1
|
Gurung P, Gomes AR, Martins RM, Juranek SA, Alberti P, Mbang-Benet DE, Urbach S, Gazanion E, Guitard V, Paeschke K, Lopez-Rubio JJ. PfGBP2 is a novel G-quadruplex binding protein in Plasmodium falciparum. Cell Microbiol 2021; 23:e13303. [PMID: 33340385 DOI: 10.1111/cmi.13303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
Guanine-quadruplexes (G4s) are non-canonical DNA structures that can regulate key biological processes such as transcription, replication and telomere maintenance in several organisms including eukaryotes, prokaryotes and viruses. Recent reports have identified the presence of G4s within the AT-rich genome of Plasmodium falciparum, the protozoan parasite causing malaria. In Plasmodium, potential G4-forming sequences (G4FS) are enriched in the telomeric and sub-telomeric regions of the genome where they are associated with telomere maintenance and recombination events within virulence genes. However, there is a little understanding about the biological role of G4s and G4-binding proteins. Here, we provide the first snapshot of G4-interactome in P. falciparum using DNA pull-down assay followed by LC-MS/MS. Interestingly, we identified ~24 potential G4-binding proteins (G4-BP) that bind to a stable G4FS (AP2_G4). Furthermore, we characterised the role of G-strand binding protein 2 (PfGBP2), a putative telomere-binding protein in P. falciparum. We validated the interaction of PfGBP2 with G4 in vitro as well as in vivo. PfGBP2 is expressed throughout the intra-erythrocytic developmental cycle and is essential for the parasites in the presence of G4-stabilising ligand, pyridostatin. Gene knockout studies showed the role of PfGBP2 in the expression of var genes. Taken together, this study suggests that PfGBP2 is a bona fide G4-binding protein, which is likely to be involved in the regulation of G4-related functions in these malarial parasites. In addition, this study sheds light on this understudied G4 biology in P. falciparum.
Collapse
Affiliation(s)
- Pratima Gurung
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Ana Rita Gomes
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Rafael M Martins
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Stefan A Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Patrizia Alberti
- Laboratory Genome Structure and Instability, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U 1154, Paris, France
| | - Diane-Ethna Mbang-Benet
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Serge Urbach
- BioCampus Montpellier, CNRS UMR 5203, IGF, Montpellier, France
| | - Elodie Gazanion
- Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Vincent Guitard
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jose-Juan Lopez-Rubio
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Li X, Zhang N, Wu N, Li J, Yang J, Yu Y, Zheng J, Li X, Wang X, Gong P, Zhang X. Identification of GdRFC1 as a novel regulator of telomerase in Giardia duodenalis. Parasitol Res 2020; 119:1035-1041. [PMID: 32072328 DOI: 10.1007/s00436-020-06610-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022]
Abstract
Telomerase plays a crucial role in ageing and tumourigenesis. However, the regulatory network of its activity is complicated and not fully understood. In the present study, a yeast two-hybrid screen identified a homologue of human replication factor C subunit 1 (RFC1) as a novel interacting protein of Giardia duodenalis GdTRBD (Giardia duodenalis telomerase ribonucleoprotein complex RNA binding domain GdTRBD). This interaction was further verified via GST pull-down in vitro and co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) in vivo. We also found that GdRFC1 (Giardia duodenalis replication factor C subunit 1) only interacted with GdTRBD in one nucleus in Giardia duodenalis via a proximity ligation assay (PLA). We reasoned that the two nuclei might have significant heterogeneity in their functional activities during the trophozoite stage and that the two molecules might be involved in other unidentified functions in addition to telomerase activity. In addition, knockdown of GdRFC1 decreased telomerase activity. Collectively, our results indicate that GdRFC1 is a novel binding partner and positive regulator of telomerase in Giardia duodenalis.
Collapse
Affiliation(s)
- Xianhe Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- The First Bethune Hospital, Jilin University, Changchun, 130021, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Ju Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Yanhui Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jingtong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Dong Y, Liu S, Deng Y, Xu Y, Chen M, Liu Y, Xue J. Genetic polymorphism of histidine rich protein 2 in Plasmodium falciparum isolates from different infection sources in Yunnan Province, China. Malar J 2019; 18:446. [PMID: 31888663 PMCID: PMC6937805 DOI: 10.1186/s12936-019-3084-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/21/2019] [Indexed: 11/22/2022] Open
Abstract
Background Failed diagnoses of some falciparum malaria cases by RDTs are constantly reported in recent years. Plasmodium falciparum histidine-rich protein 2 (pfhpr2) gene deficiency has been found to be the major reason of RDTs failure in many countries. This article analysed the deletion of pfhpr2 gene of falciparum malaria cases isolated in Yunnan Province, China. Methods Blood samples from falciparum malaria cases diagnosed in Yunnan Province were collected. Plasmodium genomic DNA was extracted and the pfhrp2 gene exon2 region was amplified via nested PCR. The haplotype of the DNA sequence, the nucleic acid diversity index (PI) and expected heterozygosity (He) were analyzed. Count PfHRP2 amino acid peptide sequence repeat and its times, and predict the properties of PfHRP2 peptide chain reaction to RDTs testing. Results A total of 306 blood samples were collected, 84.9% (259/306) from which pfhrp2 PCR amplification products (gene exon2) were obtained, while the remaining 47 samples were false amplification. The length of the 250 DNA sequences ranged from 345 - 927 bp, with 151 haplotypes, with PI and He values of 0.169 and 0.983, respectively. The length of the PfHRP2 peptide chain translated from 250 DNA sequences ranged from 115 to 309 aa. All peptide chains had more than an amino acid codon deletion. All 250 PfHRP2 strands ended with a type 12 amino acid repeat, 98.0% (245/250) started with a type 1 repetition and 2.0% (5/250) with a type 2 repetition. The detection rate for type 2 duplicates was 100% (250/250). Prediction of RDT sensitivity of PfHRP2 peptide chains based on type 2 and type 7 repeats showed that 9.60% (24/250), 50.0% (125/250), 13.20% (33/250) and 27.20.5% (68/250) of the 250 peptide chains were very sensitive, sensitive, borderline and non-sensitive, respectively. Conclusion The diversified polymorphism of the pfhrp2 gene deletion from different infection sources in the Yunnan province are extremely complex. The cause of the failure of pfhrp2 exon2 amplification is still to be investigated. The results of this study appeal to Yunnan Province for a timely evaluation of the effectiveness and applicability of RDTs in the diagnosis of malaria.
Collapse
Affiliation(s)
- Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Pu'er, 665000, China.
| | - Shuping Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Pu'er, 665000, China.,School of Basic Medical Sciences, Dali University, Dali, 667000, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Pu'er, 665000, China
| | - Jingpo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| |
Collapse
|
4
|
Cerón-Romero MA, Nwaka E, Owoade Z, Katz LA. PhyloChromoMap, a Tool for Mapping Phylogenomic History along Chromosomes, Reveals the Dynamic Nature of Karyotype Evolution in Plasmodium falciparum. Genome Biol Evol 2018; 10:553-561. [PMID: 29365145 PMCID: PMC5800058 DOI: 10.1093/gbe/evy017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
The genome of Plasmodium falciparum, the causative agent of malaria in Africa, has been extensively studied since it was first fully sequenced in 2002. However, many open questions remain, including understanding the chromosomal context of molecular evolutionary changes (e.g., relationship between chromosome map and phylogenetic conservation, patterns of gene duplication, and patterns of selection). Here, we present PhyloChromoMap, a method that generates a phylogenomic map of chromosomes from a custom-built bioinformatics pipeline. Using P. falciparum 3D7 as a model, we analyze 2,116 genes with homologs in up to 941 diverse eukaryotic, bacterial and archaeal lineages. We estimate the level of conservation along chromosomes based on conservation across clades, and identify “young” regions (i.e., those with recent or fast evolving genes) that are enriched in subtelomeric regions as compared with internal regions. We also demonstrate that patterns of molecular evolution for paralogous genes differ significantly depending on their location as younger paralogs tend to be found in subtelomeric regions whereas older paralogs are enriched in internal regions. Combining these observations with analyses of synteny, we demonstrate that subtelomeric regions are actively shuffled among chromosome ends, which is consistent with the hypothesis that these regions are prone to ectopic recombination. We also assess patterns of selection by comparing dN/dS ratios of gene family members in subtelomeric versus internal regions, and we include the important antigenic gene family var. These analyses illustrate the highly dynamic nature of the karyotype of P. falciparum, and provide a method for exploring genome dynamics in other lineages.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Esther Nwaka
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Zuliat Owoade
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
5
|
Anas M, Sharma R, Dhamodharan V, Pradeepkumar PI, Manhas A, Srivastava K, Ahmed S, Kumar N. Investigating Pharmacological Targeting of G-Quadruplexes in the Human Malaria Parasite. Biochemistry 2017; 56:6691-6699. [DOI: 10.1021/acs.biochem.7b00964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Anas
- Parasitology
Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Richa Sharma
- Parasitology
Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - V. Dhamodharan
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - P. I. Pradeepkumar
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Ashan Manhas
- Parasitology
Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Kumkum Srivastava
- Parasitology
Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Shakil Ahmed
- Molecular
and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Niti Kumar
- Parasitology
Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| |
Collapse
|
6
|
Abstract
The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called “telomere healing,” and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric regions of the genome that harbor the multicopy gene families important for virulence and the maintenance of infection. We show that parasites utilize two competing molecular mechanisms to repair double-strand breaks, homologous recombination and de novo telomere addition, with the pathway used being determined by the surrounding DNA sequence. In combination, these two pathways balance the need to maintain genome stability with the selective advantage of generating antigenic diversity.
Collapse
|
7
|
Teixeira MT. Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening. Front Oncol 2013; 3:101. [PMID: 23638436 PMCID: PMC3636481 DOI: 10.3389/fonc.2013.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
In many somatic human tissues, telomeres shorten progressively because of the DNA-end replication problem. Consequently, cells cease to proliferate and are maintained in a metabolically viable state called replicative senescence. These cells are characterized by an activation of DNA damage checkpoints stemming from eroded telomeres, which are bypassed in many cancer cells. Hence, replicative senescence has been considered one of the most potent tumor suppressor pathways. However, the mechanism through which short telomeres trigger this cellular response is far from being understood. When telomerase is removed experimentally in Saccharomyces cerevisiae, telomere shortening also results in a gradual arrest of population growth, suggesting that replicative senescence also occurs in this unicellular eukaryote. In this review, we present the key steps that have contributed to the understanding of the mechanisms underlying the establishment of replicative senescence in budding yeast. As in mammals, signals stemming from short telomeres activate the DNA damage checkpoints, suggesting that the early cellular response to the shortest telomere(s) is conserved in evolution. Yet closer analysis reveals a complex picture in which the apparent single checkpoint response may result from a variety of telomeric alterations expressed in the absence of telomerase. Accordingly, the DNA replication of eroding telomeres appears as a critical challenge for senescing budding yeast cells and the easy manipulation of S. cerevisiae is providing insights into the way short telomeres are integrated into their chromatin and nuclear environments. Finally, the loss of telomerase in budding yeast triggers a more general metabolic alteration that remains largely unexplored. Thus, telomerase-deficient S. cerevisiae cells may have more common points than anticipated with somatic cells, in which telomerase depletion is naturally programed, thus potentially inspiring investigations in mammalian cells.
Collapse
Affiliation(s)
- M Teresa Teixeira
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique Paris, France
| |
Collapse
|
8
|
Hernández-Rivas R, Herrera-Solorio AM, Sierra-Miranda M, Delgadillo DM, Vargas M. Impact of chromosome ends on the biology and virulence of Plasmodium falciparum. Mol Biochem Parasitol 2013; 187:121-8. [PMID: 23354131 DOI: 10.1016/j.molbiopara.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/15/2022]
Abstract
In recent years, many studies have focused on heterochromatin located at chromosome ends, which plays an important role in regulating gene expression in many organisms ranging from yeast to humans. Similarly, in the protozoan Plasmodium falciparum, which is the most virulent human malaria parasite, the heterochromatin present in telomeres and subtelomeric regions exerts a silencing effect on the virulence gene families located therein. Studies addressing P. falciparum chromosome ends have demonstrated that these regions participate in other functions, such as the formation of the T-loop structure, the replication of telomeric regions, the regulation of telomere length and the formation of telomeric heterochromatin. In addition, telomeres are involved in anchoring chromosome ends to the nuclear periphery, thereby playing an important role in nuclear architecture and gene expression regulation. Here, we review the current understanding of chromosome ends, the proteins that bind to these regions and their impact on the biology and virulence of P. falciparum.
Collapse
Affiliation(s)
- Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional (IPN), Apartado postal 14-740, 07360 México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
9
|
Zheng W. Sirtuins as emerging anti-parasitic targets. Eur J Med Chem 2013; 59:132-40. [DOI: 10.1016/j.ejmech.2012.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/16/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
10
|
Moraes Barros RR, Marini MM, Antônio CR, Cortez DR, Miyake AM, Lima FM, Ruiz JC, Bartholomeu DC, Chiurillo MA, Ramirez JL, da Silveira JF. Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi. BMC Genomics 2012; 13:229. [PMID: 22681854 PMCID: PMC3418195 DOI: 10.1186/1471-2164-13-229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/08/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The subtelomeres of many protozoa are highly enriched in genes with roles in niche adaptation. T. cruzi trypomastigotes express surface proteins from Trans-Sialidase (TS) and Dispersed Gene Family-1 (DGF-1) superfamilies which are implicated in host cell invasion. Single populations of T. cruzi may express different antigenic forms of TSs. Analysis of TS genes located at the telomeres suggests that chromosome ends could have been the sites where new TS variants were generated. The aim of this study is to characterize telomeric and subtelomeric regions of T. cruzi available in TriTrypDB and connect the sequences of telomeres to T. cruzi working draft sequence. RESULTS We first identified contigs carrying the telomeric repeat (TTAGGG). Of 49 contigs identified, 45 have telomeric repeats at one end, whereas in four contigs the repeats are located internally. All contigs display a conserved telomeric junction sequence adjacent to the hexamer repeats which represents a signature of T. cruzi chromosome ends. We found that 40 telomeric contigs are located on T. cruzi chromosome-sized scaffolds. In addition, we were able to map several telomeric ends to the chromosomal bands separated by pulsed-field gel electrophoresis.The subtelomeric sequence structure varies widely, mainly as a result of large differences in the relative abundance and organization of genes encoding surface proteins (TS and DGF-1), retrotransposon hot spot genes (RHS), retrotransposon elements, RNA-helicase and N-acetyltransferase genes. While the subtelomeric regions are enriched in pseudogenes, they also contain complete gene sequences matching both known and unknown expressed genes, indicating that these regions do not consist of nonfunctional DNA but are instead functional parts of the expressed genome. The size of the subtelomeric regions varies from 5 to 182 kb; the smaller of these regions could have been generated by a recent chromosome breakage and telomere healing event. CONCLUSIONS The lack of synteny in the subtelomeric regions suggests that genes located in these regions are subject to recombination, which increases their variability, even among homologous chromosomes. The presence of typical subtelomeric genes can increase the chance of homologous recombination mechanisms or microhomology-mediated end joining, which may use these regions for the pairing and recombination of free ends.
Collapse
Affiliation(s)
- Roberto R Moraes Barros
- Departamento de Microbiologia, Imunologia e Parasitologia Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, Volkman S, Duraisingh M, Wirth D, Sabeti PC, Rinn JL. A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 2011; 12:R56. [PMID: 21689454 PMCID: PMC3218844 DOI: 10.1186/gb-2011-12-6-r56] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/27/2011] [Accepted: 06/20/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mounting evidence suggests a major role for epigenetic feedback in Plasmodium falciparum transcriptional regulation. Long non-coding RNAs (lncRNAs) have recently emerged as a new paradigm in epigenetic remodeling. We therefore set out to investigate putative roles for lncRNAs in P. falciparum transcriptional regulation. RESULTS We used a high-resolution DNA tiling microarray to survey transcriptional activity across 22.6% of the P. falciparum strain 3D7 genome. We identified 872 protein-coding genes and 60 putative P. falciparum lncRNAs under developmental regulation during the parasite's pathogenic human blood stage. Further characterization of lncRNA candidates led to the discovery of an intriguing family of lncRNA telomere-associated repetitive element transcripts, termed lncRNA-TARE. We have quantified lncRNA-TARE expression at 15 distinct chromosome ends and mapped putative transcriptional start and termination sites of lncRNA-TARE loci. Remarkably, we observed coordinated and stage-specific expression of lncRNA-TARE on all chromosome ends tested, and two dominant transcripts of approximately 1.5 kb and 3.1 kb transcribed towards the telomere. CONCLUSIONS We have characterized a family of 22 telomere-associated lncRNAs in P. falciparum. Homologous lncRNA-TARE loci are coordinately expressed after parasite DNA replication, and are poised to play an important role in P. falciparum telomere maintenance, virulence gene regulation, and potentially other processes of parasite chromosome end biology. Further study of lncRNA-TARE and other promising lncRNA candidates may provide mechanistic insight into P. falciparum transcriptional regulation.
Collapse
Affiliation(s)
- Kate M Broadbent
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Daniel Park
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Ashley R Wolf
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Daria Van Tyne
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Jennifer S Sims
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Ulf Ribacke
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Sarah Volkman
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
- School of Nursing and Health Sciences, Simmons College, 300 The Fenway, Boston, MA 02115, USA
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Dyann Wirth
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | - Pardis C Sabeti
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - John L Rinn
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Hirsch BM, Zheng W. Sirtuin mechanism and inhibition: explored with N(ε)-acetyl-lysine analogs. MOLECULAR BIOSYSTEMS 2010; 7:16-28. [PMID: 20842312 DOI: 10.1039/c0mb00033g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Silent information regulator 2 (Sir2) enzymes or sirtuins are a family of intracellular protein deacetylases that can catalyze the β-nicotinamide adenine dinucleotide (β-NAD(+))-dependent deacetylation of N(ε)-acetyl-lysine on protein substrates, with the formation of lysine N(ε)-deacetylated protein species and small molecule products, i.e. nicotinamide and 2'-O-acetyl-ADP-ribose (2'-O-AADPR). These enzymes are evolutionarily conserved among all the three kingdoms of life, with the yeast Sir2 being the founding family member. In humans, seven sirtuins, i.e. SIRT1-7, have been identified. The past a few years have witnessed a tremendous interest in investigating the unique mechanism for the sirtuin-catalyzed deacetylation reaction. We have also seen a lot of research employing different strategies to identify different types of the inhibitors for this enzymatic deacetylation reaction. These inhibitors hold great potential toward a fuller exploration of sirtuin biology and pharmacology as well as toward developing novel therapeutics for metabolic and age-related diseases and cancer. Here we would like to review the significant contributions that the judicious use of a variety of N(ε)-acetyl-lysine analogs has been able to make toward our enhanced mechanistic understanding and capability of pharmacological exploitation of the sirtuin-catalyzed deacetylation reaction.
Collapse
Affiliation(s)
- Brett M Hirsch
- Department of Chemistry, University of Akron, 190 E. Buchtel Commons, Akron, OH 44325, USA
| | | |
Collapse
|
14
|
Koroleva AG, Kirilchik SV, Timoshkin OA. Interspecific variability of telomeric DNA length in some siberian and endemic baikal planarians (Plathelminthes, Tricladida). RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Telomeric heterochromatin in Plasmodium falciparum. J Biomed Biotechnol 2010; 2010:290501. [PMID: 20169127 PMCID: PMC2821646 DOI: 10.1155/2010/290501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/04/2009] [Indexed: 11/17/2022] Open
Abstract
Until very recently, little was known about the chromatin structure of the telomeres and subtelomeric regions in Plasmodium falciparum. In yeast and Drosophila melanogaster, chromatin structure has long been known to be an important aspect in the regulation and functioning of these regions. Telomeres and subtelomeric regions are enriched in epigenetic marks that are specific to heterochromatin, such as methylation of lysine 9 of histone H3 and lysine 20 of histone H4. In P. falciparum, histone modifications and the presence of both the heterochromatin "writing" (PfSir2, PKMT) and "reading" (PfHP1) machinery at telomeric and subtelomeric regions indicate that these regions are likely to have heterochromatic structure that is epigenetically regulated. This structure may be important for telomere functions such as the silencing of the var gene family implicated in the cytoadherence and antigenic variation of these parasites.
Collapse
|
16
|
Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA, Hommel M, Duffy MF, da Silva LM, Scherf A, Ivens A, Speed TP, Beeson JG, Cowman AF. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol 2009; 7:e84. [PMID: 19402747 PMCID: PMC2672602 DOI: 10.1371/journal.pbio.1000084] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/02/2009] [Indexed: 11/19/2022] Open
Abstract
Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulator's A and B (PfSir2A and PfSir2B) and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD(+)-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection.
Collapse
Affiliation(s)
| | - Céline K Carret
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Manoj T Duraisingh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Till S Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Stuart A Ralph
- Department of Biochemistry, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Mirja Hommel
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael F Duffy
- Department of Medicine RMH/WH, The University of Melbourne, Melbourne, Australia
| | | | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur and CNRS, Paris, France
| | - Alasdair Ivens
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Terence P Speed
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - James G Beeson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
17
|
Mancio-Silva L, Rojas-Meza AP, Vargas M, Scherf A, Hernandez-Rivas R. Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum. J Cell Sci 2009; 121:2046-53. [PMID: 18525026 DOI: 10.1242/jcs.026427] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomeres have the capacity to recruit proteins that facilitate the spreading of heterochromatin into subtelomeric DNA regions. In the human protozoan pathogen Plasmodium falciparum, the telomere-associated protein Sir2 has been shown to control the silencing of members of virulence genes at some, but not all, chromosome-end loci, indicating that additional proteins are involved in telomere position effect. Here, we identified, in P. falciparum, a novel telomere-associated protein that displays homology with the origin-of-recognition-complex 1 protein Orc1. Antibodies raised against this P. falciparum protein localized to telomeric clusters in the nuclear periphery and the nucleolus. It was found that, prior to DNA replication, P. falciparum Orc1 and Sir2 undergo drastic subcellular reorganization, such as dissociation from the telomere cluster and spreading into the nucleus and parasite cytoplasm. Relocation of Orc1 and Sir2 was also linked to the partial dissociation of telomere clusters. Super gel-shift and chromatin-immunoprecipitation experiments showed the physical association of Orc1 with telomere repeats but revealed a differential association with adjacent non-coding repeat DNA elements. Our data suggest that Plasmodium telomeres might fold back and that Orc1 cooperates with Sir2 in telomeric silencing.
Collapse
Affiliation(s)
- Liliana Mancio-Silva
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Abstract
The persistence of the human malaria parasite Plasmodium falciparum during blood stage proliferation in its host depends on the successive expression of variant molecules at the surface of infected erythrocytes. This variation is mediated by the differential control of a family of surface molecules termed PfEMP1 encoded by approximately 60 var genes. Each individual parasite expresses a single var gene at a time, maintaining all other members of the family in a transcriptionally silent state. PfEMP1/var enables parasitized erythrocytes to adhere within the microvasculature, resulting in severe disease. This review highlights key regulatory mechanisms thought to be critical for monoallelic expression of var genes. Antigenic variation is orchestrated by epigenetic factors including monoallelic var transcription at separate spatial domains at the nuclear periphery, differential histone marks on otherwise identical var genes, and var silencing mediated by telomeric heterochromatin. In addition, controversies surrounding var genetic elements in antigenic variation are discussed.
Collapse
Affiliation(s)
- Artur Scherf
- Biology of Host-Parasite Interactions Unit, CNRS URA2581, Institut Pasteur 75724 Paris, France.
| | | | | |
Collapse
|
19
|
Mok BW, Ribacke U, Sherwood E, Wahlgren M. A highly conserved segmental duplication in the subtelomeres of Plasmodium falciparum chromosomes varies in copy number. Malar J 2008; 7:46. [PMID: 18325124 PMCID: PMC2279139 DOI: 10.1186/1475-2875-7-46] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022] Open
Abstract
Background Segmental duplications (SD) have been found in genomes of various organisms, often accumulated at the ends of chromosomes. It has been assumed that the sequence homology in-between the SDs allow for ectopic interactions that may contribute to the emergence of new genes or gene variants through recombinatorial events. Methods In silico analysis of the 3D7 Plasmodium falciparum genome, conducted to investigate the subtelomeric compartments, led to the identification of subtelomeric SDs. Sequence variation and copy number polymorphisms of the SDs were studied by DNA sequencing, real-time quantitative PCR (qPCR) and fluorescent in situ hybridization (FISH). The levels of transcription and the developmental expression of copy number variant genes were investigated by qPCR. Results A block of six genes of >10 kilobases in size, including var, rif, pfmc-2tm and three hypothetical genes (n-, o- and q-gene), was found duplicated in the subtelomeric regions of chromosomes 1, 2, 3, 6, 7, 10 and 11 (SD1). The number of SD1 per genome was found to vary from 4 to 8 copies in between different parasites. The intragenic regions of SD1 were found to be highly conserved across ten distinct fresh and long-term cultivated P. falciparum. Sequence variation was detected in a ≈ 23 amino-acid long hypervariable region of a surface-exposed loop of PFMC-2TM. A hypothetical gene within SD1, the n-gene, encoding a PEXEL/VTS-containing two-transmembrane protein was found expressed in ring stage parasites. The n-gene transcription levels were found to correlate to the number of n-gene copies. Fragments of SD1 harbouring two or three of the SD1-genes (o-gene, pfmc-2tm, q-gene) were also found in the 3D7 genome. In addition a related second SD, SD2, of ≈ 55% sequence identity to SD1 was found duplicated in a fresh clinical isolate but was only present in a single copy in 3D7 and in other P. falciparum lines or clones. Conclusion Plasmodium falciparum carries multiple sequence conserved SDs in the otherwise highly variable subtelomeres of its chromosomes. The uniqueness of the SDs amongst plasmodium species, and the conserved nature of the genes within, is intriguing and suggests an important role of the SD to P. falciparum.
Collapse
Affiliation(s)
- Bobo W Mok
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
20
|
Ling KH, Rajandream MA, Rivailler P, Ivens A, Yap SJ, Madeira AM, Mungall K, Billington K, Yee WY, Bankier AT, Carroll F, Durham AM, Peters N, Loo SS, Mat Isa MN, Novaes J, Quail M, Rosli R, Nor Shamsudin M, Sobreira TJ, Tivey AR, Wai SF, White S, Wu X, Kerhornou A, Blake D, Mohamed R, Shirley M, Gruber A, Berriman M, Tomley F, Dear PH, Wan KL. Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization. Genome Res 2007; 17:311-9. [PMID: 17284678 PMCID: PMC1800922 DOI: 10.1101/gr.5823007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/03/2007] [Indexed: 11/25/2022]
Abstract
Eimeria tenella is an intracellular protozoan parasite that infects the intestinal tracts of domestic fowl and causes coccidiosis, a serious and sometimes lethal enteritis. Eimeria falls in the same phylum (Apicomplexa) as several human and animal parasites such as Cryptosporidium, Toxoplasma, and the malaria parasite, Plasmodium. Here we report the sequencing and analysis of the first chromosome of E. tenella, a chromosome believed to carry loci associated with drug resistance and known to differ between virulent and attenuated strains of the parasite. The chromosome--which appears to be representative of the genome--is gene-dense and rich in simple-sequence repeats, many of which appear to give rise to repetitive amino acid tracts in the predicted proteins. Most striking is the segmentation of the chromosome into repeat-rich regions peppered with transposon-like elements and telomere-like repeats, alternating with repeat-free regions. Predicted genes differ in character between the two types of segment, and the repeat-rich regions appear to be associated with strain-to-strain variation.
Collapse
Affiliation(s)
- King-Hwa Ling
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- Molecular Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Marie-Adele Rajandream
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Pierre Rivailler
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Alasdair Ivens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Soon-Joo Yap
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Alda M.B.N. Madeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Karen Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Karen Billington
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Wai-Yan Yee
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Alan T. Bankier
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Fionnadh Carroll
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Alan M. Durham
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Nicholas Peters
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Shu-San Loo
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Jeniffer Novaes
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Michael Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Rozita Rosli
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- Molecular Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Mariana Nor Shamsudin
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia
| | - Tiago J.P. Sobreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Adrian R. Tivey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Siew-Fun Wai
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Sarah White
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Xikun Wu
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Arnaud Kerhornou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Damer Blake
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Rahmah Mohamed
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | - Martin Shirley
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Arthur Gruber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, 05508-000, Brazil
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Fiona Tomley
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN, United Kingdom
| | - Paul H. Dear
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Kiew-Lian Wan
- Malaysia Genome Institute, UKM-MTDC Smart Technology Centre, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| |
Collapse
|
21
|
Alsford S, Kawahara T, Isamah C, Horn D. A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol Microbiol 2007; 63:724-36. [PMID: 17214740 DOI: 10.1111/j.1365-2958.2006.05553.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Silent information regulator 2 (Sir2)-related proteins or sirtuins function as NAD(+)-dependent deacetylases or ADP ribosylases that target a range of substrates, thereby influencing chromatin structure and a diverse range of other biological functions. Genes encoding three Sir2-related proteins (SIR2rp1-3) have been identified in the parasitic trypanosomatids, early branching protozoa with no previously reported transcriptional silencing machinery. Here we show that, in the mammalian-infective bloodstream-stage of the African trypanosome, Trypanosoma brucei, SIR2rp1 localizes to the nucleus while SIR2rp2 and SIR2rp3 are both mitochondrial proteins. The nuclear protein, SIR2rp1, controls DNA repair and repression of RNA polymerase I-mediated expression immediately adjacent to telomeres. Antigenic variation, however, which involves the silencing and Pol I-mediated transcriptional switching of subtelomeric variant surface glycoprotein genes, continues to operate independent of SIR2rp1.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
22
|
Adriano MA, Vergnes B, Poncet J, Mathieu-Daude F, da Silva AC, Ouaissi A, Sereno D. Proof of interaction between Leishmania SIR2RP1 deacetylase and chaperone HSP83. Parasitol Res 2006; 100:811-8. [PMID: 17096142 DOI: 10.1007/s00436-006-0352-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/26/2006] [Indexed: 12/31/2022]
Abstract
The cytoplasmic Leishmania silent information regulator 2 (SIR2)RP1 protein is essential for parasite growth and survival and constitutes an attractive therapeutic target. Little information is available on putative substrate(s) and/or partner(s) that could shed light on the pathways in which this enzyme plays a role. We carried out co-immunoprecipitation experiments on the soluble fractions of wild-type and parasites overexpressing LmSIR2RP1 and found that the essential chaperone heat shock protein (HSP) 83, the Leishmania ortholog of the mammalian HSP90, constantly co-immunoprecipitated with LmSIR2RP1. We found that Leishmania HSP83 is among the lysine acetylated protein, but the intracellular level of SIR2RP1 does not influence the acetylation status of HSP83. Finally, the modified Geldanamycin susceptibility (an inhibitor of HSP83) exhibited by SIR2RP1 mutant parasites support an in vivo relationship between the chaperone activity of HSP83 and LmSIR2RP1. An insight on the nature of the interaction in Leishmania is required to understand its role in the cell fate control during cytodifferentiation.
Collapse
Affiliation(s)
- Monte-Alegre Adriano
- UR008 Pathogénie des Trypanosomatidés, Centre IRD de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Marty AJ, Thompson JK, Duffy MF, Voss TS, Cowman AF, Crabb BS. Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation. Mol Microbiol 2006; 62:72-83. [PMID: 16942599 DOI: 10.1111/j.1365-2958.2006.05364.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The malaria parasite Plasmodium falciparum undergoes antigenic variation through allelic exclusion and variant expression of surface proteins encoded by the var gene family. Regulation of var genes is under epigenetic control and involves reversible silencing and activation that requires the physical repositioning of a var locus into a transcriptionally permissive zone of the nuclear periphery. P. falciparum chromosome ends appear to aggregate into large perinuclear clusters which house both subtelomeric and chromosome central var genes. In this study we further define the composition of telomeric clusters using fluorescent in situ hybridization, and provide evidence that chromosome end clusters are formed by cross-linking protein. In addition, we demonstrate that a subtelomeric reporter gene and a var gene remain within clusters regardless of their transcriptional status. Our findings support a model whereby a highly localized structure dedicated to the activation of a single var gene can be housed within a gene dense chromosome end cluster that is otherwise transcriptionally silent.
Collapse
Affiliation(s)
- Allison J Marty
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|