. We documented variation between strains, and in agreement with earlier studies, found high (~0.5%-1%) frequencies of SNVs across the genome, including within subtelomeric regions. We documented changes in ALP gene structure and complement: there are large length differences in ALP genes in different strains, resulting from copy number variation in tandem repeats. We compared strains to characterize chromosome rearrangement events including within the poorly characterized subtelomeric regions. We show that rearrangements within the subtelomere regions all affect ALP-encoding genes, and 14/16 involve just the most terminal ALP gene. We present evidence that these rearrangements are mediated by break-induced replication. This study highlights the constrained nature of subtelomeric changes impacting ALP gene complement and subtelomere structure.
Collapse
Affiliation(s)
- Zhuwei Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,AgriMetis, Lutherville, MD, USA
| | - Nicole Benoit
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jack D Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Silva Pereira S, Casas-Sánchez A, Haines LR, Ogugo M, Absolomon K, Sanders M, Kemp S, Acosta-Serrano Á, Noyes H, Berriman M, Jackson AP. Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs. Genome Res 2018; 28:1383-1394. [PMID: 30006414 PMCID: PMC6120623 DOI: 10.1101/gr.234146.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Moses Ogugo
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kihara Absolomon
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Steve Kemp
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Álvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| |
Collapse
|
5
|
Mild Telomere Dysfunction as a Force for Altering the Adaptive Potential of Subtelomeric Genes. Genetics 2017; 208:537-548. [PMID: 29242289 DOI: 10.1534/genetics.117.300607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
Subtelomeric regions have several unusual characteristics, including complex repetitive structures, increased rates of evolution, and enrichment for genes involved in niche adaptation. The adaptive telomere failure hypothesis suggests that certain environmental stresses can induce a low level of telomere failure, potentially leading to elevated subtelomeric recombination that could result in adaptive mutational changes within subtelomeric genes. Here, we tested a key prediction of the adaptive telomere failure hypothesis-that telomere dysfunction mild enough to have little or no overall effect on cell fitness could still lead to substantial increases in the mutation rates of subtelomeric genes. Our results show that a mutant of Kluyveromyces lactis with stably short telomeres produced a large increase in the frequency of mutations affecting the native subtelomeric β-galactosidase (LAC4) gene. All lac4 mutants examined from strains with severe telomere dysfunction underwent terminal deletion/duplication events consistent with being due to break-induced replication. In contrast, although cells with mild telomere dysfunction also exhibited similar terminal deletion and duplication events, up to 50% of lac4 mutants from this background unexpectedly contained base changes within the LAC4 coding region. This mutational bias for producing base changes demonstrates that mild telomere dysfunction can be well suited as a force for altering the adaptive potential of subtelomeric genes.
Collapse
|
6
|
Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis. PLoS One 2016; 11:e0149894. [PMID: 26906226 PMCID: PMC4764335 DOI: 10.1371/journal.pone.0149894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests.
Collapse
|
7
|
Fulnečková J, Ševčíková T, Lukešová A, Sýkorová E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales). Chromosoma 2015; 125:437-51. [PMID: 26596989 DOI: 10.1007/s00412-015-0557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022]
Abstract
Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.
Collapse
Affiliation(s)
- Jana Fulnečková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic.,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Life Science Research Centre & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-71000, Ostrava, Czech Republic
| | - Alena Lukešová
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, v.vi., Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic. .,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
8
|
DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. EUKARYOTIC CELL 2015; 14:196-205. [PMID: 25576484 DOI: 10.1128/ec.00207-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.
Collapse
|
9
|
Andre J, Kerry L, Qi X, Hawkins E, Drizyte K, Ginger ML, McKean PG. An alternative model for the role of RP2 protein in flagellum assembly in the African trypanosome. J Biol Chem 2013; 289:464-75. [PMID: 24257747 PMCID: PMC3879569 DOI: 10.1074/jbc.m113.509521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme.
Collapse
Affiliation(s)
- Jane Andre
- From the Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim HS, Park SH, Günzl A, Cross GAM. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei. PLoS One 2013; 8:e57001. [PMID: 23451133 PMCID: PMC3581582 DOI: 10.1371/journal.pone.0057001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.
Collapse
Affiliation(s)
- Hee-Sook Kim
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York, United States of America.
| | | | | | | |
Collapse
|
11
|
Correa PRC, Cordero EM, Gentil LG, Bayer-Santos E, da Silveira JF. Genetic structure and expression of the surface glycoprotein GP82, the main adhesin of Trypanosoma cruzi metacyclic trypomastigotes. ScientificWorldJournal 2013; 2013:156734. [PMID: 23431251 PMCID: PMC3575623 DOI: 10.1155/2013/156734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/30/2012] [Indexed: 01/10/2023] Open
Abstract
T. cruzi improves the likelihood of invading or adapting to the host through its capacity to present a large repertoire of surface molecules. The metacyclic stage-specific surface glycoprotein GP82 has been implicated in host cell invasion. GP82 is encoded by multiple genes from the trans-sialidase superfamily. GP82 shows a modular organization, with some variation of N-terminal region flanking a conserved central core where the binding sites to the mammalian cell and gastric mucin are located. The function of GP82 as adhesin in host cell invasion process could expose the protein to an intense conservative and selective pressure. GP82 is a GPI-anchored surface protein, synthesized as a 70 kDa precursor devoid of N-linked sugars. GPI-minus variants accumulate in the ER indicating that GPI anchor acts as a forward transport signal for progressing along the secretory pathway as suggested for T. cruzi mucins. It has been demonstrated that the expression of GP82 is constitutive and may be regulated at post-transcriptional level, for instance, at translational level and/or mRNA stabilization. GP82 mRNAs are mobilized to polysomes and consequently translated, but only in metacyclic trypomastigotes. Analysis of transgenic parasites indicates that the mechanism regulating GP82 expression involves multiple elements in the 3'UTR.
Collapse
Affiliation(s)
- Paulo Roberto Ceridorio Correa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Esteban Mauricio Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Luciana Girotto Gentil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| |
Collapse
|
12
|
Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. EUKARYOTIC CELL 2012; 12:330-42. [PMID: 23264644 DOI: 10.1128/ec.00273-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.
Collapse
|
13
|
Telomere length affects the frequency and mechanism of antigenic variation in Trypanosoma brucei. PLoS Pathog 2012; 8:e1002900. [PMID: 22952449 PMCID: PMC3431348 DOI: 10.1371/journal.ppat.1002900] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 07/26/2012] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei is a master of antigenic variation and immune response evasion. Utilizing a genomic repertoire of more than 1000 Variant Surface Glycoprotein-encoding genes (VSGs), T. brucei can change its protein coat by “switching” from the expression of one VSG to another. Each active VSG is monoallelically expressed from only one of approximately 15 subtelomeric sites. Switching VSG expression occurs by three predominant mechanisms, arguably the most significant of which is the non-reciprocal exchange of VSG containing DNA by duplicative gene conversion (GC). How T. brucei orchestrates its complex switching mechanisms remains to be elucidated. Recent work has demonstrated that an exogenous DNA break in the active site could initiate a GC based switch, yet the source of the switch-initiating DNA lesion under natural conditions is still unknown. Here we investigated the hypothesis that telomere length directly affects VSG switching. We demonstrate that telomerase deficient strains with short telomeres switch more frequently than genetically identical strains with long telomeres and that, when the telomere is short, switching preferentially occurs by GC. Our data supports the hypothesis that a short telomere at the active VSG expression site results in an increase in subtelomeric DNA breaks, which can initiate GC based switching. In addition to their significance for T. brucei and telomere biology, the findings presented here have implications for the many diverse pathogens that organize their antigenic genes in subtelomeric regions. A broad array of human pathogens (including bacteria, fungi and parasites) vary the proteins on their cell surface to escape the immune response of their hosts. This process, called antigenic variation, relies on a repertoire of variant protein encoding genes in the genome and the organism's ability to accurately switch from the expression of one variant gene to another. A common theme in both the diversification of these variant genes and the mechanisms required for their expression is that they are often located near the ends of chromosomes. The ends of chromosomes are protected by structures called telomeres. Regions near the telomere are referred to as subtelomeric and are commonly thought to be comparatively unstable DNA sites. It is therefore intriguing that organisms that rely on antigenic variation for survival would organize their critical survival genes in these sites. Trypanosoma brucei is a model organism for the study of antigenic variation. The causative agent of African sleeping sickness, this unicellular parasite possesses an antigenic repertoire of unparalleled diversity, which can only be expressed from specific subtelomeric sites. Here we use the power of the T. brucei model to investigate the effect of telomere length on antigenic variation.
Collapse
|
14
|
Moraes Barros RR, Marini MM, Antônio CR, Cortez DR, Miyake AM, Lima FM, Ruiz JC, Bartholomeu DC, Chiurillo MA, Ramirez JL, da Silveira JF. Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi. BMC Genomics 2012; 13:229. [PMID: 22681854 PMCID: PMC3418195 DOI: 10.1186/1471-2164-13-229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/08/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The subtelomeres of many protozoa are highly enriched in genes with roles in niche adaptation. T. cruzi trypomastigotes express surface proteins from Trans-Sialidase (TS) and Dispersed Gene Family-1 (DGF-1) superfamilies which are implicated in host cell invasion. Single populations of T. cruzi may express different antigenic forms of TSs. Analysis of TS genes located at the telomeres suggests that chromosome ends could have been the sites where new TS variants were generated. The aim of this study is to characterize telomeric and subtelomeric regions of T. cruzi available in TriTrypDB and connect the sequences of telomeres to T. cruzi working draft sequence. RESULTS We first identified contigs carrying the telomeric repeat (TTAGGG). Of 49 contigs identified, 45 have telomeric repeats at one end, whereas in four contigs the repeats are located internally. All contigs display a conserved telomeric junction sequence adjacent to the hexamer repeats which represents a signature of T. cruzi chromosome ends. We found that 40 telomeric contigs are located on T. cruzi chromosome-sized scaffolds. In addition, we were able to map several telomeric ends to the chromosomal bands separated by pulsed-field gel electrophoresis.The subtelomeric sequence structure varies widely, mainly as a result of large differences in the relative abundance and organization of genes encoding surface proteins (TS and DGF-1), retrotransposon hot spot genes (RHS), retrotransposon elements, RNA-helicase and N-acetyltransferase genes. While the subtelomeric regions are enriched in pseudogenes, they also contain complete gene sequences matching both known and unknown expressed genes, indicating that these regions do not consist of nonfunctional DNA but are instead functional parts of the expressed genome. The size of the subtelomeric regions varies from 5 to 182 kb; the smaller of these regions could have been generated by a recent chromosome breakage and telomere healing event. CONCLUSIONS The lack of synteny in the subtelomeric regions suggests that genes located in these regions are subject to recombination, which increases their variability, even among homologous chromosomes. The presence of typical subtelomeric genes can increase the chance of homologous recombination mechanisms or microhomology-mediated end joining, which may use these regions for the pairing and recombination of free ends.
Collapse
Affiliation(s)
- Roberto R Moraes Barros
- Departamento de Microbiologia, Imunologia e Parasitologia Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
MacGregor P, Szöőr B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 2012; 10:431-8. [PMID: 22543519 PMCID: PMC3834543 DOI: 10.1038/nrmicro2779] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During their life cycle, trypanosomes must overcome conflicting demands to ensure their survival and transmission. First, they must evade immunity without overwhelming the host. Second, they must generate and maintain transmission stages at sufficient levels to allow passage into their tsetse vector. Finally, they must rapidly commit to onward development when they enter the tsetse fly. On the basis of recent quantification and modelling of Trypanosoma brucei infection dynamics, we propose that the interplay between immune evasion and development achieves both infection chronicity and transmissibility. Moreover, we suggest that a novel form of bistable regulation ensures developmental commitment on entry into the tsetse fly midgut.
Collapse
Affiliation(s)
- Paula MacGregor
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
16
|
Characterization of a Trypanosoma brucei Alkb homolog capable of repairing alkylated DNA. Exp Parasitol 2012; 131:92-100. [PMID: 22465611 DOI: 10.1016/j.exppara.2012.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
Abstract
Trypanosoma brucei encodes a protein (denoted TbABH) that is homologous to AlkB of Escherichia coli and AlkB homolog (ABH) proteins in other organisms, raising the possibility that trypanosomes catalyze oxidative repair of alkylation-damaged DNA. TbABH was cloned and expressed in E. coli, and the recombinant protein was purified and characterized. Incubation of anaerobic TbABH with Fe(II) and α-ketoglutarate (αKG) produces a characteristic metal-to-ligand charge-transfer chromophore, confirming its membership in the Fe(II)/αKG dioxygenase superfamily. The protein binds to DNA, with a clear preference for alkylated oligonucleotides according to results derived by electrophoretic mobility shift assays. Finally, the protozoan gene was shown to partially complement E. coli alkB cells when stressed with methylmethanesulfonate; thus confirming assignment of TbABH as a functional AlkB protein in T. brucei.
Collapse
|
17
|
Freitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TAO, Rodrigues TS, Gazzinelli RT, Teixeira SMR, Fujiwara RT, Bartholomeu DC. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 2011; 6:e25914. [PMID: 22039427 PMCID: PMC3198458 DOI: 10.1371/journal.pone.0025914] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/13/2011] [Indexed: 12/20/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a highly debilitating human pathology that affects millions of people in the Americas. The sequencing of this parasite's genome reveals that trans-sialidase/trans-sialidase-like (TcS), a polymorphic protein family known to be involved in several aspects of T. cruzi biology, is the largest T. cruzi gene family, encoding more than 1,400 genes. Despite the fact that four TcS groups are well characterized and only one of the groups contains active trans-sialidases, all members of the family are annotated in the T. cruzi genome database as trans-sialidase. After performing sequence clustering analysis with all TcS complete genes, we identified four additional groups, demonstrating that the TcS family is even more heterogeneous than previously thought. Interestingly, members of distinct TcS groups show distinctive patterns of chromosome localization. Members of the TcSgroupII, which harbor proteins involved in host cell attachment/invasion, are preferentially located in subtelomeric regions, whereas members of the largest and new TcSgroupV have internal chromosomal locations. Real-time RT-PCR confirms the expression of genes derived from new groups and shows that the pattern of expression is not similar within and between groups. We also performed B-cell epitope prediction on the family and constructed a TcS specific peptide array, which was screened with sera from T. cruzi-infected mice. We demonstrated that all seven groups represented in the array are antigenic. A highly reactive peptide occurs in sixty TcS proteins including members of two new groups and may contribute to the known cross-reactivity of T. cruzi epitopes during infection. Taken together, our results contribute to a better understanding of the real complexity of the TcS family and open new avenues for investigating novel roles of this family during T. cruzi infection.
Collapse
Affiliation(s)
- Leandro M. Freitas
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Lopes dos Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Tiago A. O. Mendes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago S. Rodrigues
- Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T. Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
18
|
Identification of Trypanosoma brucei RMI1/BLAP75 homologue and its roles in antigenic variation. PLoS One 2011; 6:e25313. [PMID: 21980422 PMCID: PMC3182221 DOI: 10.1371/journal.pone.0025313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/31/2011] [Indexed: 11/30/2022] Open
Abstract
At any time, each cell of the protozoan parasite Trypanosoma brucei expresses a single species of its major antigenic protein, the variant surface glycoprotein (VSG), from a repertoire of >2,000 VSG genes and pseudogenes. The potential to express different VSGs by transcription and recombination allows the parasite to escape the antibody-mediated host immune response, a mechanism known as antigenic variation. The active VSG is transcribed from a sub-telomeric polycistronic unit called the expression site (ES), whose promoter is 40–60 kb upstream of the VSG. While the mechanisms that initiate recombination remain unclear, the resolution phase of these reactions results in the recombinational replacement of the expressed VSG with a donor from one of three distinct chromosomal locations; sub-telomeric loci on the 11 essential chromosomes, on minichromosomes, or at telomere-distal loci. Depending on the type of recombinational replacement (single or double crossover, duplicative gene conversion, etc), several DNA-repair pathways have been thought to play a role. Here we show that VSG recombination relies on at least two distinct DNA-repair pathways, one of which requires RMI1-TOPO3α to suppress recombination and one that is dependent on RAD51 and RMI1. These genetic interactions suggest that both RAD51-dependent and RAD51-independent recombination pathways operate in antigenic switching and that trypanosomes differentially utilize recombination factors for VSG switching, depending on currently unknown parameters within the ES.
Collapse
|
19
|
Dobson R, Stockdale C, Lapsley C, Wilkes J, McCulloch R. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation. Mol Microbiol 2011; 81:434-56. [PMID: 21615552 PMCID: PMC3170485 DOI: 10.1111/j.1365-2958.2011.07703.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue.
Collapse
Affiliation(s)
- Rachel Dobson
- College of Medical Veterinary and Life Sciences, University of Glasgow, Institute of Infection, Immunity and Inflammation, The Wellcome Trust Centre for Molecular Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G128TA, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
SUMMARYSingle-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.
Collapse
|
21
|
Horn D, McCulloch R. Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 2010; 13:700-5. [PMID: 20884281 PMCID: PMC3117991 DOI: 10.1016/j.mib.2010.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/30/2010] [Indexed: 11/02/2022]
Abstract
African trypanosomes escape the host adaptive immune response by switching their dense protective coat of Variant Surface Glycoprotein (VSG). Each cell expresses only one VSG gene at a time from a telomeric expression site (ES). The 'pre-genomic' era saw the identification of the range of pathways involving VSG recombination in the context of mono-telomeric VSG transcription. A prominent feature of the early post-genomic era is the description of the molecular machineries involved in these processes. We describe the factors and sequences recently linked to mutually exclusive transcription and VSG recombination, and how these act in the control of the key virulence mechanism of antigenic variation.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | |
Collapse
|
22
|
Narayanan MS, Kushwaha M, Ersfeld K, Fullbrook A, Stanne TM, Rudenko G. NLP is a novel transcription regulator involved in VSG expression site control in Trypanosoma brucei. Nucleic Acids Res 2010; 39:2018-31. [PMID: 21076155 PMCID: PMC3064810 DOI: 10.1093/nar/gkq950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
23
|
Glover L, Jun J, Horn D. Microhomology-mediated deletion and gene conversion in African trypanosomes. Nucleic Acids Res 2010; 39:1372-80. [PMID: 20965968 PMCID: PMC3045614 DOI: 10.1093/nar/gkq981] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antigenic variation in African trypanosomes is induced by DNA double-strand breaks (DSBs). In these protozoan parasites, DSB repair (DSBR) is dominated by homologous recombination (HR) and microhomology-mediated end joining (MMEJ), while non-homologous end joining (NHEJ) has not been reported. To facilitate the analysis of chromosomal end-joining, we established a system whereby inter-allelic repair by HR is lethal due to loss of an essential gene. Analysis of intrachromosomal end joining in individual DSBR survivors exclusively revealed MMEJ-based deletions but no NHEJ. A survey of microhomologies typically revealed sequences of between 5 and 20 bp in length with several mismatches tolerated in longer stretches. Mean deletions were of 54 bp on the side closest to the break and 284 bp in total. Break proximity, microhomology length and GC-content all favored repair and the pattern of MMEJ described above was similar at several different loci across the genome. We also identified interchromosomal gene conversion involving HR and MMEJ at different ends of a duplicated sequence. While MMEJ-based deletions were RAD51-independent, one-sided MMEJ was RAD51 dependent. Thus, we describe the features of MMEJ in Trypanosoma brucei, which is analogous to micro single-strand annealing; and RAD51 dependent, one-sided MMEJ. We discuss the contribution of MMEJ pathways to genome evolution, subtelomere recombination and antigenic variation.
Collapse
Affiliation(s)
- Lucy Glover
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | |
Collapse
|
24
|
TOPO3alpha influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog 2010; 6:e1000992. [PMID: 20628569 PMCID: PMC2900300 DOI: 10.1371/journal.ppat.1000992] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 06/08/2010] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination (HR) mediates one of the major mechanisms of trypanosome antigenic variation by placing a different variant surface glycoprotein (VSG) gene under the control of the active expression site (ES). It is believed that the majority of VSG switching events occur by duplicative gene conversion, but only a few DNA repair genes that are central to HR have been assigned a role in this process. Gene conversion events that are associated with crossover are rarely seen in VSG switching, similar to mitotic HR. In other organisms, TOPO3alpha (Top3 in yeasts), a type IA topoisomerase, is part of a complex that is involved in the suppression of crossovers. We therefore asked whether a related mechanism might suppress VSG recombination. Using a set of reliable recombination and switching assays that could score individual switching mechanisms, we discovered that TOPO3alpha function is conserved in Trypanosoma brucei and that TOPO3alpha plays a critical role in antigenic switching. Switching frequency increased 10-40-fold in the absence of TOPO3alpha and this hyper-switching phenotype required RAD51. Moreover, the preference of 70-bp repeats for VSG recombination was mitigated, while homology regions elsewhere in ES were highly favored, in the absence of TOPO3alpha. Our data suggest that TOPO3alpha may remove undesirable recombination intermediates constantly arising between active and silent ESs, thereby balancing ES integrity against VSG recombination.
Collapse
|
25
|
Bloodstream form trypanosome plasma membrane proteins: antigenic variation and invariant antigens. Parasitology 2010; 137:2029-39. [DOI: 10.1017/s0031182009992034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYTrypanosoma bruceiis exposed to the adaptive immune system and complement in the blood of its mammalian hosts. The aim of this review is to analyse the role and regulation of the proteins present on the external face of the plasma membrane in the long-term persistence of an infection and transmission. In particular, the following are addressed: (1) antigenic variation of the variant surface glycoprotein (VSG), (2) the formation of an effective VSG barrier shielding invariant surface proteins, and (3) the rapid uptake of VSG antibody complexes combined with degradation of the immunoglobulin and recycling of the VSG.
Collapse
|
26
|
Smith TK, Vasileva N, Gluenz E, Terry S, Portman N, Kramer S, Carrington M, Michaeli S, Gull K, Rudenko G. Blocking variant surface glycoprotein synthesis in Trypanosoma brucei triggers a general arrest in translation initiation. PLoS One 2009; 4:e7532. [PMID: 19855834 PMCID: PMC2762041 DOI: 10.1371/journal.pone.0007532] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/22/2009] [Indexed: 01/22/2023] Open
Abstract
Background The African trypanosome Trypanosoma brucei is covered with a dense layer of Variant Surface Glycoprotein (VSG), which protects it from lysis by host complement via the alternative pathway in the mammalian bloodstream. Blocking VSG synthesis by the induction of VSG RNAi triggers an unusually precise precytokinesis cell-cycle arrest. Methodology/Principal Findings Here, we characterise the cells arrested after the induction of VSG RNAi. We were able to rescue the VSG221 RNAi induced cell-cycle arrest through expression of a second different VSG (VSG117 which is not recognised by the VSG221 RNAi) from the VSG221 expression site. Metabolic labeling of the arrested cells showed that blocking VSG synthesis triggered a global translation arrest, with total protein synthesis reduced to less than 1–4% normal levels within 24 hours of induction of VSG RNAi. Analysis by electron microscopy showed that the translation arrest was coupled with rapid disassociation of ribosomes from the endoplasmic reticulum. Polysome analysis showed a drastic decrease in polysomes in the arrested cells. No major changes were found in levels of transcription, total RNA transcript levels or global amino acid concentrations in the arrested cells. Conclusions The cell-cycle arrest phenotype triggered by the induction of VSG221 RNAi is not caused by siRNA toxicity, as this arrest can be alleviated if a second different VSG is inserted downstream of the active VSG221 expression site promoter. Analysis of polysomes in the stalled cells showed that the translation arrest is mediated at the level of translation initiation rather than elongation. The cell-cycle arrest induced in the presence of a VSG synthesis block is reversible, suggesting that VSG synthesis and/or trafficking to the cell surface could be monitored during the cell-cycle as part of a specific cell-cycle checkpoint.
Collapse
Affiliation(s)
- Terry K. Smith
- Centre for Biomolecular Sciences, University of St. Andrews, Fife, Scotland, United Kingdom
| | - Nadina Vasileva
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Stephen Terry
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susanne Kramer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gloria Rudenko
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Abstract
Immune evasion in the parasitic African trypanosome relies upon the silencing of variant surface glycoprotein genes that are found adjacent to telomeres. Work on the RAP1 telomere-binding protein now indicates that silencing spreads over a sufficient distance to repress these genes.
Collapse
|
28
|
Sevova ES, Bangs JD. Streamlined architecture and glycosylphosphatidylinositol-dependent trafficking in the early secretory pathway of African trypanosomes. Mol Biol Cell 2009; 20:4739-50. [PMID: 19759175 DOI: 10.1091/mbc.e09-07-0542] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The variant surface glycoprotein (VSG) of bloodstream form Trypanosoma brucei (Tb) is a critical virulence factor. The VSG glycosylphosphatidylinositol (GPI)-anchor strongly influences passage through the early secretory pathway. Using a dominant-negative mutation of TbSar1, we show that endoplasmic reticulum (ER) exit of secretory cargo in trypanosomes is dependent on the coat protein complex II (COPII) machinery. Trypanosomes have two orthologues each of the Sec23 and Sec24 COPII subunits, which form specific heterodimeric pairs: TbSec23.1/TbSec24.2 and TbSec23.2/TbSec24.1. RNA interference silencing of each subunit is lethal but has minimal effects on trafficking of soluble and transmembrane proteins. However, silencing of the TbSec23.2/TbSec24.1 pair selectively impairs ER exit of GPI-anchored cargo. All four subunits colocalize to one or two ER exit sites (ERES), in close alignment with the postnuclear flagellar adherence zone (FAZ), and closely juxtaposed to corresponding Golgi clusters. These ERES are nucleated on the FAZ-associated ER. The Golgi matrix protein Tb Golgi reassembly stacking protein defines a region between the ERES and Golgi, suggesting a possible structural role in the ERES:Golgi junction. Our results confirm a selective mechanism for GPI-anchored cargo loading into COPII vesicles and a remarkable degree of streamlining in the early secretory pathway. This unusual architecture probably maximizes efficiency of VSG transport and fidelity in organellar segregation during cytokinesis.
Collapse
Affiliation(s)
- Elitza S Sevova
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
29
|
Alsford S, Horn D, Glover L. DNA breaks as triggers for antigenic variation in African trypanosomes. Genome Biol 2009; 10:223. [PMID: 19519956 PMCID: PMC2718488 DOI: 10.1186/gb-2009-10-6-223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Double-strand breaks initiate coat protein switching in African trypanosomes. The DNA repair machinery has been co-opted for antigenic variation in African trypanosomes. New work directly demonstrates that a double-strand break initiates a switch in the expressed variant surface coat.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E7HT, UK
| | | | | |
Collapse
|
30
|
Yang X, Figueiredo LM, Espinal A, Okubo E, Li B. RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 2009; 137:99-109. [PMID: 19345190 PMCID: PMC2673096 DOI: 10.1016/j.cell.2009.01.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/10/2008] [Accepted: 01/14/2009] [Indexed: 01/08/2023]
Abstract
Trypanosoma brucei expresses variant surface glycoprotein (VSG) genes in a strictly monoallelic fashion in its mammalian hosts, but it is unclear how this important virulence mechanism is enforced. Telomere position effect, an epigenetic phenomenon, has been proposed to play a critical role in VSG regulation, yet no telomeric protein has been identified whose disruption led to VSG derepression. We now identify tbRAP1 as an intrinsic component of the T. brucei telomere complex and a major regulator for silencing VSG expression sites (ESs). Knockdown of tbRAP1 led to derepression of all VSGs in silent ESs, but not VSGs located elsewhere, and resulted in stronger derepression of genes located within 10 kb from telomeres than genes located further upstream. This graduated silencing pattern suggests that telomere integrity plays a key role in tbRAP1-dependent silencing and VSG regulation.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Cleveland State University, Center for Gene Regulation in Health and Diseases, Department of Biological, Geological, and Environmental Sciences, Cleveland, OH 44115, USA
- Xi’an Jiaotong University College of Medicine, First Affiliated Hospital, Department of OB/GYN, Xi’an 710061, Shanxi Province, China
| | - Luisa M. Figueiredo
- The Rockefeller University, Laboratory of Molecular Parasitology, New York, NY 10065, USA
| | - Amin Espinal
- The Rockefeller University, Laboratory of Molecular Parasitology, New York, NY 10065, USA
| | - Eiji Okubo
- The Rockefeller University, Laboratory of Molecular Parasitology, New York, NY 10065, USA
| | - Bibo Li
- Cleveland State University, Center for Gene Regulation in Health and Diseases, Department of Biological, Geological, and Environmental Sciences, Cleveland, OH 44115, USA
- The Rockefeller University, Laboratory of Molecular Parasitology, New York, NY 10065, USA
| |
Collapse
|
31
|
Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I, Heath P, Kartvelishvili M, Mungall K, Harris D, Hauser H, Sanders M, Saunders D, Seeger K, Sharp S, Taylor JE, Walker D, White B, Young R, Cross GAM, Rudenko G, Barry JD, Louis EJ, Berriman M. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 2008; 3:e3527. [PMID: 18953401 PMCID: PMC2567434 DOI: 10.1371/journal.pone.0003527] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/23/2008] [Indexed: 11/27/2022] Open
Abstract
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.
Collapse
|
32
|
Simmons JM, Müller TA, Hausinger RP. Fe(II)/alpha-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Dalton Trans 2008:5132-42. [PMID: 18813363 PMCID: PMC2907160 DOI: 10.1039/b803512a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe(II)/alpha-ketoglutarate-dependent hydroxylases uniformly possess a double-stranded beta-helix fold with two conserved histidines and one carboxylate coordinating their mononuclear ferrous ions. Oxidative decomposition of the alpha-keto acid is proposed to generate a ferryl-oxo intermediate capable of hydroxylating unactivated carbon atoms in a myriad of substrates. This Perspective focuses on a subgroup of these enzymes that are involved in pyrimidine salvage, purine decomposition, nucleoside and nucleotide hydroxylation, DNA/RNA repair, and chromatin modification. The varied reaction schemes are presented, and selected structural and kinetic information is summarized.
Collapse
Affiliation(s)
- Jana M. Simmons
- Department of Biochemistry and Molecular Biology, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| | - Tina A. Müller
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
- Quantitative Biology Program, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| |
Collapse
|
33
|
Young R, Taylor JE, Kurioka A, Becker M, Louis EJ, Rudenko G. Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 2008; 9:385. [PMID: 18700033 PMCID: PMC2533676 DOI: 10.1186/1471-2164-9-385] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 08/12/2008] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African trypanosomes (including Trypanosoma brucei) are unicellular parasites which multiply in the mammalian bloodstream. T. brucei has about twenty telomeric bloodstream form Variant Surface Glycoprotein (VSG) expression sites (BESs), of which one is expressed at a time in a mutually exclusive fashion. BESs are polycistronic transcription units, containing a variety of families of expression site associated genes (ESAGs) in addition to the telomeric VSG. These polymorphic ESAG families are thought to play a role in parasite-host adaptation, and it has been proposed that ESAG diversity might be related to host range. Analysis of the genetic diversity of these telomeric gene families has been confounded by the underrepresentation of telomeric sequences in standard libraries. We have previously developed a method to selectively isolate sets of trypanosome BES containing telomeres using Transformation associated recombination (TAR) cloning in yeast. RESULTS Here we describe the isolation of repertoires of BES containing telomeres from three trypanosome subspecies: Trypanosoma brucei gambiense DAL 972 (causative agent of West-African trypanosomiasis), T. b. brucei EATRO 2340 (a nonhuman infective strain) and T. equiperdum STIB 818 (which causes a sexually transmitted disease in equines). We have sequenced and analysed the genetic diversity at four BES loci (BES promoter region, ESAG6, ESAG5 and ESAG2) from these three trypanosome BES repertoires. CONCLUSION With the exception of ESAG2, the BES sequence repertoires derived from T. b. gambiense are both less diverse than and nearly reciprocally monophyletic relative to those from T. b. brucei and T. equiperdum. Furthermore, although we find evidence for adaptive evolution in all three ESAG repertoires in T. b. brucei and T. equiperdum, only ESAG2 appears to be under diversifying selection in T. b. gambiense. This low level of variation in the T. b. gambiense BES sequence repertoires is consistent both with the relatively narrow host range of this subspecies and its apparent long-term clonality. However, our data does not show a clear correlation between size of trypanosome host range and either number of BESs or extent of ESAG genetic diversity.
Collapse
Affiliation(s)
- Rosanna Young
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Jesse E Taylor
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
| | - Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Marion Becker
- Institute of Genetics, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Edward J Louis
- Institute of Genetics, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Gloria Rudenko
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| |
Collapse
|
34
|
Koumandou VL, Natesan SKA, Sergeenko T, Field MC. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 2008; 9:298. [PMID: 18573209 PMCID: PMC2443814 DOI: 10.1186/1471-2164-9-298] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosomatids utilise polycistronic transcription for production of the vast majority of protein-coding mRNAs, which operates in the absence of gene-specific promoters. Resolution of nascent transcripts by polyadenylation and trans-splicing, together with specific rates of mRNA turnover, serve to generate steady state transcript levels that can differ in abundance across several orders of magnitude and can be developmentally regulated. We used a targeted oligonucleotide microarray, representing the strongly developmentally-regulated T. brucei membrane trafficking system and approximately 10% of the Trypanosoma brucei genome, to investigate both between-stage, or differentiation-dependent, transcriptome changes and within-stage flexibility in response to various challenges. RESULTS 6% of the gene cohort are developmentally regulated, including several small GTPases, SNAREs, vesicle coat factors and protein kinases both consistent with and extending previous data. Therefore substantial differentiation-dependent remodeling of the trypanosome transcriptome is associated with membrane transport. Both the microarray and qRT-PCR were then used to analyse transcriptome changes resulting from specific gene over-expression, knockdown, altered culture conditions and chemical stress. Firstly, manipulation of Rab5 expression results in co-ordinate changes to clathrin protein expression levels and endocytotic activity, but no detectable changes to steady-state mRNA levels, which indicates that the effect is mediated post-transcriptionally. Secondly, knockdown of clathrin or the variant surface glycoprotein failed to perturb transcription. Thirdly, exposure to dithiothreitol or tunicamycin revealed no evidence for a classical unfolded protein response, mediated in higher eukaryotes by transcriptional changes. Finally, altered serum levels invoked little transcriptome alteration beyond changes to expression of ESAG6/7, the transferrin receptor. CONCLUSION While trypanosomes regulate mRNA abundance to effect the major changes accompanying differentiation, a given differentiated state appears transcriptionally inflexible. The implications of the absence of a transcriptome response in trypanosomes for both virulence and models of life cycle progression are discussed.
Collapse
Affiliation(s)
- V Lila Koumandou
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | |
Collapse
|
35
|
Hartley CL, McCulloch R. Trypanosoma brucei BRCA2 acts in antigenic variation and has undergone a recent expansion in BRC repeat number that is important during homologous recombination. Mol Microbiol 2008; 68:1237-51. [PMID: 18430140 PMCID: PMC2408642 DOI: 10.1111/j.1365-2958.2008.06230.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2008] [Indexed: 12/12/2022]
Abstract
Antigenic variation in Trypanosoma brucei has selected for the evolution of a massive archive of silent Variant Surface Glycoprotein (VSG) genes, which are activated by recombination into specialized expression sites. Such VSG switching can occur at rates substantially higher than background mutation and is dependent on homologous recombination, a core DNA repair reaction. A key regulator of homologous recombination is BRCA2, a protein that binds RAD51, the enzyme responsible for DNA strand exchange. Here, we show that T. brucei BRCA2 has undergone a recent, striking expansion in the number of BRC repeats, a sequence element that mediates interaction with RAD51. T. brucei BRCA2 mutants are shown to be significantly impaired in antigenic variation and display genome instability. By generating BRCA2 variants with reduced BRC repeat numbers, we show that the BRC expansion is crucial in determining the efficiency of T. brucei homologous recombination and RAD51 localization. Remarkably, however, this appears not to be a major determinant of the activation of at least some VSG genes.
Collapse
Affiliation(s)
- Claire L Hartley
- The Wellcome Centre for Molecular Parasitology and Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology and Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
36
|
Scahill MD, Pastar I, Cross GAM. CRE recombinase-based positive-negative selection systems for genetic manipulation in Trypanosoma brucei. Mol Biochem Parasitol 2008; 157:73-82. [PMID: 18006158 PMCID: PMC2211722 DOI: 10.1016/j.molbiopara.2007.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 11/24/2022]
Abstract
The limited repertoire of drug-resistance markers imposes a serious obstacle to genetic manipulation of Trypanosoma brucei. Here we describe experiments with a fusion protein that allows positive selection for genome integration followed by CRE recombinase-mediated excision of the marker cassette that can be selected by ganciclovir, although the excision event is so efficient that selection is not strictly necessary. We describe two variants of the tetracycline-inducible pLEW100-based CRE-expression vector that reduced its toxicity when stably integrated into the genome, and we demonstrate that transient transfection of circular pLEW100-CRE is highly efficient at catalyzing marker excision. We used this approach to delete the last two enzymes of the pyrimidine synthesis pathway, creating a cell line that is resistant to fluoroorotic acid, which would allow the same enzymes (PYR6-5) to be used as an alternative negative selectable marker.
Collapse
Affiliation(s)
- Michael D. Scahill
- Laboratories of Molecular Parasitology, 1230 York Avenue, New York, NY 10065, USA
| | - Irena Pastar
- Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - George A. M. Cross
- Laboratories of Molecular Parasitology, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
37
|
Dacks JB, Walker G, Field MC. Implications of the new eukaryotic systematics for parasitologists. Parasitol Int 2007; 57:97-104. [PMID: 18180199 DOI: 10.1016/j.parint.2007.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/15/2007] [Accepted: 11/16/2007] [Indexed: 11/24/2022]
Abstract
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes "progressing" towards a "crown radiation" of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
38
|
Shwab EK, Keller NP. Regulation of secondary metabolite production in filamentous ascomycetes. ACTA ACUST UNITED AC 2007; 112:225-30. [PMID: 18280128 DOI: 10.1016/j.mycres.2007.08.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/29/2007] [Indexed: 11/18/2022]
Abstract
Fungi are renowned for their ability to produce bioactive small molecules otherwise known as secondary metabolites. These molecules have attracted much attention due to both detrimental (e.g. toxins) and beneficial (e.g. pharmaceuticals) effects on human endeavors. Once the topic only of chemical and biochemical studies, secondary metabolism research has reached a sophisticated level in the realm of genetic regulation. This review covers the latest insights into the processes regulating secondary metabolite production in filamentous fungi.
Collapse
Affiliation(s)
- E Keats Shwab
- Plant Pathology Department, University of Wisconsin-Madison, Russell Laboratories, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
39
|
Navarro M, Peñate X, Landeira D. Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol 2007; 15:263-70. [PMID: 17481901 DOI: 10.1016/j.tim.2007.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/26/2007] [Accepted: 04/16/2007] [Indexed: 11/24/2022]
Abstract
The influence of nuclear architecture on the regulation of developmental gene expression has recently become evident in many organisms ranging from yeast to humans. During interphase, chromosomes and nuclear structures are in constant motion; therefore, correct temporal association is needed to meet the requirements of gene expression. Trypanosoma brucei is an excellent model system in which to analyze nuclear spatial implications in the regulation of gene expression because the two main surface-protein genes (procyclin and VSG) are transcribed by the highly compartmentalized RNA polymerase I and undergo distinct transcriptional activation or downregulation during developmental differentiation. Furthermore, the infective bloodstream form of the parasite undergoes antigenic variation, displaying sequentially different types of VSG by allelic exclusion. Here, we discuss recent advances in understanding the role of chromosomal nuclear positioning in the regulation of gene expression in T. brucei.
Collapse
Affiliation(s)
- Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| | | | | |
Collapse
|
40
|
Barnes RL, McCulloch R. Trypanosoma brucei homologous recombination is dependent on substrate length and homology, though displays a differential dependence on mismatch repair as substrate length decreases. Nucleic Acids Res 2007; 35:3478-93. [PMID: 17478508 PMCID: PMC1904282 DOI: 10.1093/nar/gkm249] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination functions universally in the maintenance of genome stability through the repair of DNA breaks and in ensuring the completion of replication. In some organisms, homologous recombination can perform more specific functions. One example of this is in antigenic variation, a widely conserved mechanism for the evasion of host immunity. Trypanosoma brucei, the causative agent of sleeping sickness in Africa, undergoes antigenic variation by periodic changes in its variant surface glycoprotein (VSG) coat. VSG switches involve the activation of VSG genes, from an enormous silent archive, by recombination into specialized expression sites. These reactions involve homologous recombination, though they are characterized by an unusually high rate of switching and by atypical substrate requirements. Here, we have examined the substrate parameters of T. brucei homologous recombination. We show, first, that the reaction is strictly dependent on substrate length and that it is impeded by base mismatches, features shared by homologous recombination in all organisms characterized. Second, we identify a pathway of homologous recombination that acts preferentially on short substrates and is impeded to a lesser extent by base mismatches and the mismatch repair machinery. Finally, we show that mismatches during T. brucei recombination may be repaired by short-patch mismatch repair.
Collapse
Affiliation(s)
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology,University of Glasgow,Glasgow Biomedical Research Centre,120 University Place,Glasgow,G12 8TA, UK
| |
Collapse
|
41
|
Alsford S, Kawahara T, Isamah C, Horn D. A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol Microbiol 2007; 63:724-36. [PMID: 17214740 DOI: 10.1111/j.1365-2958.2006.05553.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Silent information regulator 2 (Sir2)-related proteins or sirtuins function as NAD(+)-dependent deacetylases or ADP ribosylases that target a range of substrates, thereby influencing chromatin structure and a diverse range of other biological functions. Genes encoding three Sir2-related proteins (SIR2rp1-3) have been identified in the parasitic trypanosomatids, early branching protozoa with no previously reported transcriptional silencing machinery. Here we show that, in the mammalian-infective bloodstream-stage of the African trypanosome, Trypanosoma brucei, SIR2rp1 localizes to the nucleus while SIR2rp2 and SIR2rp3 are both mitochondrial proteins. The nuclear protein, SIR2rp1, controls DNA repair and repression of RNA polymerase I-mediated expression immediately adjacent to telomeres. Antigenic variation, however, which involves the silencing and Pol I-mediated transcriptional switching of subtelomeric variant surface glycoprotein genes, continues to operate independent of SIR2rp1.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
42
|
Glover L, Alsford S, Beattie C, Horn D. Deletion of a trypanosome telomere leads to loss of silencing and progressive loss of terminal DNA in the absence of cell cycle arrest. Nucleic Acids Res 2007; 35:872-80. [PMID: 17251198 PMCID: PMC1807955 DOI: 10.1093/nar/gkl1100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eukaryotic chromosomes are capped with telomeres which allow complete chromosome replication and prevent the ends from being recognized by the repair machinery. The African trypanosome, Trypanosoma brucei, is a protozoan parasite where antigenic variation requires reversible silencing of a repository of telomere-adjacent variant surface glycoprotein (VSG) genes. We have investigated the role of the telomere adjacent to a repressed VSG. In cells lacking telomerase, the rate of telomere-repeat loss appeared to be inversely proportional to telomere length. We therefore constructed strains in which a single telomere could be immediately removed by conditional I-SceI meganuclease cleavage. Following telomere deletion, cells maintain and segregate the damaged chromosome without repairing it. These cells continue to proliferate at the normal rate but progressively lose terminal DNA at the broken end. Although sirtuin-dependent repression is lost along with the telomere, VSG-silencing is preserved. The results provide direct evidence for telomere-dependent repression but suggest a telomere-independent mode of VSG-silencing. They also indicate the absence of a telomere-loss checkpoint in T. brucei.
Collapse
Affiliation(s)
| | | | | | - David Horn
- *To whom correspondence should be addressed. Tel: (020) 7927 2352; Fax: (020) 7636 8739; E-mail:
| |
Collapse
|
43
|
Forgber M, Basu R, Roychoudhury K, Theinert S, Roy S, Sundar S, Walden P. Mapping the antigenicity of the parasites in Leishmania donovani infection by proteome serology. PLoS One 2006; 1:e40. [PMID: 17183669 PMCID: PMC1762392 DOI: 10.1371/journal.pone.0000040] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/12/2006] [Indexed: 11/21/2022] Open
Abstract
Background Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. Methodology/Principle Findings Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330 different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift in the parasites. Six antigens were identified by mass spectrometry. Conclusions/Significance Proteomics-based dissection of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be instrumental in the development of vaccines and new immune monitoring and diagnostic devices.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antibody Specificity
- Antigens, Protozoan/genetics
- Antigens, Protozoan/isolation & purification
- Blotting, Western
- Child
- Electrophoresis, Gel, Two-Dimensional
- Epitope Mapping
- Female
- Humans
- India
- Leishmania donovani/genetics
- Leishmania donovani/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Male
- Middle Aged
- Molecular Sequence Data
- Proteome
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Young Adult
Collapse
Affiliation(s)
- Michael Forgber
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt UniversityBerlin, Germany
| | - Rajatava Basu
- Department of Immunology, Indian Institute of Chemical BiologyCalcutta, West Bengal, India
| | - Kaushik Roychoudhury
- Department of Immunology, Indian Institute of Chemical BiologyCalcutta, West Bengal, India
| | - Stephan Theinert
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt UniversityBerlin, Germany
| | - Syamal Roy
- Department of Immunology, Indian Institute of Chemical BiologyCalcutta, West Bengal, India
| | - Shyam Sundar
- Kala-Azar Medical Research Center, Banaras Hindu UniversityVaranasi, Uttar Pradesh, India
| | - Peter Walden
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt UniversityBerlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LRO. Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 2006; 134:511-22. [PMID: 17169165 DOI: 10.1017/s0031182006001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/06/2022]
Abstract
Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.
Collapse
Affiliation(s)
- F M Squina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
45
|
Abstract
Telomeres are specialized DNA-protein complexes that stabilize chromosome ends, protecting them from nucleolytic degradation and illegitimate recombination. Telomeres form a heterochromatic structure that can suppress the transcription of adjacent genes. These structures might have additional roles in Trypanosoma brucei, as the major surface antigens of this parasite are expressed during its infectious stages from subtelomeric loci. We propose that the telomere protein complexes of trypanosomes and vertebrates are conserved and offer the hypothesis that growth and breakage of telomeric repeats has an important role in regulating parasite antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Oliver Dreesen
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
46
|
Abstract
Single cells in genetically homogeneous microbial cultures exhibit marked phenotypic individuality, a biological phenomenon that is considered to bolster the fitness of populations. Major phenotypes that are characterized by heterogeneity span the breadth of microbiology, in fields ranging from pathogenicity to ecology. The cell cycle, cell ageing and epigenetic regulation are proven drivers of heterogeneity in several of the best-known phenotypic examples. However, the full contribution of factors such as stochastic gene expression is yet to be realized.
Collapse
Affiliation(s)
- Simon V Avery
- School of Biology, Institute of Genetics, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
47
|
Glover L, Horn D. Repression of polymerase I-mediated gene expression at Trypanosoma brucei telomeres. EMBO Rep 2006; 7:93-9. [PMID: 16311518 PMCID: PMC1369228 DOI: 10.1038/sj.embor.7400575] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/15/2005] [Accepted: 10/10/2005] [Indexed: 02/08/2023] Open
Abstract
The African trypanosome, Trypanosoma brucei, is a flagellated pathogenic protozoan that branched early from the eukaryotic lineage. Unusually, it uses RNA polymerase I (Pol I) for mono-telomeric expression of variant surface glycoprotein (VSG) genes in bloodstream-form cells. Many other subtelomeric VSG genes are reversibly repressed, but no repressive DNA sequence has been identified in any trypanosomatid. Here, we show that artificially seeded de novo telomeres repress Pol I-dependent gene expression in mammalian bloodstream and insect life-cycle stages of T. brucei. In a telomeric VSG expression site, repression spreads further along the chromosome and this effect is specific to the bloodstream stage. We also show that de novo telomere extension is telomerase dependent and that the rate of extension correlates with the expression level of the adjacent gene. Our results show constitutive telomeric repression in T. brucei and indicate that an enhanced, developmental stage-specific repression mechanism controls antigenic variation.
Collapse
Affiliation(s)
- Lucy Glover
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Tel: +44 20 7927 2352; Fax: +44 20 7636 8739; E-mail:
| |
Collapse
|