1
|
Wang G, Korody ML, Brändl B, Hernandez-Toro CJ, Rohrandt C, Hong K, Pang AWC, Lee J, Migliorelli G, Stanke M, Ford SM, Pollmann I, Houck ML, Lewin HA, Lear TL, Ryder OA, Meissner A, Loring JF, Müller FJ. Genomic map of the functionally extinct northern white rhinoceros ( Ceratotherium simum cottoni). Proc Natl Acad Sci U S A 2025; 122:e2401207122. [PMID: 40359041 DOI: 10.1073/pnas.2401207122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
The northern white rhinoceros (NWR; Ceratotherium simum cottoni) is functionally extinct, with only two nonreproductive females alive. Efforts to rescue the NWR from its inevitable demise have inspired the exploration of unconventional conservation methods, including the development of induced pluripotent stem cells (iPSCs) for the in vitro generation of artificial gametes. The integrity of iPSC genomes is critical for in vitro gametogenesis to be used for assisted reproductive technologies using NWR iPSCs. We generated a chromosome-level NWR reference genome that meets or exceeds the metrics proposed by the Vertebrate Genome Project, using complementary sequencing and mapping methods. The genome represents 40 autosomes, an X and a partially resolved Y chromosome, and the mitochondrial genome. Using comparative FISH mapping, we confirmed a general gene order conservation between the NWR and horse genomes. We aligned the NWR genome with that of the southern white rhinoceros (SWR; Ceratotherium simum simum), a population that has been physically separated from the NWR for tens of thousands of years, and we found that the two subspecies are very similar on the chromosome level. Comparing long-read data from NWR iPSC lines and the fibroblast cultures used for reprogramming, we identified copy number variations that were likely to have been introduced during in vitro iPSC expansion. The NWR reference genome allows for efficient, rapid, and accurate assessment of the genomic integrity of iPSC lines to direct their differentiation. This will assist in strategies to rescue the NWR through extraordinary measures like cloning and the generation of embryos from iPSC-derived gametes.
Collapse
Affiliation(s)
- Gaojianyong Wang
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- Department of Psychiatry and Psychotherapy, Christian-Albrechts Universität, Kiel 24105, Germany
- Zentrum für Integrative Psychiatrie, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | | | - Björn Brändl
- Department of Psychiatry and Psychotherapy, Christian-Albrechts Universität, Kiel 24105, Germany
- Zentrum für Integrative Psychiatrie, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | | | - Christian Rohrandt
- Department of Psychiatry and Psychotherapy, Christian-Albrechts Universität, Kiel 24105, Germany
- Zentrum für Integrative Psychiatrie, University Hospital Schleswig-Holstein, Kiel 24105, Germany
- Institute for Communications Technologies and Embedded Systems, Kiel University of Applied Sciences, Kiel 24149, Germany
| | - Karl Hong
- Bionano Genomics Inc, San Diego CA, 92121
| | | | - Joyce Lee
- Bionano Genomics Inc, San Diego CA, 92121
| | - Giovanna Migliorelli
- Institute of Mathematics and Computer Science, and Center for Functional Genomics of Microbes, University of Greifswald, Greifswald 17489, Germany
| | - Mario Stanke
- Institute of Mathematics and Computer Science, and Center for Functional Genomics of Microbes, University of Greifswald, Greifswald 17489, Germany
| | - Sarah M Ford
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060
| | - Iris Pollmann
- Department of Psychiatry and Psychotherapy, Christian-Albrechts Universität, Kiel 24105, Germany
- Zentrum für Integrative Psychiatrie, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | | | - Harris A Lewin
- The Genome Center, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- John Muir Institute for the Environment, University of California, Davis, CA 95616
| | - Teri L Lear
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546
| | | | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | | | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- Department of Psychiatry and Psychotherapy, Christian-Albrechts Universität, Kiel 24105, Germany
- Zentrum für Integrative Psychiatrie, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
2
|
Cappelletti E, Piras FM, Biundo M, Raimondi E, Nergadze SG, Giulotto E. CENP-A/CENP-B uncoupling in the evolutionary reshuffling of centromeres in equids. Genome Biol 2025; 26:23. [PMID: 39915813 PMCID: PMC11804003 DOI: 10.1186/s13059-025-03490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND While CENP-A is the epigenetic determinant of the centromeric function, the role of CENP-B, a centromeric protein binding a specific DNA sequence, the CENP-B-box, remains elusive. In the few mammalian species analyzed so far, the CENP-B box is contained in the major satellite repeat that is present at all centromeres, with the exception of the Y chromosome. We previously demonstrated that, in the genus Equus, numerous centromeres lack any satellite repeat. RESULTS In four Equus species, CENP-B is expressed but does not bind the majority of satellite-based centromeres, or the satellite-free ones, while it is localized at several ancestral, now-inactive, centromeres. Centromeres lacking CENP-B are functional and recruit normal amounts of CENP-A and CENP-C. The absence of CENP-B is related to the lack of CENP-B boxes rather than to peculiar features of the protein itself. CENP-B boxes are present in a previously undescribed repeat which is not the major satellite bound by CENP-A. Comparative sequence analysis suggests that this satellite was centromeric in the equid ancestor, lost centromeric function during evolution, and gave rise to a shorter CENP-A bound repeat not containing the CENP-B box but enriched in dyad symmetries. CONCLUSIONS We propose that the uncoupling between CENP-B and CENP-A may have played a role in the extensive evolutionary reshuffling of equid centromeres. This study provides new insights into the complexity of centromere organization in a largely biodiverse world where the majority of mammalian species still have to be studied.
Collapse
Affiliation(s)
- Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| | - Francesca M Piras
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, Pavia, Italy.
| | - Marialaura Biundo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Álvarez-González L, Ruiz-Herrera A. Evolution of 3D Chromatin Folding. Annu Rev Anim Biosci 2025; 13:49-71. [PMID: 39531399 DOI: 10.1146/annurev-animal-111523-102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Studies examining the evolution of genomes have focused mainly on sequence conservation. However, the inner working of a cell implies tightly regulated crosstalk between complex gene networks controlled by small dispersed regulatory elements of physically contacting DNA regions. How these different levels of chromatin organization crosstalk in different species underpins the potential for genome evolutionary plasticity. We review the evolution of chromatin organization across the Animal Tree of Life. We introduce general aspects of the mode and tempo of genome evolution to later explore the multiple layers of genome organization. We argue that both genome and chromosome size modulate patterns of chromatin folding and that chromatin interactions facilitate the formation of lineage-specific chromosomal reorganizations, especially in germ cells. Overall, analyzing the mechanistic forces involved in the maintenance of chromatin structure and function of the germ line is critical for understanding genome evolution, maintenance, and inheritance.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| |
Collapse
|
4
|
Ruiz-García M, Castellanos A, Kaston F, Pinedo-Castro M, Shostell JM. New Insights into the Molecular Evolution of Tapirus pinchaque (Tapiridae, Perissodactyla) and the Rise and Fall of Tapirus kabomani as a Full Species. Genes (Basel) 2024; 15:1537. [PMID: 39766804 PMCID: PMC11675149 DOI: 10.3390/genes15121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Large wild mammals are extremely important in their respective ecological communities and are frequently considered to be emblematic. This is the case of the different tapir species, the largest terrestrial mammals from the Neotropics. Despite their large size and being objects of interest for many naturalists, the field still lacks critical genetics and systematics information about tapir species. In the current work, we analyzed four molecular datasets (mitogenomes, and three nuclear genes, RAG 1-2, IRBP, and BRCA1) of two South American tapirs: the Andean tapir (Tapirus pinchaque) and the alleged new species of tapir, Tapirus kabomani. We derived four main findings. (1) Our molecular phylogenetic analyses showed T. pinchaque as the youngest tapir branch in Neotropics and a sister species of Tapirus terrestris. This contradicts the traditional morphological observations of renowned zoologists and paleontologists, who considered T. pinchaque as the oldest Neotropical tapir. (2) Our data does not support that the alleged T. kabomani is a full species. Rather, it is a specific group within T. terrestris. (3) T. pinchaque is the Neotropical tapir species which yielded the lowest levels of genetic diversity (both for mitochondrial and nuclear data). (4) The spatial genetic structure for T. pinchaque shows differences depending on the type of molecular marker used. With mitogenomes, the spatial structure is relatively weak, whereas with two nuclear genes (RAG 1-2 and IRBP), the spatial structure is highly significant. Curiously, for the other nuclear gene (BRCA1), the spatial structure is practically nonexistent. In any case, the northernmost population of T. pinchaque we studied (Los Nevados National Park in Colombia) was in a peripatric situation and was the most genetically differentiated. This is important for the adequate conservation of this population. (5) T. pinchaque showed clear evidence of population expansion during the last part of the Pleistocene, a period during which the dryness and glacial cold extinguished many large mammals in the Americas. However, T. pinchaque survived and spread throughout the Northern Andes.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A No 43-82, Bogotá 110311, Colombia;
- Instituto Nacional de Biodiversidad (INABIO), Pje Rumipamba N.341 y Av. De los Shyris, Quito 170135, Ecuador;
| | - Armando Castellanos
- Instituto Nacional de Biodiversidad (INABIO), Pje Rumipamba N.341 y Av. De los Shyris, Quito 170135, Ecuador;
- Andean Bear Fundation, La Isla, Quito 170521, Ecuador
| | - Franz Kaston
- Fundación Nativa, Apartado Aéreo 59199, Bogotá 110121, Colombia;
| | - Myreya Pinedo-Castro
- Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A No 43-82, Bogotá 110311, Colombia;
| | - Joseph Mark Shostell
- Department of Math Science and Technology, University of Minnesota Crookston, Crookston, MN 56716, USA;
| |
Collapse
|
5
|
Gerton JL. A working model for the formation of Robertsonian chromosomes. J Cell Sci 2024; 137:jcs261912. [PMID: 38606789 PMCID: PMC11057876 DOI: 10.1242/jcs.261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.
Collapse
|
6
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Piras FM, Cappelletti E, Abdelgadir WA, Salamon G, Vignati S, Santagostino M, Sola L, Nergadze SG, Giulotto E. A Satellite-Free Centromere in Equus przewalskii Chromosome 10. Int J Mol Sci 2023; 24:4134. [PMID: 36835543 PMCID: PMC9961726 DOI: 10.3390/ijms24044134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In mammals, centromeres are epigenetically specified by the histone H3 variant CENP-A and are typically associated with satellite DNA. We previously described the first example of a natural satellite-free centromere on Equus caballus chromosome 11 (ECA11) and, subsequently, on several chromosomes in other species of the genus Equus. We discovered that these satellite-free neocentromeres arose recently during evolution through centromere repositioning and/or chromosomal fusion, after inactivation of the ancestral centromere, where, in many cases, blocks of satellite sequences were maintained. Here, we investigated by FISH the chromosomal distribution of satellite DNA families in Equus przewalskii (EPR), demonstrating a good degree of conservation of the localization of the major horse satellite families 37cen and 2PI with the domestic horse. Moreover, we demonstrated, by ChIP-seq, that 37cen is the satellite bound by CENP-A and that the centromere of EPR10, the ortholog of ECA11, is devoid of satellite sequences. Our results confirm that these two species are closely related and that the event of centromere repositioning which gave rise to EPR10/ECA11 centromeres occurred in the common ancestor, before the separation of the two horse lineages.
Collapse
Affiliation(s)
- Francesca M. Piras
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Wasma A. Abdelgadir
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giulio Salamon
- Oasi di Sant’Alessio, Sant’Alessio con Vialone, 27016 Pavia, Italy
| | | | - Marco Santagostino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Solomon G. Nergadze
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
8
|
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, Shen Y, Dugarjaviin M. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes (Basel) 2022; 13:genes13122188. [PMID: 36553455 PMCID: PMC9778318 DOI: 10.3390/genes13122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Interspecific hybridization often shows negative effects on hybrids. However, only a few multicellular species, limited to a handful of plants and animals, have shown partial genetic mechanisms by which hybridization leads to low fitness in hybrids. Here, to explore the outcome of combining the two genomes of a horse and donkey, we analyzed the whole-genome sequences from an Equus parent-offspring trio using Illumina platforms. We generated 41.39× and 46.21× coverage sequences for the horse and mule, respectively. For the donkey, a 40.38× coverage sequence was generated and stored in our laboratory. Approximately 24.86 million alleles were discovered that varied from the reference genome. Single nucleotide polymorphisms were used as polymorphic markers for assigning alleles to their parental genomic inheritance. We identified 25,703 Mendelian inheritance error single nucleotide polymorphisms in the mule genome that were not inherited from the parents through Mendelian inheritance. A total of 555 de novo single nucleotide polymorphisms were also identified. The rate of de novo single nucleotide polymorphisms was 2.21 × 10-7 in the mule from the Equus parent-offspring trio. This rate is obviously higher than the natural mutation rate for Equus, which is also consistent with the previous hypothesis that interracial crosses may have a high mutation rate. The genes associated with these single nucleotide polymorphisms are mainly involved in immune processes, DNA repair, and cancer processes. The results of the analysis of three genomes from an Equus parent-offspring trio improved our knowledge of the consequences of the integration of parental genomes in mules.
Collapse
|
9
|
Cappelletti E, Piras FM, Sola L, Santagostino M, Abdelgadir WA, Raimondi E, Lescai F, Nergadze SG, Giulotto E. Robertsonian fusion and centromere repositioning contributed to the formation of satellite-free centromeres during the evolution of zebras. Mol Biol Evol 2022; 39:6650076. [PMID: 35881460 PMCID: PMC9356731 DOI: 10.1093/molbev/msac162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Centromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated to highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and E. asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras E. burchelli (15 of 22) and E. grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function. Nine satellite-free centromeres are shared between the two species in agreement with their recent separation. We assembled all centromeric regions and improved the reference genome of E. burchelli. Sequence analysis of the CENP-A binding domains revealed that they are LINE-1 and AT-rich with four of them showing DNA amplification. In the two zebras, satellite-free centromeres emerged from centromere repositioning or following Robertsonian fusion. In five chromosomes, the centromeric function arose near the fusion points, which are located within regions marked by traces of ancestral pericentromeric sequences. Therefore, besides centromere repositioning, Robertsonian fusions are an important source of satellite-free centromeres during evolution. Finally, in one case, a satellite-free centromere was seeded on an inversion breakpoint. At eleven chromosomes, whose primary constrictions seemed to be associated to satellite repeats by cytogenetic analysis, satellite-free neocentromeres were instead located near the ancestral inactivated satellite-based centromeres, therefore, the centromeric function has shifted away from a satellite repeat containing locus to a satellite-free new position.
Collapse
Affiliation(s)
- Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesca M Piras
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marco Santagostino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Wasma A Abdelgadir
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lescai
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Molecular Dynamics and Evolution of Centromeres in the Genus Equus. Int J Mol Sci 2022; 23:ijms23084183. [PMID: 35457002 PMCID: PMC9024551 DOI: 10.3390/ijms23084183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
The centromere is the chromosomal locus essential for proper chromosome segregation. While the centromeric function is well conserved and epigenetically specified, centromeric DNA sequences are typically composed of satellite DNA and represent the most rapidly evolving sequences in eukaryotic genomes. The presence of satellite sequences at centromeres hampered the comprehensive molecular analysis of these enigmatic loci. The discovery of functional centromeres completely devoid of satellite repetitions and fixed in some animal and plant species represented a turning point in centromere biology, definitively proving the epigenetic nature of the centromere. The first satellite-free centromere, fixed in a vertebrate species, was discovered in the horse. Later, an extraordinary number of satellite-free neocentromeres had been discovered in other species of the genus Equus, which remains the only mammalian genus with numerous satellite-free centromeres described thus far. These neocentromeres arose recently during evolution and are caught in a stage of incomplete maturation. Their presence made the equids a unique model for investigating, at molecular level, the minimal requirements for centromere seeding and evolution. This model system provided new insights on how centromeres are established and transmitted to the progeny and on the role of satellite DNA in different aspects of centromere biology.
Collapse
|
11
|
Ghosh S, Kjöllerström J, Metcalfe L, Reed S, Juras R, Raudsepp T. The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse. Animals (Basel) 2022; 12:ani12070803. [PMID: 35405793 PMCID: PMC8996834 DOI: 10.3390/ani12070803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary We present chromosome and DNA analysis of a normal Thoroughbred mare and her abnormal foal born with neurologic defects. We show that the foal has an abnormal karyotype with three copies of chromosome 26 (trisomy chr26), instead of the normal two. However, two of the three chr26 have fused, forming an unusual derivative chromosome. Chromosomes of the dam are normal, suggesting that the chromosome abnormality found in the foal happened during egg or sperm formation or after fertilization. Analysis of the foal and the dam with chr26 DNA markers indicates that the extra chr26 in the foal is likely of maternal origin and that the unusual derivative chromosome resulted from the fusion of two parental chr26. We demonstrate that although conventional karyotype analysis can accurately identify chromosome abnormalities, determining the mechanism and parental origin of these abnormalities requires DNA analysis. Most curiously, this is the second case of trisomy chr26 with unusual derivative chromosome in the horse, whereas all other equine trisomies have three separate copies of the chromosome involved. Because horse chr26 shares genetic similarity with human chr21, which trisomy causes Down syndrome, common features between trisomies of horse chr26 and human chr21 are discussed. Abstract We present cytogenetic and genotyping analysis of a Thoroughbred foal with congenital neurologic disorders and its phenotypically normal dam. We show that the foal has non-mosaic trisomy for chromosome 26 (ECA26) but normal 2n = 64 diploid number because two copies of ECA26 form a metacentric derivative chromosome der(26q;26q). The dam has normal 64,XX karyotype indicating that der(26q;26q) in the foal originates from errors in parental meiosis or post-fertilization events. Genotyping ECA26 microsatellites in the foal and its dam suggests that trisomy ECA26 is likely of maternal origin and that der(26q;26q) resulted from Robertsonian fusion. We demonstrate that conventional and molecular cytogenetic approaches can accurately identify aneuploidy with a derivative chromosome but determining the mechanism and parental origin of the rearrangement requires genotyping with chromosome-specific polymorphic markers. Most curiously, this is the second case of trisomy ECA26 with der(26q;26q) in the horse, whereas all other equine autosomal trisomies are ‘traditional’ with three separate chromosomes. We discuss possible ECA26 instability as a contributing factor for the aberration and likely ECA26-specific genetic effects on the clinical phenotype. Finally, because ECA26 shares evolutionary homology with human chromosome 21, which trisomy causes Down syndrome, cytogenetic, molecular, and phenotypic similarities between trisomies ECA26 and HSA21 are discussed.
Collapse
Affiliation(s)
- Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
| | - Josefina Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
| | - Laurie Metcalfe
- Rood & Riddle Equine Hospital, Lexington, KY 40580, USA; (L.M.); (S.R.)
| | - Stephen Reed
- Rood & Riddle Equine Hospital, Lexington, KY 40580, USA; (L.M.); (S.R.)
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (S.G.); (J.K.); (R.J.)
- Correspondence:
| |
Collapse
|
12
|
Li S, Zhao G, Han H, Li Y, Li J, Wang J, Cao G, Li X. Genome collinearity analysis illuminates the evolution of donkey chromosome 1 and horse chromosome 5 in perissodactyls: A comparative study. BMC Genomics 2021; 22:665. [PMID: 34521340 PMCID: PMC8442440 DOI: 10.1186/s12864-021-07984-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is important to resolve the evolutionary history of species genomes as it has affected both genome organization and chromosomal architecture. The rapid innovation in sequencing technologies and the improvement in assembly algorithms have enabled the creation of highly contiguous genomes. DNA Zoo, a global organization dedicated to animal conservation, offers more than 150 chromosome-length genome assemblies. This database has great potential in the comparative genomics field. RESULTS Using the donkey (Equus asinus asinus, EAS) genome provided by DNA Zoo as an example, the scaffold N50 length and Benchmarking Universal Single-Copy Ortholog score reached 95.5 Mb and 91.6%, respectively. We identified the cytogenetic nomenclature, corrected the direction of the chromosome-length sequence of the donkey genome, analyzed the genome-wide chromosomal rearrangements between the donkey and horse, and illustrated the evolution of the donkey chromosome 1 and horse chromosome 5 in perissodactyls. CONCLUSIONS The donkey genome provided by DNA Zoo has relatively good continuity and integrity. Sequence-based comparative genomic analyses are useful for chromosome evolution research. Several previously published chromosome painting results can be used to identify the cytogenetic nomenclature and correct the direction of the chromosome-length sequence of new assemblies. Compared with the horse genome, the donkey chromosomes 1, 4, 20, and X have several obvious inversions, consistent with the results of previous studies. A 4.8 Mb inverted structure was first discovered in the donkey chromosome 25 and plains zebra chromosome 11. We speculate that the inverted structure and the tandem fusion of horse chromosome 31 and 4 are common features of non-caballine equids, which supports the correctness of the existing Equus phylogeny to an extent.
Collapse
Affiliation(s)
- Shaohua Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Hongmei Han
- Department of Physical Education, Hohhot Minzu College, Hohhot, 010051, China
| | - Yunxia Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jun Li
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jinfeng Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guifang Cao
- College of Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China.
| |
Collapse
|
13
|
Santagostino M, Piras FM, Cappelletti E, Del Giudice S, Semino O, Nergadze SG, Giulotto E. Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective. Int J Mol Sci 2020; 21:E2838. [PMID: 32325780 PMCID: PMC7215372 DOI: 10.3390/ijms21082838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are short stretches of telomeric-like repeats (TTAGGG)n at nonterminal chromosomal sites. We previously demonstrated that, in the genomes of primates and rodents, ITSs were inserted during the repair of DNA double-strand breaks. These conclusions were derived from sequence comparisons of ITS-containing loci and ITS-less orthologous loci in different species. To our knowledge, insertion polymorphism of ITSs, i.e., the presence of an ITS-containing allele and an ITS-less allele in the same species, has not been described. In this work, we carried out a genome-wide analysis of 2504 human genomic sequences retrieved from the 1000 Genomes Project and a PCR-based analysis of 209 human DNA samples. In spite of the large number of individual genomes analyzed we did not find any evidence of insertion polymorphism in the human population. On the contrary, the analysis of ITS loci in the genome of a single horse individual, the reference genome, allowed us to identify five heterozygous ITS loci, suggesting that insertion polymorphism of ITSs is an important source of genetic variability in this species. Finally, following a comparative sequence analysis of horse ITSs and of their orthologous empty loci in other Perissodactyla, we propose models for the mechanism of ITS insertion during the evolution of this order.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.S.); (F.M.P.); (E.C.); (S.D.G.); (O.S.); (S.G.N.)
| |
Collapse
|
14
|
Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes (Basel) 2020; 11:genes11040383. [PMID: 32244767 PMCID: PMC7230465 DOI: 10.3390/genes11040383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/29/2023] Open
Abstract
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.
Collapse
|
15
|
Giulotto E, Raimondi E, Sullivan KF. The Unique DNA Sequences Underlying Equine Centromeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:337-354. [PMID: 28840244 DOI: 10.1007/978-3-319-58592-5_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Centromeres are highly distinctive genetic loci whose function is specified largely by epigenetic mechanisms. Understanding the role of DNA sequences in centromere function has been a daunting task due to the highly repetitive nature of centromeres in animal chromosomes. The discovery of a centromere devoid of satellite DNA in the domestic horse consolidated observations on the epigenetic nature of centromere identity, showing that entirely natural chromosomes could function without satellite DNA cues. Horses belong to the genus Equus which exhibits a very high degree of evolutionary plasticity in centromere position and DNA sequence composition. Examination of horses has revealed that the position of the satellite-free centromere is variable among individuals. Analysis of centromere location and composition in other Equus species, including domestic donkey and zebras, confirms that the satellite-less configuration of centromeres is common in this group which has undergone particularly rapid karyotype evolution. These features have established the equids as a new mammalian system in which to investigate the molecular organization, dynamics and evolutionary behaviour of centromeres.
Collapse
Affiliation(s)
- Elena Giulotto
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Raimondi
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Kevin F Sullivan
- National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
16
|
Alberghina D, Caudullo E, Chan WY, Bandi N, Panzera M. Acoustic characteristics of courtship and agonistic vocalizations in Przwewalskii's wild horse and in domestic horse. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Kosowska B, Strzała T, Moska M, Ratajszczak R, Dobosz T. Cytogenetic Examination of South American Tapirs, Tapirus Terrestris (Perissodactyla, Tapiridae), from the Wroclaw Zoological Garden. VESTNIK ZOOLOGII 2015. [DOI: 10.1515/vzoo-2015-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Cytogenetic Examination of South American Tapirs, Tapirus terrestris (Perissodactyla, Tapiridae) from the Wroclaw Zoological Garden. Kosowska, B., Strzała, T., Moska, M., Ratajszczak, R., Dobosz, T. - Seven lowland tapirs (Tapirus terrestris) from Wrocław ZOO (three females and four males), differing from each other with exterior and sexual behaviour were verified with cytogenetic analysis in order to check their taxonomic status. Cytogenetic analysis was done using two alternative methods of blood collection: 1) conventionally with venepuncture, and 2) with blood sucking bugs from the Reduviidae family. Lymphocytes capable of growing were obtained only with conventional method of blood sampling. Karyotypes and karyograms of all analyzed tapirs were created using classical cytogenetic methods of chromosomes staining. All possessed karyograms had diploid chromosome number equal 80 (2n = 80). Homologous chromosomes did not differ between each other with quantity, size, centromeres location, length of arms, G bands and all were classified as proper karyograms of Tapirus terrestris species representatives. The X chromosomes as well as the first pair of chromosomes (both metacentric), were the largest among all analyzed, respectively. All remaining 38 pairs of chromosomes were acrocentric with Y chromosome as the smallest one (in males’ karyograms). Blood collected with blood sucking bugs proved to be unsuitable for cell culture. None of the seven established cultures was effective as lymphocytes obtained with this method did not show growth potential in prepared media. Thus, blood collected from the tapirs via Dipetalogaster maxima species did not show usefulness for cytogenetic studies due to the inability of cells to proliferation, even after a relatively short period of time elapsed since the blood sampling (1 to 2 hours).
Collapse
|
18
|
Santagostino M, Khoriauli L, Gamba R, Bonuglia M, Klipstein O, Piras FM, Vella F, Russo A, Badiale C, Mazzagatti A, Raimondi E, Nergadze SG, Giulotto E. Genome-wide evolutionary and functional analysis of the Equine Repetitive Element 1: an insertion in the myostatin promoter affects gene expression. BMC Genet 2015; 16:126. [PMID: 26503543 PMCID: PMC4623272 DOI: 10.1186/s12863-015-0281-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons. These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry out a genome wide analysis of ERE1 retrotransposons in the horse and to analyze insertion polymorphism in relation to evolution and function. The effect of an ERE1 insertion in the promoter of the myostatin gene, which is involved in muscle development, was also investigated. RESULTS In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERE1 insertion within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with sport aptitude and racing performance. CONCLUSIONS Sequence conservation and insertion polymorphism of ERE1 elements are related to the time of their appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results suggest that the ERE1 insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic performance, breeding schemes may take into account ERE1 insertion polymorphism at the myostatin promoter.
Collapse
Affiliation(s)
- Marco Santagostino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Lela Khoriauli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Riccardo Gamba
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Margherita Bonuglia
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Ori Klipstein
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesca M Piras
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesco Vella
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alessandra Russo
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Claudia Badiale
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alice Mazzagatti
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Raimondi
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Solomon G Nergadze
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Giulotto
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| |
Collapse
|
19
|
Huang J, Zhao Y, Bai D, Shiraigol W, Li B, Yang L, Wu J, Bao W, Ren X, Jin B, Zhao Q, Li A, Bao S, Bao W, Xing Z, An A, Gao Y, Wei R, Bao Y, Bao T, Han H, Bai H, Bao Y, Zhang Y, Daidiikhuu D, Zhao W, Liu S, Ding J, Ye W, Ding F, Sun Z, Shi Y, Zhang Y, Meng H, Dugarjaviin M. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci Rep 2015; 5:14106. [PMID: 26373886 PMCID: PMC4571621 DOI: 10.1038/srep14106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis, and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.
Collapse
Affiliation(s)
- Jinlong Huang
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wunierfu Shiraigol
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Bei Li
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Lihua Yang
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Jing Wu
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wuyundalai Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Xiujuan Ren
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Burenqiqige Jin
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Qinan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Anaer Li
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Sarula Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wuyingga Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Zhencun Xing
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Aoruga An
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yahan Gao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Ruiyuan Wei
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yirugeletu Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Taoketao Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Haige Han
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Haitang Bai
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yanqing Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yuhong Zhang
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Dorjsuren Daidiikhuu
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wenjing Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shuyun Liu
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jinmei Ding
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Weixing Ye
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Fangmei Ding
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Zikui Sun
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Yixiang Shi
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Yan Zhang
- SRA Inc. 6003 Executive Blvd. Suite 400, Rockville, MD20852, USA
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| |
Collapse
|
20
|
Dobigny G, Britton-Davidian J, Robinson TJ. Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 2015; 92:1-21. [PMID: 26234165 DOI: 10.1111/brv.12213] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
Abstract
Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Institut de Recherche pour le Développement, Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro), Campus International de Baillarguet, CS30016, 34988, Montferrier-sur-Lez, France
| | - Janice Britton-Davidian
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Cc065, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7062, South Africa
| |
Collapse
|
21
|
Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E. Mitochondrial DNA insertions in the nuclear horse genome. Anim Genet 2015; 41 Suppl 2:176-85. [PMID: 21070293 DOI: 10.1111/j.1365-2052.2010.02130.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state.
Collapse
Affiliation(s)
- S G Nergadze
- Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Nergadze SG, Belloni E, Piras FM, Khoriauli L, Mazzagatti A, Vella F, Bensi M, Vitelli V, Giulotto E, Raimondi E. Discovery and comparative analysis of a novel satellite, EC137, in horses and other equids. Cytogenet Genome Res 2014; 144:114-23. [PMID: 25342230 DOI: 10.1159/000368138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Centromeres are the sites of kinetochore assembly and spindle fiber attachment and consist of protein-DNA complexes in which the DNA component is typically characterized by the presence of extended arrays of tandem repeats called satellite DNA. Here, we describe the isolation and characterization of a 137-bp-long new satellite DNA sequence from the horse genome (EC137), which is also present, even if less abundant, in the domestic donkey, the Grevy's zebra and the Burchelli's zebra. We investigated the chromosomal distribution of the EC137 sequence in these 4 species. Moreover, we analyzed its architectural organization by high-resolution FISH. The position of this sequence with respect to the primary constriction and in relation to the 2 major horse satellite tandem repeats (37 cen and 2PI) on horse chromosomes suggests that the new centromeric equine satellite is an accessory DNA element, presumably contributing to the organization of pericentromeric chromatin. FISH on combed DNA fibers reveals that the EC137 satellite is organized in relatively short stretches (2-8 kb) which are strictly intermingled within 37 cen or 2PI arrays. This arrangement suggests that interchanges between satellite families are a frequent occurrence in the horse genome.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cozzuol MA, de Thoisy B, Fernandes-Ferreira H, Rodrigues FHG, Santos FR. How much evidence is enough evidence for a new species? J Mammal 2014. [DOI: 10.1644/14-mamm-a-182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Huang J, Zhao Y, Shiraigol W, Li B, Bai D, Ye W, Daidiikhuu D, Yang L, Jin B, Zhao Q, Gao Y, Wu J, Bao W, Li A, Zhang Y, Han H, Bai H, Bao Y, Zhao L, Zhai Z, Zhao W, Sun Z, Zhang Y, Meng H, Dugarjaviin M. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci Rep 2014; 4:4958. [PMID: 24828444 PMCID: PMC4021364 DOI: 10.1038/srep04958] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
Karyotypic diversification is more prominent in Equus species than in other mammals. Here, using next generation sequencing technology, we generated and de novo assembled quality genomes sequences for a male wild horse (Przewalski's horse) and a male domestic horse (Mongolian horse), with about 93-fold and 91-fold coverage, respectively. Portion of Y chromosome from wild horse assemblies (3 M bp) and Mongolian horse (2 M bp) were also sequenced and de novo assembled. We confirmed a Robertsonian translocation event through the wild horse's chromosomes 23 and 24, which contained sequences that were highly homologous with those on the domestic horse's chromosome 5. The four main types of rearrangement, insertion of unknown origin, inserted duplication, inversion, and relocation, are not evenly distributed on all the chromosomes, and some chromosomes, such as the X chromosome, contain more rearrangements than others, and the number of inversions is far less than the number of insertions and relocations in the horse genome. Furthermore, we discovered the percentages of LINE_L1 and LTR_ERV1 are significantly increased in rearrangement regions. The analysis results of the two representative Equus species genomes improved our knowledge of Equus chromosome rearrangement and karyotype evolution.
Collapse
Affiliation(s)
- Jinlong Huang
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Yiping Zhao
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Wunierfu Shiraigol
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Bei Li
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Dongyi Bai
- 1] College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China [2]
| | - Weixing Ye
- 1] Shanghai Personal Biotechnology Limited Company, 777 Longwu Road, Shanghai 200236, P.R. China [2]
| | - Dorjsuren Daidiikhuu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Lihua Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Burenqiqige Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Qinan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Yahan Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Jing Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Wuyundalai Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Anaer Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Yuhong Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Haige Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Haitang Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Yanqing Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Lele Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhengxiao Zhai
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenjing Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zikui Sun
- Shanghai Personal Biotechnology Limited Company, 777 Longwu Road, Shanghai 200236, P.R. China
| | - Yan Zhang
- Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC0477, Blacksburg, Virginia, 24061, USA
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| |
Collapse
|
25
|
Trifonov VA, Dementyeva PV, Larkin DM, O'Brien PCM, Perelman PL, Yang F, Ferguson-Smith MA, Graphodatsky AS. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol 2013; 11:90. [PMID: 23915065 PMCID: PMC3751663 DOI: 10.1186/1741-7007-11-90] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 11/25/2022] Open
Abstract
Background Most eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes. Results Here, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts. Conclusions Discovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution.
Collapse
|
26
|
Hu JY, Zhang YP, Yu L. Summary of Laurasiatheria (mammalia) phylogeny. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:E65-74. [PMID: 23266984 DOI: 10.3724/sp.j.1141.2012.e05-06e65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laurasiatheria is one of the richest and most diverse superorders of placental mammals. Because this group had a rapid evolutionary radiation, the phylogenetic relationships among the six orders of Laurasiatheria remain a subject of heated debate and several issues related to its phylogeny remain open. Reconstructing the true phylogenetic relationships of Laurasiatheria is a significant case study in evolutionary biology due to the diversity of this suborder and such research will have significant implications for biodiversity conservation. We review the higher-level (inter-ordinal) phylogenies of Laurasiatheria based on previous cytogenetic, morphological and molecular data, and discuss the controversies of its phylogenetic relationship. This review aims to outline future researches on Laurasiatheria phylogeny and adaptive evolution.
Collapse
|
27
|
Musilova P, Kubickova S, Vahala J, Rubes J. Subchromosomal karyotype evolution in Equidae. Chromosome Res 2013; 21:175-87. [PMID: 23532666 DOI: 10.1007/s10577-013-9346-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/26/2022]
Abstract
Equidae is a small family which comprises horses, African and Asiatic asses, and zebras. Despite equids having diverged quite recently, their karyotypes underwent rapid evolution which resulted in extensive differences among chromosome complements in respective species. Comparative mapping using whole-chromosome painting probes delineated genome-wide chromosome homologies among extant equids, enabling us to trace chromosome rearrangements that occurred during evolution. In the present study, we performed subchromosomal comparative mapping among seven Equidae species, representing the whole family. Region-specific painting and bacterial artificial chromosome probes were used to determine the orientation of evolutionarily conserved segments with respect to centromere positions. This allowed assessment of the configuration of all fusions occurring during the evolution of Equidae, as well as revealing discrepancies in centromere location caused by centromere repositioning or inversions. Our results indicate that the prevailing type of fusion in Equidae is centric fusion. Tandem fusions of the type telomere-telomere occur almost exclusively in the karyotype of Hartmann's zebra and are characteristic of this species' evolution. We revealed inversions in segments homologous to horse chromosomes 3p/10p and 13 in zebras and confirmed inversions in segments 4/31 in African ass, 7 in horse and 8p/20 in zebras. Furthermore, our mapping results suggested that centromere repositioning events occurred in segments homologous to horse chromosomes 7, 8q, 10p and 19 in the African ass and an element homologous to horse chromosome 16 in Asiatic asses. Centromere repositioning in chromosome 1 resulted in three different chromosome types occurring in extant species. Heterozygosity of the centromere position of this chromosome was observed in the kiang. Other subtle changes in centromere position were described in several evolutionary conserved chromosomal segments, suggesting that tiny centromere repositioning or pericentric inversions are quite frequent in zebras and asses.
Collapse
Affiliation(s)
- P Musilova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory. Mol Biol Evol 2012. [PMID: 23204393 PMCID: PMC3603309 DOI: 10.1093/molbev/mss272] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | |
Collapse
|
29
|
Trifonov VA, Musilova P, Kulemsina AI. Chromosome evolution in Perissodactyla. Cytogenet Genome Res 2012; 137:208-17. [PMID: 22813844 DOI: 10.1159/000339900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Comparative painting has provided a wealth of useful information and helped to reconstruct the pathways of karyotype evolution within major eutherian phylogenetic clades. New data have come from gene localizations, BAC mapping and high throughout sequencing projects that enrich and provide new details of genome evolution. Extensive research on perissodactyl genomes has revealed not only increased rates of chromosomal rearrangements, but also an exceptionally high number of centromere repositioning events in equids. Here were combined new physical mapping, comparative painting and genome sequencing data to refine the putative ancestral karyotype maps and to revise the previously proposed scenario of perissodactyl karyotype evolution.
Collapse
Affiliation(s)
- V A Trifonov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
| | | | | |
Collapse
|
30
|
Ndiaye A, Bâ K, Aniskin V, Benazzou T, Chevret P, Konečný A, Sembène M, Tatard C, Kergoat GJ, Granjon L. Evolutionary systematics and biogeography of endemic gerbils (Rodentia, Muridae) from Morocco: an integrative approach. ZOOL SCR 2011. [DOI: 10.1111/j.1463-6409.2011.00501.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Abstract
The evolutionary history of chromosomes can be tracked by the comparative hybridization of large panels of bacterial artificial chromosome clones. This approach has disclosed an unprecedented phenomenon: 'centromere repositioning', that is, the movement of the centromere along the chromosome without marker order variation. The occurrence of evolutionary new centromeres (ENCs) is relatively frequent. In macaque, for instance, 9 out of 20 autosomal centromeres are evolutionarily new; in donkey at least 5 such neocentromeres originated after divergence from the zebra, in less than 1 million years. Recently, orangutan chromosome 9, considered to be heterozygous for a complex rearrangement, was discovered to be an ENC. In humans, in addition to neocentromeres that arise in acentric fragments and result in clinical phenotypes, 8 centromere-repositioning events have been reported. These 'real-time' repositioned centromere-seeding events provide clues to ENC birth and progression. In the present paper, we provide a review of the centromere repositioning. We add new data on the population genetics of the ENC of the orangutan, and describe for the first time an ENC on the X chromosome of squirrel monkeys. Next-generation sequencing technologies have started an unprecedented, flourishing period of rapid whole-genome sequencing. In this context, it is worth noting that these technologies, uncoupled from cytogenetics, would miss all the biological data on evolutionary centromere repositioning. Therefore, we can anticipate that classical and molecular cytogenetics will continue to have a crucial role in the identification of centromere movements. Indeed, all ENCs and human neocentromeres were found following classical and molecular cytogenetic investigations.
Collapse
|
33
|
Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011; 4:22. [PMID: 21992653 PMCID: PMC3204295 DOI: 10.1186/1755-8166-4-22] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/12/2011] [Indexed: 01/30/2023] Open
Abstract
The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.
Collapse
|
34
|
|
35
|
Gosálvez J, López-Fernández C, Fernández JL, Gouraud A, Holt WV. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol Reprod Dev 2011; 78:951-61. [PMID: 21919111 DOI: 10.1002/mrd.21394] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/26/2011] [Indexed: 11/09/2022]
Abstract
The dynamic onset of DNA fragmentation in mammalian sperm populations varies widely in different species when the spermatozoa are incubated in vitro at body temperature for several hours, and recent studies have shown that the dynamic rate of DNA fragmentation within a species has considerable predictive value in terms of fertility. The reasons for such variation are unclear, but here we show that differences in protamine sequence and identity could be partially responsible. Sets of 10 normal semen samples from 11 species (ram, goat, boar, white-tailed deer, rabbit, human, domestic and Spanish fighting bull, horse, donkey, rhinoceros, and koala) were cryopreserved, thawed, diluted in an appropriate extender for each species, and then incubated for 4 hr at 37 °C. Semen samples from human infertility patients were also included for comparison with the donors. DNA fragmentation analysis was undertaken immediately after thawing (t(0)) and after 4 hr (t(4)) using the Halomax/Halosperm procedure, and the differences in DNA fragmentation between t(0) and t(4) were examined in the context of the respective protamine genomes. The expression of protamine 2 in a species significantly enhanced the likelihood of sperm DNA fragmentation; greater numbers of cysteine residues in protamine 1 tended to confer increased sperm DNA stability, and there were logical evolutionary relationships between species in terms of their sperm DNA stability. Human spermatozoa from infertility patients exhibited considerably higher DNA instability than the normal semen donors, a difference that could be indirectly attributed to unbalanced protamine 1-to-protamine 2 ratios.
Collapse
Affiliation(s)
- Jaime Gosálvez
- Unidad de Genética, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Goto H, Ryder OA, Fisher AR, Schultz B, Kosakovsky Pond SL, Nekrutenko A, Makova KD. A massively parallel sequencing approach uncovers ancient origins and high genetic variability of endangered Przewalski's horses. Genome Biol Evol 2011; 3:1096-106. [PMID: 21803766 PMCID: PMC3194890 DOI: 10.1093/gbe/evr067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The endangered Przewalski's horse is the closest relative of the domestic horse and is the only true wild horse species surviving today. The question of whether Przewalski's horse is the direct progenitor of domestic horse has been hotly debated. Studies of DNA diversity within Przewalski's horses have been sparse but are urgently needed to ensure their successful reintroduction to the wild. In an attempt to resolve the controversy surrounding the phylogenetic position and genetic diversity of Przewalski's horses, we used massively parallel sequencing technology to decipher the complete mitochondrial and partial nuclear genomes for all four surviving maternal lineages of Przewalski's horses. Unlike single-nucleotide polymorphism (SNP) typing usually affected by ascertainment bias, the present method is expected to be largely unbiased. Three mitochondrial haplotypes were discovered—two similar ones, haplotypes I/II, and one substantially divergent from the other two, haplotype III. Haplotypes I/II versus III did not cluster together on a phylogenetic tree, rejecting the monophyly of Przewalski's horse maternal lineages, and were estimated to split 0.117–0.186 Ma, significantly preceding horse domestication. In the phylogeny based on autosomal sequences, Przewalski's horses formed a monophyletic clade, separate from the Thoroughbred domestic horse lineage. Our results suggest that Przewalski's horses have ancient origins and are not the direct progenitors of domestic horses. The analysis of the vast amount of sequence data presented here suggests that Przewalski's and domestic horse lineages diverged at least 0.117 Ma but since then have retained ancestral genetic polymorphism and/or experienced gene flow.
Collapse
Affiliation(s)
- Hiroki Goto
- Department of Biology, The Pennsylvania State University, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Cazaux B, Catalan J, Veyrunes F, Douzery EJ, Britton-Davidian J. Are ribosomal DNA clusters rearrangement hotspots?: a case study in the genus Mus (Rodentia, Muridae). BMC Evol Biol 2011; 11:124. [PMID: 21569527 PMCID: PMC3112088 DOI: 10.1186/1471-2148-11-124] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres). In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus Mus which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres. Results The chromosomal distribution of rDNA clusters was determined by in situ hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus Mus: i) rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii) a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii) 24% of the observed breakpoints mapped near an rDNA cluster, and iv) a substantial rate of rDNA cluster change (insertion, deletion) also occurred in the absence of chromosomal rearrangements. Conclusions This study on the dynamics of rDNA clusters within the genus Mus has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus Mus, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome repatterning observed in this group. However, the elevated rate of rDNA change observed in the chromosomally invariant clade indicates that the presence of these sequences is insufficient to lead to genome instability. In agreement with recent studies, these results suggest that additional factors such as modifications of the epigenetic state of DNA may be required to trigger evolutionary plasticity.
Collapse
Affiliation(s)
- Benoîte Cazaux
- Institut des Sciences de l'Evolution, UMR5554 CNRS/Université Montpellier II, France.
| | | | | | | | | |
Collapse
|
38
|
Hima K, Thiam M, Catalan J, Gauthier P, Duplantier JM, Piry S, Sembène M, Britton-Davidian J, Granjon L, Dobigny G. Extensive Robertsonian polymorphism in the African rodent Gerbillus nigeriae: geographic aspects and meiotic data. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00803.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Stanyon R, Bigoni F. Primate chromosome evolution: with reference to marker order and neocentromeres. RUSS J GENET+ 2010. [DOI: 10.1134/s102279541009019x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Kulemzina I, Biltueva LS, Trifonov VA, Perelman PL, Staroselec YY, Beklemisheva VR, Vorobieva NV, Serdukova NA, Graphodatsky AS. Comparative cytogenetics of main Laurasiatheria taxa. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species. Chromosome Res 2010; 18:459-71. [PMID: 20379801 DOI: 10.1007/s10577-010-9124-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
The genus Microtus consists of 65 extant species, making it one of the rodentia genera with the highest number of species. The extreme karyotype diversification in Microtus has made them an ideal species group for comparative cytogenetics and cytotaxonomy. Conventional comparative cytogenetic studies in Microtus have been based mainly on chromosomal banding patterns; the number of Microtus species examined by molecular cytogenetics-cross-species chromosome painting-is limited. In this study, we used whole chromosome painting probes of the field vole Microtus agrestis to detect regions of homology in the karyotypes of eight Microtus species. For almost all investigated species, species-specific associations of conserved chromosomal segments were revealed. Analysis of data obtained here and previously published data allowed us to propose that the ancestral Microtus species had a 2n = 54 karyotype, including two associations of field vole chromosomal segments (MAG 1/17 and 2/8). Further mapping of the chromosome rearrangements onto a molecular phylogenetic tree allows the reconstruction of a karyotype evolution pathway in the Microtus genus.
Collapse
|
42
|
Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae. Chromosome Res 2010; 18:473-86. [DOI: 10.1007/s10577-010-9128-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
43
|
Piras FM, Nergadze SG, Magnani E, Bertoni L, Attolini C, Khoriauli L, Raimondi E, Giulotto E. Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet 2010; 6:e1000845. [PMID: 20169180 PMCID: PMC2820525 DOI: 10.1371/journal.pgen.1000845] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/12/2010] [Indexed: 12/21/2022] Open
Abstract
In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs. Centromeres are the functional elements controlling chromosome segregation during cell division. Vertebrate centromeres, which typically contain large amounts of tandem repeats (satellite DNA), are highly conserved for function but not for DNA sequence, suggesting that centromeric function is mainly determined by epigenetic factors. Evolutionary centromere repositioning is the shift of a centromere to a new position in the absence of structural chromosome rearrangements. In previous work, we demonstrated that centromere repositioning was exceptionally frequent during the evolution of the genus Equus (horses, asses, and zebras). In the present paper, we show that several Equus centromeres, including all the previously described evolutionary new centromeres, are apparently satellite-free, supporting the idea that large blocks of repeats are not necessarily required for the stability of centromeres. Our results suggest that centromere repositioning might be a two-step event: first, a neocentromere arises in a satellite-less region; satellite repeats may then colonize this repositioned centromere at a later stage, giving rise to a “mature” centromere. The rapidly evolving Equus species gave us the opportunity to catch snapshots of several evolutionary novel centromeres in different stages during their maturation.
Collapse
Affiliation(s)
- Francesca M. Piras
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Solomon G. Nergadze
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Elisa Magnani
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Livia Bertoni
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Carmen Attolini
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Lela Khoriauli
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Elena Raimondi
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
| | - Elena Giulotto
- Dipartimento di Genetica e Microbiologia “Adriano Buzzati-Traverso”, Università di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
44
|
Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes. Chromosome Res 2009; 17:783-90. [PMID: 19731053 DOI: 10.1007/s10577-009-9069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/23/2009] [Indexed: 01/02/2023]
Abstract
Cross-species chromosome painting has been applied to most of the species making up the numerically small family Equidae. However, comparative mapping data were still lacking in Asiatic asses kulan (Equus hemionus kulan) and kiang (E. kiang). The set of horse arm-specific probes generated by laser microdissection was hybridized onto kulan (E. hemionus kulan) and kiang (E. kiang) chromosomes in order to establish a genome-wide chromosomal correspondence between these Asiatic asses and the horse. Moreover, region-specific probes were generated to determine fusion configuration and orientation of conserved syntenic blocks. The kulan karyotype (2n = 54) was ascertained to be almost identical to the previously investigated karyotype of onager E. h. onager (2n = 56). The only difference is in fusion/fission of chromosomes homologous to horse 2q/3q, which are involved in chromosome number polymorphism in many Equidae species. E. kiang karyotype differs from the karyotype of E. hemionus by two additional fusions 8q/15 and 7/25. Chromosomes equivalent to 2q and 3q are not fused in kiang individuals with 2n = 52. Several discrepancies in centromere positions among kulan, kiang and horse chromosomes have been described. Most of the chromosome fusions in Asiatic asses are of centromere-centromere type. Comparative chromosome painting in kiang completed the efforts to establish chromosomal homologies in all representatives of the family Equidae. Application of region-specific probes allows refinement comparative maps of Asiatic asses.
Collapse
|
45
|
Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MCT, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Røed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvänen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009; 326:865-7. [PMID: 19892987 PMCID: PMC3785132 DOI: 10.1126/science.1178158] [Citation(s) in RCA: 569] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
Collapse
Affiliation(s)
- C M Wade
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
NICOLAS VIOLAINE, GRANJON LAURENT, DUPLANTIER JEANMARC, CRUAUD CORINNE, DOBIGNY GAUTHIER. Phylogeography of spiny mice (genus Acomys, Rodentia: Muridae) from the south-western margin of the Sahara with taxonomic implications. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01273.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 2009; 24:572-82. [PMID: 19665255 DOI: 10.1016/j.tree.2009.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 12/23/2022]
Abstract
Continuing advances in genomics are revealing substantial differences between genomes of major eukaryotic lineages. Because most data (in terms of depth and phylogenetic breadth) are available for angiosperms and mammals, we explore differences between these groups and show that angiosperms have less highly compartmentalized and more diverse genomes than mammals. In considering the causes of these differences, four mechanisms are highlighted: polyploidy, recombination, retrotransposition and genome silencing, which have different modes and time scales of activity. Angiosperm genomes are evolutionarily more dynamic and labile, whereas mammalian genomes are more stable at both the sequence and chromosome level. We suggest that fundamentally different life strategies and development feedback on the genome exist, influencing dynamics and evolutionary trajectories at all levels from the gene to the genome.
Collapse
|
48
|
Gonçalves da Silva A, Lalonde DR, Russello MA. Isolation and characterization of microsatellite loci in a Neotropical ungulate, the lowland tapir (Tapirus terrestris). CONSERV GENET RESOUR 2009. [DOI: 10.1007/s12686-009-9009-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, Ferguson-Smith MA, Stanyon R, Yang F, Graphodatsky AS. Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res 2009; 17:419-36. [PMID: 19350402 DOI: 10.1007/s10577-009-9032-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 01/21/2023]
Abstract
Recent molecular and morphological studies place Artiodactyla and Cetacea into the order Cetartiodactyla. Within the Cetartiodactyla such families as Bovidae, Cervidae, and Suidae are well studied by comparative chromosome painting, but many taxa that are crucial for understanding cetartiodactyl phylogeny remain poorly studied. Here we present the genome-wide comparative maps of five cetartiodactyl species obtained by chromosome painting with human and dromedary paint probes from four taxa: Cetacea, Hippopotamidae, Giraffidae, and Moschidae. This is the first molecular cytogenetic report on pilot whale, hippopotamus, okapi, and Siberian musk deer. Our results, when integrated with previously published comparative chromosome maps allow us to reconstruct the evolutionary pathway and rates of chromosomal rearrangements in Cetartiodactyla. We hypothesize that the putative cetartiodactyl ancestral karyotype (CAK) contained 25-26 pairs of autosomes, 2n = 52-54, and that the association of human chromosomes 8/9 could be a cytogenetic signature that unites non-camelid cetartiodactyls. There are no unambiguous cytogenetic landmarks that unite Hippopotamidae and Cetacea. If we superimpose chromosome rearrangements on the supertree generated by Price and colleagues, several homoplasy events are needed to explain cetartiodactyl karyotype evolution. Our results apparently favour a model of non-random breakpoints in chromosome evolution. Cetariodactyl karyotype evolution is characterized by alternating periods of low and fast rates in various lineages. The highest rates are found in Suina (Suidae+Tayasuidae) lineage (1.76 rearrangements per million years (R/My)) and the lowest in Cetaceans (0.07 R/My). Our study demonstrates that the combined use of human and camel paints is highly informative for revealing evolutionary karyotypic rearrangements among cetartiodactyl species.
Collapse
Affiliation(s)
- Anastasia I Kulemzina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Robinson TJ, Ruiz-Herrera A. Defining the ancestral eutherian karyotype: a cladistic interpretation of chromosome painting and genome sequence assembly data. Chromosome Res 2008; 16:1133-41. [PMID: 19067196 DOI: 10.1007/s10577-008-1264-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/28/2022]
Abstract
A cladistic analysis of genome assemblies (syntenic associations) for eutherian mammals against two distant outgroup species--opossum and chicken--permitted a refinement of the 46-chromosome karyotype formerly inferred in the ancestral eutherian. We show that two intact chromosome pairs (corresponding to human chromosomes 13 and 18) and three conserved chromosome segments (10q, 19p and 8q in the human karyotype) are probably symplesiomorphic for Eutheria because they are also present as unaltered orthologues in one or both outgroups. Seven additional syntenies (4q/8p/4pq, 3p/21, 14/15, 10p/12pq/22qt, 19q/16q, 16p/7a and 12qt/22q), each involving human chromosomal segments that in various combinations correspond to complete chromosomes in the ancestral eutherian karyotype, are also present in one or both outgroup taxa and thus are probable symplesiomorphies for Eutheria. Interestingly, several of the symplesiomorphic characters identified in chicken and/or opossum are present in more distant outgroups such as pufferfish and zebrafish (for example 3p/21, 14/15, 19q/16q and 16p/7a), suggesting their retention since vertebrate common ancestry approximately 450 million years ago. However, eight intact pairs (corresponding to human chromosomes 1, 5, 6, 9, 11, 17, 20 and the X) and three chromosome segments (7b, 2p-q13 and 2q13-qter) are derived characters potentially consistent with eutherian monophyly. Our analyses clarify the distinction between shared-ancestral and shared-derived homology in the eutherian ancestral karyotype.
Collapse
Affiliation(s)
- Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| | | |
Collapse
|