1
|
de Oliveira FS, Brann T, Wolf IR, Nogaroto V, Martins C, Protasio AV, Vicari MR. The landscape of transposable element distribution in the genome of Neotropical fish Apareiodon sp. (Characiformes: Parodontidae). Chromosome Res 2025; 33:6. [PMID: 40186682 DOI: 10.1007/s10577-025-09765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Transposable elements (TEs) are widely present in eukaryotic genomes, where they can contribute to genome size and functional modifications. As new genomes are sequenced and annotated, more studies can be conducted regarding TE content, distribution, and genome evolution. TEs are extensively diversified in fish genomes resulting in an important role in genome and chromosome evolution. However, curated TE libraries are still scarce in non-model organisms, making it difficult to evaluate TE's impact on genomic modifications thoroughly. Here, we aimed to obtain a curated TE library from the neotropical fish Apareiodon sp. genome. The prospection and curation of the TE library resulted in 244 families from 18 superfamilies of DNA transposons and retrotransposons, which comprise about 10% of the genome, with most insertions fitting in one or a few families. A greater diversity of retrotransposon families is present, especially for Ty3 superfamily. Despite the greater number of retrotransposon families, DNA transposons are the most abundant in the genome, with 37% of all TE insertions belonging to the Tc1-Mariner superfamily. Complete TE copies were observed for almost all superfamilies, with most of the sequences on the Tc1-Mariner group. DNA transposons and SINEs presented older insertions in the genome, followed by LINEs and LTR retrotransposons. TE genome density is highest in the cs25 scaffold, and enriched for Helitron elements. With these data, allied to previous studies on chromosome evolution, we suggest that cs25 bears the W chromosome specific region of the Apareiodon sp. genome, with the presence of significant amount of Helitron insertions.
Collapse
Affiliation(s)
- Fernanda Souza de Oliveira
- Programa de Pós-Graduação Em Genética, Universidade Federal Do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Toby Brann
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, CB2 1QP, UK
| | - Ivan Rodrigo Wolf
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Anna Victoria Protasio
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, CB2 1QP, UK
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação Em Genética, Universidade Federal Do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil.
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
2
|
Huang C, Ji B, Shi Z, Wang J, Yuan J, Yang P, Xu X, Jing H, Xu L, Fu J, Zhao L, Ren Y, Guo K, Li G. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. Commun Biol 2025; 8:427. [PMID: 40082663 PMCID: PMC11906883 DOI: 10.1038/s42003-025-07851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Genomic rearrangements are primary drivers of evolution, promoting biodiversity. Aphids, an agricultural pest with high species diversity, exhibit rapid chromosomal evolution and diverse karyotypes. These variations have been attributed to their unique holocentric chromosomes and parthenogenesis, though this hypothesis has faced scrutiny. In this study, we generated a chromosomal-level reference genome assembly of the celery aphid (Semiaphis heraclei) and conducted comparative genomic analysis, revealing varying chromosomal evolution rates among aphid lineages, positively correlating with species diversity. Aphid X chromosomes have undergone frequent intra-chromosomal recombination, while autosomes show accelerated inter-chromosomal recombination. Moreover, considering both inter- and intra-chromosomal rearrangements, the increased autosomal rearrangement rates may be common across the Aphidomorpha. We identified that the expansion of DNA transposable elements and short interspersed nuclear elements (SINEs), coupled with gene loss and duplication associated with karyotypic instability (such as RIF1, BRD8, DMC1, and TERT), may play crucial roles in aphid chromosomal evolution. Additionally, our analysis revealed that the mutation and expansion of detoxification gene families in S. heraclei may be a key factor in adapting to host plant chemical defenses. Our results provide new insights into chromosomal evolutionary patterns and detoxification gene families evolution in aphids, aiding the understanding of species diversity and adaptive evolution.
Collapse
Affiliation(s)
- Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingru Ji
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Zhaohui Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiangyue Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, P.R. China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
3
|
Clements DR, Kato-Noguchi H. Defensive Mechanisms of Mikania micrantha Likely Enhance Its Invasiveness as One of the World's Worst Alien Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:269. [PMID: 39861626 PMCID: PMC11768483 DOI: 10.3390/plants14020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Mikania micrantha Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species. Its life history characteristics, such as the production of large numbers of wind-dispersed seeds, vegetative reproduction, rapid growth, and genetic diversity all contribute to its invasiveness. In this review, we focus on how mechanisms to defend against its natural enemies boost the invasiveness of M. micrantha. It possesses potent defenses against natural enemies such as pathogenic fungi, herbivorous insects, and parasitic nematodes, and exhibits allelopathic potential against plant competitors. These defensive abilities, in concert with its formidable life history characteristics, contribute to the invasiveness of M. micrantha, potentially leading to further naturalization. Several other reviews have summarized the biology and management of the species, but ours is the first review to focus on how the defensive mechanisms of M. micrantha likely enhance its invasiveness. Relatively little is known about the array of defensive capabilities of M. micrantha; therefore, there is considerable scope for further research on its chemical defenses.
Collapse
Affiliation(s)
- David R. Clements
- Department of Biology, Trinity Western University, 22500 University Drive, Langley, BC V2Y 1Y1, Canada;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan
| |
Collapse
|
4
|
Mallik R, Wcisel DJ, Near TJ, Yoder JA, Dornburg A. Investigating the Impact of Whole-Genome Duplication on Transposable Element Evolution in Teleost Fishes. Genome Biol Evol 2025; 17:evae272. [PMID: 39715451 PMCID: PMC11785729 DOI: 10.1093/gbe/evae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Transposable elements (TEs) can make up more than 50% of any given vertebrate's genome, with substantial variability in TE composition among lineages. TE variation is often linked to changes in gene regulation, genome size, and speciation. However, the role that genome duplication events have played in generating abrupt shifts in the composition of the mobilome over macroevolutionary timescales remains unclear. We investigated the degree to which the teleost genome duplication (TGD) shaped the diversification trajectory of the teleost mobilome. We integrate a new high coverage genome of Polypterus bichir with data from over 100 publicly available actinopterygian genomes to assess the macroevolutionary implications of genome duplication events on TE evolution in teleosts. Our results provide no evidence for a substantial shift in mobilome composition following the TGD event. Instead, the diversity of the teleost mobilome appears to have been shaped by a history of lineage-specific shifts in composition that are not correlated with commonly evoked drivers of diversification such as body size, water column usage, or latitude. Collectively, these results provide additional evidence for an emerging perspective that TGD did not catalyze bursts of diversification and innovation in the actinopterygian mobilome.
Collapse
Affiliation(s)
- Rittika Mallik
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum, Yale University, New Haven, CT, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, Genetics and Genomics Academy, and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
5
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
6
|
Sun X, Chen X, Wu B, Zhou L, Chen Y, Zheng S, Wang S, Liu Z. Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks. BIOLOGY 2024; 13:870. [PMID: 39596825 PMCID: PMC11592408 DOI: 10.3390/biology13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown. In the present study, we obtain the high-quality chromosome-level genome of Manila clam R. philippinarum, an economically important marine bivalve in many coastal areas. The genome is constructed by the Hi-C assisted assembly, which yields 19 chromosomes with a total of 1.17 Gb and BUSCO integrity of 92.23%. The de novo assembled genome has a contig N50 length of 307.7 kb and scaffold N50 of 59.5 Mb. Gene family expansion analysis reveals that a total of 24 single-copy gene families have undergone the significant expansion or contraction, including E3 ubiquitin ligase and dynein heavy chain. The significant expansion of transposable elements has been also identified, including long terminal repeats (LTR) and non-LTR retrotransposons. The comparative transcriptomics among different clam tissues reveals that extracellular matrix (ECM) receptors and neuroactive ligand receptors may play the important roles in tissue structural support and neurotransmission during their infaunal life. These findings of gene family expansion and tissue-specific expression may reflect the unique soft tissue structure of clams, suggesting the evolution of lineage-specific morphological novelties. The high-quality genome and transcriptome data of R. philippinarum will not only facilitate the genetic studies on clams but will also provide valuable information on morphological novelties in mollusks.
Collapse
Affiliation(s)
- Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Yancui Chen
- Zhangzhou Aquatic Technology Promotion Station, Zhangzhou 363000, China;
| | - Sichen Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
7
|
Colgan DJ. The Families of Non-LTR Transposable Elements within Neritimorpha and Other Gastropoda. Genes (Basel) 2024; 15:783. [PMID: 38927719 PMCID: PMC11203168 DOI: 10.3390/genes15060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Repeated sequences, especially transposable elements (TEs), are known to be abundant in some members of the important invertebrate class Gastropoda. TEs that do not have long terminal repeated sequences (non-LTR TEs) are frequently the most abundant type but have not been well characterised in any gastropod. Despite this, sequences in draft gastropod genomes are often described as non-LTR TEs, but without identification to family type. This study was conducted to characterise non-LTR TEs in neritimorph snails, using genomic skimming surveys of three species and the recently published draft genome of Theodoxus fluviatilis. Multiple families of non-LTR TEs from the I, Jockey, L1, R2 and RTE superfamilies were found, although there were notably few representatives of the first of these, which is nevertheless abundant in other Gastropoda. Phylogenetic analyses of amino acid sequences of the reverse transcriptase domain from the elements ORF2 regions found considerable interspersion of representatives of the four neritimorph taxa within non-LTR families and sub-families. In contrast, phylogenetic analyses of sequences from the elements' ORF1 region resolved the representatives from individual species as monophyletic. However, using either region, members of the two species of the Neritidae were closely related, suggesting their potential for investigation of phyletic evolution at the family level.
Collapse
Affiliation(s)
- Donald James Colgan
- Malacology, AMRI, The Australian Museum, 1 William St., Sydney 2010, Australia
| |
Collapse
|
8
|
Wang B, Saleh AA, Yang N, Asare E, Chen H, Wang Q, Chen C, Song C, Gao B. High Diversity of Long Terminal Repeat Retrotransposons in Compact Vertebrate Genomes: Insights from Genomes of Tetraodontiformes. Animals (Basel) 2024; 14:1425. [PMID: 38791643 PMCID: PMC11117352 DOI: 10.3390/ani14101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the evolutionary profile (including diversity, activity, and abundance) of retrotransposons (RTNs) with long terminal repeats (LTRs) in ten species of Tetraodontiformes. These species, Arothron firmamentum, Lagocephalus sceleratus, Pao palembangensis, Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, Takifugu rubripes, Tetraodon nigroviridis, Mola mola, and Thamnaconus septentrionalis, are known for having the smallest genomes among vertebrates. Data mining revealed a high diversity and wide distribution of LTR retrotransposons (LTR-RTNs) in these compact vertebrate genomes, with varying abundances among species. A total of 819 full-length LTR-RTN sequences were identified across these genomes, categorized into nine families belonging to four different superfamilies: ERV (Orthoretrovirinae and Epsilon retrovirus), Copia, BEL-PAO, and Gypsy (Gmr, Mag, V-clade, CsRN1, and Barthez). The Gypsy superfamily exhibited the highest diversity. LTR family distribution varied among species, with Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, and Takifugu rubripes having the highest richness of LTR families and sequences. Additionally, evidence of recent invasions was observed in specific tetraodontiform genomes, suggesting potential transposition activity. This study provides insights into the evolution of LTR retrotransposons in Tetraodontiformes, enhancing our understanding of their impact on the structure and evolution of host genomes.
Collapse
Affiliation(s)
- Bingqing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria 11865, Egypt
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Emmanuel Asare
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Quan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| | - Bo Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (B.W.); (A.A.S.); (N.Y.); (E.A.); (H.C.); (Q.W.); (C.C.); (C.S.)
| |
Collapse
|
9
|
Flack N, Drown M, Walls C, Pratte J, McLain A, Faulk C. Chromosome-level, nanopore-only genome and allele-specific DNA methylation of Pallas's cat, Otocolobus manul. NAR Genom Bioinform 2023; 5:lqad033. [PMID: 37025970 PMCID: PMC10071556 DOI: 10.1093/nargab/lqad033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Pallas's cat, or the manul cat (Otocolobus manul), is a small felid native to the grasslands and steppes of central Asia. Population strongholds in Mongolia and China face growing challenges from climate change, habitat fragmentation, poaching, and other sources. These threats, combined with O. manul's zoo collection popularity and value in evolutionary biology, necessitate improvement of species genomic resources. We used standalone nanopore sequencing to assemble a 2.5 Gb, 61-contig nuclear assembly and 17097 bp mitogenome for O. manul. The primary nuclear assembly had 56× sequencing coverage, a contig N50 of 118 Mb, and a 94.7% BUSCO completeness score for Carnivora-specific genes. High genome collinearity within Felidae permitted alignment-based scaffolding onto the fishing cat (Prionailurus viverrinus) reference genome. Manul contigs spanned all 19 felid chromosomes with an inferred total gap length of less than 400 kilobases. Modified basecalling and variant phasing produced an alternate pseudohaplotype assembly and allele-specific DNA methylation calls; 61 differentially methylated regions were identified between haplotypes. Nearest features included classical imprinted genes, non-coding RNAs, and putative novel imprinted loci. The assembled mitogenome successfully resolved existing discordance between Felinae nuclear and mtDNA phylogenies. All assembly drafts were generated from 158 Gb of sequence using seven minION flow cells.
Collapse
Affiliation(s)
- Nicole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Melissa Drown
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jay Pratte
- Bloomington Parks and Recreation, Miller Park Zoo, Bloomington, IL 61701, USA
| | - Adam McLain
- Department of Biology and Chemistry, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
10
|
Lu Y, Rice E, Du K, Kneitz S, Naville M, Dechaud C, Volff JN, Boswell M, Boswell W, Hillier L, Tomlinson C, Milin K, Walter RB, Schartl M, Warren WC. High resolution genomes of multiple Xiphophorus species provide new insights into microevolution, hybrid incompatibility, and epistasis. Genome Res 2023; 33:557-571. [PMID: 37147111 PMCID: PMC10234306 DOI: 10.1101/gr.277434.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Because of diverged adaptative phenotypes, fish species of the genus Xiphophorus have contributed to a wide range of research for a century. Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, thus hindering advancement of the intra- and inter-species differences for evolutionary, comparative, and translational biomedical studies. Herein, we assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species, namely, X. maculatus, X. couchianus, and X. hellerii Our overall goal is to precisely assess microevolutionary processes in the clade to ascertain molecular events that led to the divergence of the Xiphophorus species and to progress understanding of genetic incompatibility to disease. In particular, we measured intra- and inter-species divergence and assessed gene expression dysregulation in reciprocal interspecies hybrids among the three species. We found expanded gene families and positively selected genes associated with live bearing, a special mode of reproduction. We also found positively selected gene families are significantly enriched in nonpolymorphic transposable elements, suggesting the dispersal of these nonpolymorphic transposable elements has accompanied the evolution of the genes, possibly by incorporating new regulatory elements in support of the Britten-Davidson hypothesis. We characterized inter-specific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA;
| | - Edward Rice
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Kremitzki Milin
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Ronald B Walter
- Department of Life Sciences, Texas A&M University, Corpus Christi, Texas 78412, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| |
Collapse
|
11
|
Li X, Wang X, Yang C, Lin L, Yuan H, Lei F, Huang Y. A de novo assembled genome of the Tibetan Partridge (Perdix hodgsoniae) and its high-altitude adaptation. Integr Zool 2023; 18:225-236. [PMID: 36049502 DOI: 10.1111/1749-4877.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Tibetan Partridge (Perdix hodgsoniae) is an endemic species distributed in high-altitude areas of 3600-5600 m on the Qinghai-Tibet Plateau. To explore how the species is adapted to the high elevation environment, we assembled a draft genome based on both the Illumina and PacBio sequencing platforms with its population genetics and genomics analysis. In total, 134.74 Gb short reads and 30.81 Gb long reads raw data were generated. The 1.05-Gb assembled genome had a contig N50 of 4.56 Mb, with 91.94% complete BUSCOs. The 17 457 genes were annotated, and 11.35% of the genome was composed of repeat sequences. The phylogenetic tree showed that P. hodgsoniae was located at the basal position of the clade, including Golden Pheasant (Chrysolophus pictus), Common Pheasant (Phasianus colchicus), and Mikado Pheasant (Syrmaticus mikado). We found that 1014, 2595, and 2732 of the 6641 one-to-one orthologous genes were under positive selection in P. hodgsoniae, detected using PAML, BUSTED, and aBSREL programs, respectively, of which 965 genes were common under positive selection with 3 different programs. Several positively selected genes and immunity pathways relevant to high-altitude adaptation were detected. Gene family evolution showed that 99 gene families experienced significant expansion events, while 6 gene families were under contraction. The total number of olfactory receptor genes was relatively low in P. hodgsoniae. Genomic data provide an important resource for a further study on the evolutionary history of P. hodgsoniae, which provides a new insight into its high-altitude adaptation mechanisms.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engeering, Xi'an University, Xi'an, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, the Chinese Academy of Sciences, Beijing, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Devaux CA, Pontarotti P, Nehari S, Raoult D. 'Cannibalism' of exogenous DNA sequences: The ancestral form of adaptive immunity which entails recognition of danger. Front Immunol 2022; 13:989707. [PMID: 36618387 PMCID: PMC9816338 DOI: 10.3389/fimmu.2022.989707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Adaptive immunity is a sophisticated form of immune response capable of retaining the molecular memory of a very great diversity of target antigens (epitopes) as non-self. It is capable of reactivating itself upon a second encounter with an immunoglobulin or T-cell receptor antigen-binding site with a known epitope that had previously primed the host immune system. It has long been considered that adaptive immunity is a highly evolved form of non-self recognition that appeared quite late in speciation and complemented a more generalist response called innate immunity. Innate immunity offers a relatively non-specific defense (although mediated by sensors that could specifically recognize virus or bacteria compounds) and which does not retain a memory of the danger. But this notion of recent acquisition of adaptive immunity is challenged by the fact that another form of specific recognition mechanisms already existed in prokaryotes that may be able to specifically auto-protect against external danger. This recognition mechanism can be considered a primitive form of specific (adaptive) non-self recognition. It is based on the fact that many archaea and bacteria use a genome editing system that confers the ability to appropriate viral DNA sequences allowing prokaryotes to prevent host damage through a mechanism very similar to adaptive immunity. This is indistinctly called, 'endogenization of foreign DNA' or 'viral DNA predation' or, more pictorially 'DNA cannibalism'. For several years evidence has been accumulating, highlighting the crucial role of endogenization of foreign DNA in the fundamental processes related to adaptive immunity and leading to a change in the dogma that adaptive immunity appeared late in speciation.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France,*Correspondence: Christian A. Devaux,
| | - Pierre Pontarotti
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Sephora Nehari
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Markova DN, Ruma FB, Casola C, Mirsalehi A, Betrán E. Recurrent co-domestication of PIF/Harbinger transposable element proteins in insects. Mob DNA 2022; 13:28. [PMID: 36451208 PMCID: PMC9710019 DOI: 10.1186/s13100-022-00282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are selfish DNA sequences capable of moving and amplifying at the expense of host cells. Despite this, an increasing number of studies have revealed that TE proteins are important contributors to the emergence of novel host proteins through molecular domestication. We previously described seven transposase-derived domesticated genes from the PIF/Harbinger DNA family of TEs in Drosophila and a co-domestication. All PIF TEs known in plants and animals distinguish themselves from other DNA transposons by the presence of two genes. We hypothesize that there should often be co-domestications of the two genes from the same TE because the transposase (gene 1) has been described to be translocated to the nucleus by the MADF protein (gene 2). To provide support for this model of new gene origination, we investigated available insect species genomes for additional evidence of PIF TE domestication events and explored the co-domestication of the MADF protein from the same TE insertion. RESULTS After the extensive insect species genomes exploration of hits to PIF transposases and analyses of their context and evolution, we present evidence of at least six independent PIF transposable elements proteins domestication events in insects: two co-domestications of both transposase and MADF proteins in Anopheles (Diptera), one transposase-only domestication event and one co-domestication in butterflies and moths (Lepidoptera), and two transposases-only domestication events in cockroaches (Blattodea). The predicted nuclear localization signals for many of those proteins and dicistronic transcription in some instances support the functional associations of co-domesticated transposase and MADF proteins. CONCLUSIONS Our results add to a co-domestication that we previously described in fruit fly genomes and support that new gene origination through domestication of a PIF transposase is frequently accompanied by the co-domestication of a cognate MADF protein in insects, potentially for regulatory functions. We propose a detailed model that predicts that PIF TE protein co-domestication should often occur from the same PIF TE insertion.
Collapse
Affiliation(s)
- Dragomira N. Markova
- grid.267315.40000 0001 2181 9515Department of Biology, University of Texas at Arlington, Arlington, TX USA
| | - Fatema B. Ruma
- grid.267315.40000 0001 2181 9515Department of Biology, University of Texas at Arlington, Arlington, TX USA
| | - Claudio Casola
- grid.264756.40000 0004 4687 2082Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX USA
| | - Ayda Mirsalehi
- grid.267315.40000 0001 2181 9515Department of Biology, University of Texas at Arlington, Arlington, TX USA
| | - Esther Betrán
- grid.267315.40000 0001 2181 9515Department of Biology, University of Texas at Arlington, Arlington, TX USA
| |
Collapse
|
14
|
Dumas F, Perelman PL, Biltueva L, Roelke-Parker ME. Retrotransposon mapping in spider monkey genomes of the family Atelidae (Platyrrhini, Primates) shows a high level of LINE-1 amplification. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the distribution of LINE-1 repeat sequences, a LINE-1 probe was Fluorescence In Situ Hybridized (FISH) on the chromosomes of Ateles geoffroyi and Ateles fusciceps (Atelidae); a LINE-1 probe was also mapped on Cebuella pygmaea (Cebidae) and used as an outgroup for phylogenetic comparison. Ateles spider monkeys have a highly rearranged genome and are an ideal model for testing whether LINE-1 is involved in genome evolution. The LINE-1 probe has been mapped in the two Atelidae species for the first time, revealing a high accumulation of LINE-1 sequences along chromosomal arms, including telomeres, and a scarcity of LINE-1 signals at centromere positions. LINE-1 mapping in C. pygmaea (Cebidae) revealed signals at centromere positions and along chromosome arms, which was consistent with previous published data from other Cebidae species. In a broader sense, the results were analyzed in light of published data on whole-chromosomal human probes mapped in these genomes. This analysis allows us to speculate about the presence of LINE-1 sequences at the junction of human chromosomal syntenies, as well as a possible link between these sequences and chromosomal rearrangements.
Collapse
|
15
|
Orozco-Arias S, Candamil-Cortes MS, Jaimes PA, Valencia-Castrillon E, Tabares-Soto R, Isaza G, Guyot R. Automatic curation of LTR retrotransposon libraries from plant genomes through machine learning. J Integr Bioinform 2022; 19:jib-2021-0036. [PMID: 35822734 PMCID: PMC9521825 DOI: 10.1515/jib-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
Transposable elements are mobile sequences that can move and insert themselves into chromosomes, activating under internal or external stimuli, giving the organism the ability to adapt to the environment. Annotating transposable elements in genomic data is currently considered a crucial task to understand key aspects of organisms such as phenotype variability, species evolution, and genome size, among others. Because of the way they replicate, LTR retrotransposons are the most common transposable elements in plants, accounting in some cases for up to 80% of all DNA information. To annotate these elements, a reference library is usually created, a curation process is performed, eliminating TE fragments and false positives and then annotated in the genome using the homology method. However, the curation process can take weeks, requires extensive manual work and the execution of multiple time-consuming bioinformatics software. Here, we propose a machine learning-based approach to perform this process automatically on plant genomes, obtaining up to 91.18% F1-score. This approach was tested with four plant species, obtaining up to 93.6% F1-score (Oryza granulata) in only 22.61 s, where bioinformatics methods took approximately 6 h. This acceleration demonstrates that the ML-based approach is efficient and could be used in massive sequencing projects.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Manizales, Colombia
| | | | - Paula A Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Colombia
| | | | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, Manizales, Colombia
| | - Romain Guyot
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia.,Institut de Recherche pour le Développement, CIRAD, Univ. Montpellier, Montpellier, France
| |
Collapse
|
16
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
17
|
Su Y, Huang Q, Wang Z, Wang T. High genetic and epigenetic variation of transposable elements: Potential drivers to rapid adaptive evolution for the noxious invasive weed Mikania micrantha. Ecol Evol 2021; 11:13501-13517. [PMID: 34646486 PMCID: PMC8495827 DOI: 10.1002/ece3.8075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE-based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty-five transposon-inserted genes were sequenced and homology-based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE-associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Qiqi Huang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
18
|
Ceraulo S, Perelman PL, Dumas F. Massive LINE‐1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Ceraulo
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| | | | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| |
Collapse
|
19
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Transposable element landscapes illuminate past evolutionary events in the endangered fern Vandenboschia speciosa. Genome 2021; 65:95-103. [PMID: 34555288 DOI: 10.1139/gen-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vandenboschia speciosa is an endangered tetraploid fern species with a large genome (10.5 Gb). Its geographical distribution is characterized by disjoined tertiary flora refuges, with relict populations that survived past climate crises. Here, we analyzed the transposable elements (TEs) and found that they comprise approximately 76% of the V. speciosa genome, thus being the most abundant type of DNA sequence in this gigantic genome. The V. speciosa genome is composed of 51% and 5.6% of Class I and Class II elements, respectively. LTR retrotransposons were the most abundant TEs in this species (at least 42% of the genome), followed by non-LTR retrotransposons, which constituted at least 8.7% of the genome of this species. We introduce an additional analysis to identify the nature of non-annotated elements (19% of the genome). A BLAST search of the non-annotated contigs against the V. speciosa TE database allowed for the identification of almost half of them, which were most likely diverged sequence variants of the annotated TEs. In general, the TE composition in V. speciosa resembles the TE composition in seed plants. In addition, repeat landscapes revealed three episodes of amplification for all TEs, most likely due to demographic changes associated with past climate crises.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Beatriz Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
20
|
Li A, Wang J, Sun K, Wang S, Zhao X, Wang T, Xiong L, Xu W, Qiu L, Shang Y, Liu R, Wang S, Lu Y. Two reference-quality sea snake genomes reveal their divergent evolution of adaptive traits and venom systems. Mol Biol Evol 2021; 38:4867-4883. [PMID: 34320652 PMCID: PMC8557462 DOI: 10.1093/molbev/msab212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
True sea snakes (Hydrophiini) are among the last and most successful clades of vertebrates that show secondary marine adaptation, exhibiting diverse phenotypic traits and lethal venom systems. To better understand their evolution, we generated the first chromosome-level genomes of two representative Hydrophiini snakes, Hydrophis cyanocinctus and H. curtus. Through comparative genomics we identified a great expansion of the underwater olfaction-related V2R gene family, consisting of more than 1,000 copies in both snakes. A series of chromosome rearrangements and genomic structural variations were recognized, including large inversions longer than 30 megabase (Mb) on sex chromosomes which potentially affect key functional genes associated with differentiated phenotypes between the two species. By integrating multiomics we found a significant loss of the major weapon for elapid predation, three-finger toxin genes, which displayed a dosage effect in H. curtus. These genetic changes may imply mechanisms that drove the divergent evolution of adaptive traits including prey preferences between the two closely related snakes. Our reference-quality sea snake genomes also enrich the repositories for addressing important issues on the evolution of marine tetrapods, and provide a resource for discovering marine-derived biological products.
Collapse
Affiliation(s)
- An Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kuo Sun
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Shuocun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xin Zhao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Runhui Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiming Lu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
21
|
Yang Y, Ye X, Dang C, Cao Y, Hong R, Sun YH, Xiao S, Mei Y, Xu L, Fang Q, Xiao H, Li F, Ye G. Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation. BMC Biol 2021; 19:145. [PMID: 34315471 PMCID: PMC8314478 DOI: 10.1186/s12915-021-01081-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories. The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual adaptation to parasitism and predation. Results We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at 636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons, is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively selected genes and rapidly evolving proteins involved in energy production and motor activity, which may contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation. We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G. flavifemur, which may contribute to partner searching and mating. Conclusions Our results provide new insights into the genome evolution, predatory adaptation, venom evolution, and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of hymenopterans that may benefit pest control. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01081-6.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yunshen Cao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Rui Hong
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Le Xu
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Huamei Xiao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Yang N, Zhao B, Chen Y, D'Alessandro E, Chen C, Ji T, Wu X, Song C. Distinct Retrotransposon Evolution Profile in the Genome of Rabbit (Oryctolagus cuniculus). Genome Biol Evol 2021; 13:6322960. [PMID: 34270728 PMCID: PMC8346653 DOI: 10.1093/gbe/evab168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Although the rabbit genome has already been annotated, it is mobilome remains largely unknown. Here, multiple pipelines were used to de novo mine and annotate the mobilome in rabbit. Four families and 19 subfamilies of LINE1s, two families and nine subfamilies of SINEs, and 12 ERV families were defined in rabbit based on sequence identity, structural organization, and phylogenetic tree. The analysis of insertion age and polymerase chain reaction suggests that a number of families are very young and may remain active, such as L1B, L1D, OcuSINEA, and OcuERV1. RepeatMasker annotation revealed a distinct transposable element landscape within the genome, with approximately two million copies of SINEs, representing the greatest proportion of the genome (19.61%), followed by LINEs (15.44%), and LTRs (4.11%), respectively, considerably different from most other mammal mobilomes except hedgehog and tree shrew, in which LINEs have the highest proportion. Furthermore, a very high rate of insertion polymorphisms (>85%) for the youngest subfamily (OcuSINEA1) was identified by polymerase chain reaction. The majority of retrotransposon insertions overlapped with protein-coding regions (>80%) and lncRNA (90%) genes. Genomic distribution bias was observed for retrotransposons, with those immediately upstream (-1 kb) and downstream (1 kb) of genes significantly depleted. Local GC content in 50-kb widows had significantly negative correlations with LINE (rs=-0.996) and LTR (rs=-0.829) insertions. The current study revealed a distinct mobilome landscape in rabbit, which will assist in the elucidation of the evolution of the genome of lagomorphs, and even other mammals.
Collapse
Affiliation(s)
- Naisu Yang
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Yang Chen
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | | | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Ting Ji
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| |
Collapse
|
23
|
What prevents mainstream evolutionists teaching the whole truth about how genomes evolve? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:140-152. [PMID: 33933502 DOI: 10.1016/j.pbiomolbio.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 01/24/2023]
Abstract
The common belief that the neo-Darwinian Modern Synthesis (MS) was buttressed by the discoveries of molecular biology is incorrect. On the contrary those discoveries have undermined the MS. This article discusses the many processes revealed by molecular studies and genome sequencing that contribute to evolution but nonetheless lie beyond the strict confines of the MS formulated in the 1940s. The core assumptions of the MS that molecular studies have discredited include the idea that DNA is intrinsically a faithful self-replicator, the one-way transfer of heritable information from nucleic acids to other cell molecules, the myth of "selfish DNA", and the existence of an impenetrable Weismann Barrier separating somatic and germ line cells. Processes fundamental to modern evolutionary theory include symbiogenesis, biosphere interactions between distant taxa (including viruses), horizontal DNA transfers, natural genetic engineering, organismal stress responses that activate intrinsic genome change operators, and macroevolution by genome restructuring (distinct from the gradual accumulation of local microevolutionary changes in the MS). These 21st Century concepts treat the evolving genome as a highly formatted and integrated Read-Write (RW) database rather than a Read-Only Memory (ROM) collection of independent gene units that change by random copying errors. Most of the discoverers of these macroevolutionary processes have been ignored in mainstream textbooks and popularizations of evolutionary biology, as we document in some detail. Ironically, we show that the active view of evolution that emerges from genomics and molecular biology is much closer to the 19th century ideas of both Darwin and Lamarck. The capacity of cells to activate evolutionary genome change under stress can account for some of the most negative clinical results in oncology, especially the sudden appearance of treatment-resistant and more aggressive tumors following therapies intended to eradicate all cancer cells. Knowing that extreme stress can be a trigger for punctuated macroevolutionary change suggests that less lethal therapies may result in longer survival times.
Collapse
|
24
|
Yang C, Li X, Wang Q, Yuan H, Huang Y, Xiao H. Genome-wide analyses of the relict gull (Larus relictus): insights and evolutionary implications. BMC Genomics 2021; 22:311. [PMID: 33926388 PMCID: PMC8082828 DOI: 10.1186/s12864-021-07616-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The relict gull (Larus relictus), was classified as vulnerable on the IUCN Red List and is a first-class national protected bird in China. Genomic resources for L. relictus are lacking, which limits the study of its evolution and its conservation. RESULTS In this study, based on the Illumina and PacBio sequencing platforms, we successfully assembled the genome of L. relictus, one of the few known reference genomes in genus Larus. The size of the final assembled genome was 1.21 Gb, with a contig N50 of 8.11 Mb. A total of 18,454 genes were predicted from the assembly results, with 16,967 (91.94%) of these genes annotated. The genome contained 92.52 Mb of repeat sequence, accounting for 7.63% of the assembly. A phylogenetic tree was constructed using 4902 single-copy orthologous genes, which showed L. relictus had closest relative of L. smithsonianus, with divergence time of 14.7 Mya estimated between of them. PSMC analyses indicated that L. relictus had been undergoing a long-term population decline during 0.01-0.1 Mya with a small effective population size fom 8800 to 2200 individuals. CONCLUSIONS This genome will be a valuable genomic resource for a range of genomic and conservation studies of L. relictus and will help to establish a foundation for further studies investigating whether the breeding population is a complex population. As the species is threatened by habitat loss and fragmentation, actions to protect L. relictus are suggested to alleviate the fragmentation of breeding populations.
Collapse
Affiliation(s)
- Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
- Shaanxi Institute of Zoology, Xi'an, 710032, China
| | - Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | | | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Hong Xiao
- Shaanxi Institute of Zoology, Xi'an, 710032, China.
| |
Collapse
|
25
|
Venkatraman M, Fleischer RC, Tsuchiya MTN. Comparative Analysis of Annotation Pipelines Using the First Japanese White-Eye (Zosterops japonicus) Genome. Genome Biol Evol 2021; 13:6184866. [PMID: 33760049 DOI: 10.1093/gbe/evab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2021] [Indexed: 11/14/2022] Open
Abstract
Introduced into Hawaii in the early 1900s, the Japanese white-eye or warbling white-eye (Zosterops japonicus) is now the most abundant land bird in the archipelago. Here, we present the first Z. japonicus genome, sequenced from an individual in its invasive range. This genome provides an important resource for future studies in invasion genomics. We annotated the genome using two workflows-standalone AUGUSTUS and BRAKER2. We found that AUGUSTUS was more conservative with gene predictions when compared with BRAKER2. The final number of annotated gene models was similar between the two workflows, but standalone AUGUSTUS had over 70% of gene predictions with Blast2GO annotations versus under 30% using BRAKER2. Additionally, we tested whether using RNA-seq data from 47 samples had a significant impact on annotation quality when compared with data from a single sample, as generating RNA-seq data for genome annotation can be expensive and requires well preserved tissue. We found that more data did not significantly change the number of annotated genes using AUGUSTUS but using BRAKER2 the number increased substantially. The results presented here will aid researchers in annotating draft genomes of nonmodel species as well as those studying invasion success.
Collapse
Affiliation(s)
- Madhvi Venkatraman
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, District of Columbia, USA
| |
Collapse
|
26
|
Cayuela H, Dorant Y, Mérot C, Laporte M, Normandeau E, Gagnon-Harvey S, Clément M, Sirois P, Bernatchez L. Thermal adaptation rather than demographic history drives genetic structure inferred by copy number variants in a marine fish. Mol Ecol 2021; 30:1624-1641. [PMID: 33565147 DOI: 10.1111/mec.15835] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence shows that structural variants represent an overlooked aspect of genetic variation with consequential evolutionary roles. Among those, copy number variants (CNVs), including duplicated genomic regions and transposable elements (TEs), may contribute to local adaptation and/or reproductive isolation among divergent populations. Those mechanisms suppose that CNVs could be used to infer neutral and/or adaptive population genetic structure, whose study has been restricted to microsatellites, mitochondrial DNA and Amplified fragment length polymorphism markers in the past and more recently the use of single nucleotide polymorphisms (SNPs). Taking advantage of recent developments allowing CNV analysis from RAD-seq data, we investigated how variation in fitness-related traits, local environmental conditions and demographic history are associated with CNVs, and how subsequent copy number variation drives population genetic structure in a marine fish, the capelin (Mallotus villosus). We collected 1538 DNA samples from 35 sampling sites in the north Atlantic Ocean and identified 6620 putative CNVs. We found associations between CNVs and the gonadosomatic index, suggesting that six duplicated regions could affect female fitness by modulating oocyte production. We also detected 105 CNV candidates associated with water temperature, among which 20% corresponded to genomic regions located within the sequence of protein-coding genes, suggesting local adaptation to cold water by means of gene sequence amplification. We also identified 175 CNVs associated with the divergence of three previously defined parapatric glacial lineages, of which 24% were located within protein-coding genes, making those loci potential candidates for reproductive isolation. Lastly, our analyses unveiled a hierarchical, complex CNV population structure determined by temperature and local geography, which was in stark contrast to that inferred based on SNPs in a previous study. Our findings underline the complementarity of those two types of genomic variation in population genomics studies.
Collapse
Affiliation(s)
- Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Stéphane Gagnon-Harvey
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Marie Clément
- Center for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, NL, Canada.,Labrador Institute of Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Pascal Sirois
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
27
|
Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A, Kautt AF, Simakov O, Pippel M, Kuraku S, Meyer A, Franchini P. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol Ecol 2021; 30:955-972. [PMID: 33305470 PMCID: PMC8607476 DOI: 10.1111/mec.15774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Factors ranging from ecological opportunity to genome composition might explain why only some lineages form adaptive radiations. While being rare, particular systems can provide natural experiments within an identical ecological setting where species numbers and phenotypic divergence in two closely related lineages are notably different. We investigated one such natural experiment using two de novo assembled and 40 resequenced genomes and asked why two closely related Neotropical cichlid fish lineages, the Amphilophus citrinellus species complex (Midas cichlids; radiating) and Archocentrus centrarchus (Flyer cichlid; nonradiating), have resulted in such disparate evolutionary outcomes. Although both lineages inhabit many of the same Nicaraguan lakes, whole-genome inferred demography suggests that priority effects are not likely to be the cause of the dissimilarities. Also, genome-wide levels of selection, transposable element dynamics, gene family expansion, major chromosomal rearrangements and the number of genes under positive selection were not markedly different between the two lineages. To more finely investigate particular subsets of the genome that have undergone adaptive divergence in Midas cichlids, we also examined if there was evidence for 'molecular pre-adaptation' in regions identified by QTL mapping of repeatedly diverging adaptive traits. Although most of our analyses failed to pinpoint substantial genomic differences, we did identify functional categories containing many genes under positive selection that provide candidates for future studies on the propensity of Midas cichlids to radiate. Our results point to a disproportionate role of local, rather than genome-wide factors underlying the propensity for these cichlid fishes to adaptively radiate.
Collapse
Affiliation(s)
- Peiwen Xiong
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Carmelo Fruciano
- Department of BiologyUniversity of KonstanzKonstanzGermany
- National Research Council (CNR) – IRBIMMessinaItaly
| | - Wai Y. Wong
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | | | - Andreas F. Kautt
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Oleg Simakov
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Shigehiro Kuraku
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | |
Collapse
|
28
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
29
|
Ellison CE, Kagda MS, Cao W. Telomeric TART elements target the piRNA machinery in Drosophila. PLoS Biol 2020; 18:e3000689. [PMID: 33347429 PMCID: PMC7785250 DOI: 10.1371/journal.pbio.3000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 01/05/2021] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
Coevolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by reestablishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. The TART-A TE functions as an important component of Drosophila telomeres but has also reportedly inserted into the Drosophila melanogaster nuclear export factor gene nxf2. We find that, rather than inserting into nxf2, TART-A has actually captured a portion of nxf2 sequence. We show that TART-A produces abundant Piwi-interacting small RNAs (piRNAs), some of which are antisense to the nxf2 transcript, and that the TART-like region of nxf2 is evolving rapidly. Furthermore, in D. melanogaster, TART-A is present at higher copy numbers, and nxf2 shows reduced expression, compared to the closely related species Drosophila simulans. We propose that capturing nxf2 sequence allowed TART-A to target the nxf2 gene for piRNA-mediated repression and that these 2 elements are engaged in antagonistic coevolution despite the fact that TART-A is serving a critical role for its host genome. Co-evolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by re-establishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. This study shows that a specialized Drosophila retrotransposon that functions as a telomere has captured a portion of a host piRNA gene which may allow it to evade silencing.
Collapse
Affiliation(s)
- Christopher E. Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Meenakshi S. Kagda
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
30
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
31
|
Zattera ML, Gazolla CB, Soares ADA, Gazoni T, Pollet N, Recco-Pimentel SM, Bruschi DP. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front Genet 2020; 11:637. [PMID: 32793276 PMCID: PMC7385237 DOI: 10.3389/fgene.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Amanda de Araújo Soares
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Thiago Gazoni
- Universidade Estadual Paulista (Unesp), Campus Rio Claro, Rio Claro, Brazil
| | - Nicolas Pollet
- Laboratoire Evolution Genomes Comportement Ecologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
32
|
Kaaij LJT, Mohn F, van der Weide RH, de Wit E, Bühler M. The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse. Cell 2020; 178:1437-1451.e14. [PMID: 31491387 DOI: 10.1016/j.cell.2019.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/29/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022]
Abstract
CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.
Collapse
Affiliation(s)
- Lucas J T Kaaij
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Robin H van der Weide
- Division of Gene Regulation, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
33
|
Ghosh A, Platt RN, Vandewege MW, Tabassum R, Hsu CY, Isberg SR, Peterson DG, Finger JW, Kieran TJ, Glenn TC, Gongora J, Ray DA. Identification and characterization of microRNAs (miRNAs) and their transposable element origins in the saltwater crocodile, Crocodylus porosus. Anal Biochem 2020; 602:113781. [PMID: 32485163 DOI: 10.1016/j.ab.2020.113781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians. Understanding gene regulation in the saltwater crocodile in the context of relatively slow genomic change thus holds potential for the investigation of genomics, evolution, and adaptation. Utilizing eleven tissue types and sixteen small RNA libraries, we report 644 miRNAs in the saltwater crocodile with >78% of miRNAs being novel to crocodilians. We also identified potential targets for the miRNAs and analyzed the relationship of the miRNA repertoire to transposable elements (TEs). Results suggest an increased association of DNA transposons with miRNAs when compared to retrotransposons. This work reports the first comprehensive analysis of miRNAs in Crocodylus porosus and addresses the potential impacts of miRNAs in regulating the genome in the saltwater crocodile. In addition, the data suggests a supporting role of TEs as a source for miRNAs, adding to the increasing evidence that TEs play a significant role in the evolution of gene regulation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michael W Vandewege
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Biology, Eastern New Mexico University, Portales, NM, USA
| | | | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - Sally R Isberg
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia; The Centre for Crocodile Research, Darwin, NT, Australia
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Troy J Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
34
|
Wang W, Wang F, Hao R, Wang A, Sharshov K, Druzyaka A, Lancuo Z, Shi Y, Feng S. First de novo whole genome sequencing and assembly of the bar-headed goose. PeerJ 2020; 8:e8914. [PMID: 32292659 PMCID: PMC7144584 DOI: 10.7717/peerj.8914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background The bar-headed goose (Anser indicus) mainly inhabits the plateau wetlands of Asia. As a specialized high-altitude species, bar-headed geese can migrate between South and Central Asia and annually fly twice over the Himalayan mountains along the central Asian flyway. The physiological, biochemical and behavioral adaptations of bar-headed geese to high-altitude living and flying have raised much interest. However, to date, there is still no genome assembly information publicly available for bar-headed geese. Methods In this study, we present the first de novo whole genome sequencing and assembly of the bar-headed goose, along with gene prediction and annotation. Results 10X Genomics sequencing produced a total of 124 Gb sequencing data, which can cover the estimated genome size of bar-headed goose for 103 times (average coverage). The genome assembly comprised 10,528 scaffolds, with a total length of 1.143 Gb and a scaffold N50 of 10.09 Mb. Annotation of the bar-headed goose genome assembly identified a total of 102 Mb (8.9%) of repetitive sequences, 16,428 protein-coding genes, and 282 tRNAs. In total, we determined that there were 63 expanded and 20 contracted gene families in the bar-headed goose compared with the other 15 vertebrates. We also performed a positive selection analysis between the bar-headed goose and the closely related low-altitude goose, swan goose (Anser cygnoides), to uncover its genetic adaptations to the Qinghai-Tibetan Plateau. Conclusion We reported the currently most complete genome sequence of the bar-headed goose. Our assembly will provide a valuable resource to enhance further studies of the gene functions of bar-headed goose. The data will also be valuable for facilitating studies of the evolution, population genetics and high-altitude adaptations of the bar-headed geese at the genomic level.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Fang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Rongkai Hao
- Novogene Bioinformatics Institute, Beijing, China
| | - Aizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Alexey Druzyaka
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Zhuoma Lancuo
- School of Finance and Economics, Qinghai University, Xi'ning, Qinghai, China
| | - Yuetong Shi
- KunLun College of Qinghai University, Xi'ning, Qinghai, China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| |
Collapse
|
35
|
Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Rhodnius Species. Genes (Basel) 2020; 11:genes11020170. [PMID: 32041215 PMCID: PMC7073582 DOI: 10.3390/genes11020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs.
Collapse
|
36
|
Viana Ferreira AM, Marajó L, Matoso DA, Ribeiro LB, Feldberg E. Chromosomal Mapping of Rex Retrotransposons in Tambaqui (Colossoma macropomum Cuvier, 1818) Exposed to Three Climate Change Scenarios. Cytogenet Genome Res 2019; 159:39-47. [PMID: 31593951 DOI: 10.1159/000502926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 11/19/2022] Open
Abstract
Greenhouse gas emissions are known to influence the planet's temperature, mainly due to human activities. To allow hypothesis testing, as well as to seek viable alternatives for mitigation, the Intergovernmental Panel on Climate Change (IPCC) suggested 3 main scenarios for changes projected for the year 2100. In this paper, we subjected Colossoma macropomum Cuvier, 1818 (tambaqui) individuals in a microcosm to IPCC scenarios B1 (mild), A1B (intermediate), and A2 (extreme) to test possible impacts on their genome. We found chromosome heterochromatinization in specimens exposed to the A2 scenario, where terminal blocks and interstitial bands were detected on several chromosome pairs. The behavior of Rex1 and Rex3 sequences differed between the test scenarios. Hybridization of Rex1 resulted in diffuse signals which showed a gradual increase in the tested scenarios. For Rex3, an increase was observed in the A2 scenario with blocks on several chromosomes, some of which coincided with heterochromatin. Heterochromatinization is an epigenetic process, which may have occurred as a mechanism for regulating Rex3 activity. The signal pattern of Rex6 did not change, suggesting that other mechanisms are acting to regulate its activity.
Collapse
|
37
|
van der Nest MA, Steenkamp ET, Roodt D, Soal NC, Palmer M, Chan WY, Wilken PM, Duong TA, Naidoo K, Santana QC, Trollip C, De Vos L, van Wyk S, McTaggart AR, Wingfield MJ, Wingfield BD. Genomic analysis of the aggressive tree pathogen Ceratocystis albifundus. Fungal Biol 2019; 123:351-363. [PMID: 31053324 DOI: 10.1016/j.funbio.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The overall goal of this study was to determine whether the genome of an important plant pathogen in Africa, Ceratocystis albifundus, is structured into subgenomic compartments, and if so, to establish how these compartments are distributed across the genome. For this purpose, the publicly available genome of C. albifundus was complemented with the genome sequences for four additional isolates using the Illumina HiSeq platform. In addition, a reference genome for one of the individuals was assembled using both PacBio and Illumina HiSeq technologies. Our results showed a high degree of synteny between the five genomes, although several regions lacked detectable long-range synteny. These regions were associated with the presence of accessory genes, lower genetic similarity, variation in read-map depth, as well as transposable elements and genes associated with host-pathogen interactions (e.g. effectors and CAZymes). Such patterns are regarded as hallmarks of accelerated evolution, particularly of accessory subgenomic compartments in fungal pathogens. Our findings thus showed that the genome of C. albifundus is made-up of core and accessory subgenomic compartments, which is an important step towards characterizing its pangenome. This study also highlights the value of comparative genomics for understanding mechanisms that may underly and influence the biology and evolution of pathogens.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nicole C Soal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Conrad Trollip
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Stephanie van Wyk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Auvinet J, Graça P, Ghigliotti L, Pisano E, Dettaï A, Ozouf-Costaz C, Higuet D. Insertion Hot Spots of DIRS1 Retrotransposon and Chromosomal Diversifications among the Antarctic Teleosts Nototheniidae. Int J Mol Sci 2019; 20:ijms20030701. [PMID: 30736325 PMCID: PMC6387122 DOI: 10.3390/ijms20030701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022] Open
Abstract
By their faculty to transpose, transposable elements are known to play a key role in eukaryote genomes, impacting both their structuration and remodeling. Their integration in targeted sites may lead to recombination mechanisms involved in chromosomal rearrangements. The Antarctic fish family Nototheniidae went through several waves of species radiations. It is a suitable model to study transposable element (TE)-mediated mechanisms associated to genome and chromosomal diversifications. After the characterization of Gypsy (GyNoto), Copia (CoNoto), and DIRS1 (YNoto) retrotransposons in the genomes of Nototheniidae (diversity, distribution, conservation), we focused on their chromosome location with an emphasis on the three identified nototheniid radiations (the Trematomus, the plunderfishes, and the icefishes). The strong intrafamily TE conservation and wide distribution across species of the whole family suggest an ancestral acquisition with potential secondary losses in some lineages. GyNoto and CoNoto (including Hydra and GalEa clades) mostly produced interspersed signals along chromosomal arms. On the contrary, insertion hot spots accumulating in localized regions (mainly next to centromeric and pericentromeric regions) highlighted the potential role of YNoto in chromosomal diversifications as facilitator of the fusions which occurred in many nototheniid lineages, but not of the fissions.
Collapse
Affiliation(s)
- Juliette Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
| | - Paula Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
| | - Laura Ghigliotti
- Istituto per lo Studio degli Impatti Antropici e la Sostenibilità in Ambiente Marino (IAS), National Research Council (CNR), 16149 Genoa, Italy.
| | - Eva Pisano
- Istituto per lo Studio degli Impatti Antropici e la Sostenibilità in Ambiente Marino (IAS), National Research Council (CNR), 16149 Genoa, Italy.
| | - Agnès Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005 Paris, France.
| | - Catherine Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
| | - Dominique Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005 Paris, France.
| |
Collapse
|
39
|
Petersen M, Armisén D, Gibbs RA, Hering L, Khila A, Mayer G, Richards S, Niehuis O, Misof B. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol Biol 2019; 19:11. [PMID: 30626321 PMCID: PMC6327564 DOI: 10.1186/s12862-018-1324-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are a major component of metazoan genomes and are associated with a variety of mechanisms that shape genome architecture and evolution. Despite the ever-growing number of insect genomes sequenced to date, our understanding of the diversity and evolution of insect TEs remains poor. RESULTS Here, we present a standardized characterization and an order-level comparison of arthropod TE repertoires, encompassing 62 insect and 11 outgroup species. The insect TE repertoire contains TEs of almost every class previously described, and in some cases even TEs previously reported only from vertebrates and plants. Additionally, we identified a large fraction of unclassifiable TEs. We found high variation in TE content, ranging from less than 6% in the antarctic midge (Diptera), the honey bee and the turnip sawfly (Hymenoptera) to more than 58% in the malaria mosquito (Diptera) and the migratory locust (Orthoptera), and a possible relationship between the content and diversity of TEs and the genome size. CONCLUSION While most insect orders exhibit a characteristic TE composition, we also observed intraordinal differences, e.g., in Diptera, Hymenoptera, and Hemiptera. Our findings shed light on common patterns and reveal lineage-specific differences in content and evolution of TEs in insects. We anticipate our study to provide the basis for future comparative research on the insect TE repertoire.
Collapse
Affiliation(s)
- Malte Petersen
- University of Bonn, Bonn, Germany
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Adenauerallee 160, Bonn, 53113 Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt, 60325 Germany
| | - David Armisén
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon, 69364 France
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, 77030 TX USA
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132 Germany
| | - Abderrahman Khila
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon, 69364 France
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132 Germany
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, 77030 TX USA
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Freiburg (Brsg.), 79104 Germany
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Adenauerallee 160, Bonn, 53113 Germany
| |
Collapse
|
40
|
Babakhani S, Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. J Basic Microbiol 2018; 58:905-917. [PMID: 30113080 DOI: 10.1002/jobm.201800204] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/08/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
Transposons are a group of mobile genetic elements that are defined as a DNA sequence. Transposons can jump into different places of the genome; for this reason, they are called jumping genes. However, some transposons are always kept at the insertion site in the genome. Most transposons are inactivated and as a result, cannot move. Transposons are divided into two main groups: retrotransposons (class І) and DNA transposons (class ІІ). Retrotransposons are often found in eukaryotes. DNA transposons can be found in both eukaryotes and prokaryotes. The bacterial transposons belong to the DNA transposons and the Tn family, which are usually the carrier of additional genes for antibiotic resistance. Transposons can transfer from a plasmid to other plasmids or from a DNA chromosome to plasmid and vice versa that cause the transmission of antibiotic resistance genes in bacteria. The treatment of bacterial infectious diseases is difficult because of existing antibiotic resistance that part of this antibiotic resistance is caused by transposons. Bacterial infectious diseases are responsible for the increasing rise in world mortality rate. In this review, transposons and their roles have been studied in bacterial antibiotic resistance, in detail.
Collapse
Affiliation(s)
- Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
41
|
Identification of transposable elements fused in the exonic region of the olive flounder genome. Genes Genomics 2018; 40:707-713. [PMID: 29934806 DOI: 10.1007/s13258-018-0676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) are mobile genetic sequences that comprise a large portion of vertebrate genomes. The olive flounder (Paralichthys olivaceus) is a valuable marine resource in East Asia. The scope of most genomic studies on the olive flounder is limited to its immunology as their focus is the prevention of mass mortality of this species. Thus, for a broader understanding of the species, its genomic information is consistently in demand. Transcripts sequences were acquired from transcriptome analysis using gill tissues of 12 olive flounders. Distribution of TEs inserted in exonic region of the olive flounder genome was analyzed using RepeatMasker ( http://www.repeatmasker.org/ ). We found 1140 TEs in the exonic region of the genome and long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) insertions occurred with forward orientation preferences. Transposons belonging to the hAt, Gypsy, and LINE 1 (L1) subfamilies were the most abundant DNA transposons, LTRs, and long interspersed elements (LINEs), respectively. Finally, we carried out a gene ontology analysis to determine the function of TE-fused genes. These results provide some genomic information about TEs that is useful for future research on changes in properties and functions of genes by TEs in the olive flounder genome.
Collapse
|
42
|
Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, Detrich WH, Ozouf-Costaz C, Higuet D. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics 2018; 19:339. [PMID: 29739320 PMCID: PMC5941688 DOI: 10.1186/s12864-018-4714-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4714-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France. .,Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France.
| | - P Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - L Belkadi
- Institut Pasteur, Laboratoire Signalisation et Pathogénèse, UMR CNRS 3691, Bâtiment DARRE, 25-28 rue du Dr Roux, 75015, Paris, France
| | - L Petit
- Plateforme d'Imagerie et Cytométrie en flux, Sorbonne Université, CNRS, - Institut de Biologie Paris-Seine (BDPS - IBPS), F-75005, Paris, France
| | - E Bonnivard
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - A Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France
| | - W H Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - C Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - D Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| |
Collapse
|
43
|
Rhyu MG, Oh JH, Hong SJ. Species-specific role of gene-adjacent retroelements in human and mouse gastric carcinogenesis. Int J Cancer 2017; 142:1520-1527. [PMID: 29055047 DOI: 10.1002/ijc.31120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (HP) infection promotes the recruitment of bone marrow stem cells into chronic gastritis lesions. Some of these marrow stem cells can differentiate into gastric epithelial cells and neoplastic cells. We propose that HP-associated methylation could stabilize trans-differentiation of marrow-derived stem cells and that an unstable methylation status is associated with a risk of gastric cancer. Pathobiologic behavior of experimental mouse gastric cancer is mild compared to invasive and metastatic human gastric cancer. Differences in epigenetic stabilization of adult cell phenotypes between humans and mice could provide a foundation to explore the development of invasive and metastatic gastric cancer. Retroelements are highly repetitive sequences that play an essential role in the generation of species diversity. In this review, we analyzed retroelements adjacent to human and mouse housekeeping genes and proposed a possible epigenetic mechanism for HP-associated carcinogenesis.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
44
|
Twilprawat P, Kim S, Srikulnath K, Han K. Structural variations generated by simian foamy virus-like (SFV) in Crocodylus siamensis. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Highly Variable Genomic Landscape of Endogenous Retroviruses in the C57BL/6J Inbred Strain, Depending on Individual Mouse, Gender, Organ Type, and Organ Location. Int J Genomics 2017; 2017:3152410. [PMID: 28951865 PMCID: PMC5603323 DOI: 10.1155/2017/3152410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022] Open
Abstract
Transposable repetitive elements, named the "TREome," represent ~40% of the mouse genome. We postulate that the germ line genome undergoes temporal and spatial diversification into somatic genomes in conjunction with the TREome activity. C57BL/6J inbred mice were subjected to genomic landscape analyses using a TREome probe from murine leukemia virus-type endogenous retroviruses (MLV-ERVs). None shared the same MLV-ERV landscape within each comparison group: (1) sperm and 18 tissues from one mouse, (2) six brain compartments from two females, (3) spleen and thymus samples from four age groups, (4) three spatial tissue sets from two females, and (5) kidney and liver samples from three females and three males. Interestingly, males had more genomic MLV-ERV copies than females; moreover, only in the males, the kidneys had higher MLV-ERV copies than the livers. Perhaps, the mouse-, gender-, and tissue/cell-dependent MLV-ERV landscapes are linked to the individual-specific and dynamic phenotypes of the C57BL/6J inbred population.
Collapse
|
46
|
Chalopin D, Volff JN. Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:629-637. [PMID: 28921831 DOI: 10.1002/jez.b.22761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022]
Abstract
Teleost fish have been shown to contain many superfamilies of transposable elements (TEs) that are absent from most tetrapod genomes. Since theories predict an increase in TE activity following polyploidization, such diversity might be linked to the 3R whole-genome duplication that occurred approximately 300 million years ago before the teleost radiation. To test this hypothesis, we have analyzed the genome of the spotted gar Lepisosteus oculatus, which diverged from the teleost lineage before the 3R duplication. Our results indicate that TE diversity and copy numbers are similar in gar and teleost genomes, suggesting that TE diversity was ancestral and not linked to the 3R whole-genome duplication. We propose that about 25 distinct superfamilies of TEs were present in the last ancestor of gars and teleost fish about 300 million years ago in the ray-finned fish lineage.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
47
|
Comparative Genomic In Situ Hybridization and the Possible Role of Retroelements in the Karyotypic Evolution of Three Akodontini Species. Int J Genomics 2017; 2017:5935380. [PMID: 28900618 PMCID: PMC5576401 DOI: 10.1155/2017/5935380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/14/2017] [Accepted: 05/03/2017] [Indexed: 01/21/2023] Open
Abstract
South American Akodontini rodents are characterized by a large number of chromosome rearrangements. Among them, the genus Akodon has been extensively analyzed with classical and molecular cytogenetics, which allowed the identification of a large number of intra- and interspecific chromosomal variation due to Robertsonian rearrangements, pericentric inversions, and heterochromatin additions/deletions. In order to shed some light on the cause of these rearrangements, we comparatively analyzed the karyotypes of three Akodontini species, Akodon cursor (2n = 14, FN = 19), A. montensis (2n = 24, FN = 42), and Necromys lasiurus (2n = 34, FN = 34), after GTG- and CBG-banding. The karyotypes differed by Robertsonian rearrangements, pericentric inversions, centromere repositioning, and heterochromatin variation. Genome comparisons were performed through interspecific fluorescent in situ hybridization (FISH) with total genomic DNAs of each species as probes (GISH). Our results revealed considerable conservation of the euchromatic portions among the three karyotypes suggesting that they mostly differ in their heterochromatic regions. FISH was also performed to assess the distribution of telomeric sequences, long and short interspersed repetitive elements (LINE-1 and B1 SINE) and of the endogenous retrovirus mysTR in the genomes of the three species. The results led us to infer that transposable elements have played an important role in the enormous chromosome variation found in Akodontini.
Collapse
|
48
|
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA. Genetica 2017. [PMID: 28634866 DOI: 10.1007/s10709-017-9971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.
Collapse
|
49
|
Hunter DR, Bao L, Poss M. Assignment of endogenous retrovirus integration sites using a mixture model. Ann Appl Stat 2017. [DOI: 10.1214/16-aoas1016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Kim SH, Kong Y, Bae YA. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis. Mol Biochem Parasitol 2017; 214:14-26. [PMID: 28322871 DOI: 10.1016/j.molbiopara.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, College of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|