1
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
2
|
del Priore L, Pigozzi MI. DNA Organization along Pachytene Chromosome Axes and Its Relationship with Crossover Frequencies. Int J Mol Sci 2021; 22:ijms22052414. [PMID: 33673731 PMCID: PMC7957551 DOI: 10.3390/ijms22052414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
During meiosis, the number of crossovers vary in correlation to the length of prophase chromosome axes at the synaptonemal complex stage. It has been proposed that the regular spacing of the DNA loops, along with the close relationship of the recombination complexes and the meiotic axes are at the basis of this covariation. Here, we use a cytogenomic approach to investigate the relationship between the synaptonemal complex length and the DNA content in chicken oocytes during the pachytene stage of the first meiotic prophase. The synaptonemal complex to DNA ratios of specific chromosomes and chromosome segments were compared against the recombination rates obtained by MLH1 focus mapping. The present results show variations in the DNA packing ratios of macro- and microbivalents and also between regions within the same bivalent. Chromosome or chromosome regions with higher crossover rates form comparatively longer synaptonemal complexes than expected based on their DNA content. These observations are compatible with the formation of higher number of shorter DNA loops along meiotic axes in regions with higher recombination levels.
Collapse
|
3
|
Abstract
Through recombination, genes are freed to evolve more independently of one another, unleashing genetic variance hidden in the linkage disequilibrium that accumulates through selection combined with drift. Yet crossover numbers are evolutionarily constrained, with at least one and not many more than one crossover per bivalent in most taxa. Crossover interference, whereby a crossover reduces the probability of a neighboring crossover, contributes to this homogeneity. The mechanisms by which interference is achieved and crossovers are regulated are a major current subject of inquiry, facilitated by novel methods to visualize crossovers and to pinpoint recombination events. Here, we review patterns of crossover interference and the models built to describe this process. We then discuss the selective forces that have likely shaped interference and the regulation of crossover numbers.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Conservation of the genome-wide recombination rate in white-footed mice. Heredity (Edinb) 2019; 123:442-457. [PMID: 31366913 PMCID: PMC6781155 DOI: 10.1038/s41437-019-0252-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Despite being linked to the fundamental processes of chromosome segregation and offspring diversification, meiotic recombination rates vary within and between species. Recent years have seen progress in quantifying recombination rate evolution across multiple temporal and genomic scales. Nevertheless, the level of variation in recombination rate within wild populations-a key determinant of evolution in this trait-remains poorly documented on the genomic scale. To address this notable gap, we used immunofluorescent cytology to quantify genome-wide recombination rates in males from a wild population of the white-footed mouse, Peromyscus leucopus. For comparison, we measured recombination rates in a second population of male P. leucopus raised in the laboratory and in male deer mice from the subspecies Peromyscus maniculatus bairdii. Although we found differences between individuals in the genome-wide recombination rate, levels of variation were low-within populations, between populations, and between species. Quantification of synaptonemal complex length and crossover positions along chromosome 1 using a novel automated approach also revealed conservation in broad-scale crossover patterning, including strong crossover interference. We propose stabilizing selection targeting recombination or correlated processes as the explanation for these patterns.
Collapse
|
5
|
Wang P, Jiang L, Ye M, Zhu X, Wu R. The Genomic Landscape of Crossover Interference in the Desert Tree Populus euphratica. Front Genet 2019; 10:440. [PMID: 31156703 PMCID: PMC6530421 DOI: 10.3389/fgene.2019.00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Crossover (CO) interference is a universal phenomenon by which the occurrence of one CO event inhibits the simultaneous occurrence of other COs along a chromosome. Because of its critical role in the evolution of genome structure and organization, the cytological and molecular mechanisms underlying CO interference have been extensively investigated. However, the genome-wide distribution of CO interference and its interplay with sex-, stress-, and age-induced differentiation remain poorly understood. Multi-point linkage analysis has proven to be a powerful tool for landscaping CO interference, especially within species for which CO mutants are rarely available. We implemented four-point linkage analysis to landscape a detailed picture of how CO interference is distributed through the entire genome of Populus euphratica, the only forest tree that can survive and grow in saline desert. We identified an extensive occurrence of CO interference, and found that its strength depends on the length of chromosomes and the genomic locations within the chromosome. We detected high-order CO interference, possibly suggesting a highly complex mechanism crucial for P. euphratica to grow, reproduce, and evolve in its harsh environment.
Collapse
Affiliation(s)
- Ping Wang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
6
|
Bikchurina TI, Tishakova KV, Kizilova EA, Romanenko SA, Serdyukova NA, Torgasheva AA, Borodin PM. Chromosome Synapsis and Recombination in Male-Sterile and Female-Fertile Interspecies Hybrids of the Dwarf Hamsters ( Phodopus, Cricetidae). Genes (Basel) 2018; 9:genes9050227. [PMID: 29693587 PMCID: PMC5977167 DOI: 10.3390/genes9050227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Hybrid sterility is an important step in the speciation process. Hybrids between dwarf hamsters Phodopus sungorus and P.campbelli provide a good model for studies in cytological and genetic mechanisms of hybrid sterility. Previous studies in hybrids detected multiple abnormalities of spermatogenesis and a high frequency of dissociation between the X and Y chromosomes at the meiotic prophase. In this study, we found that the autosomes of the hybrid males and females underwent paring and recombination as normally as their parental forms did. The male hybrids showed a significantly higher frequency of asynapsis and recombination failure between the heterochromatic arms of the X and Y chromosomes than the males of the parental species. Female hybrids as well as the females of the parental species demonstrated a high incidence of centromere misalignment at the XX bivalent and partial asynapsis of the ends of its heterochromatic arms. In all three karyotypes, recombination was completely suppressed in the heterochromatic arm of the X chromosome, where the pseudoautosomal region is located. We propose that this recombination pattern speeds up divergence of the X- and Y-linked pseudoautosomal regions between the parental species and results in their incompatibility in the male hybrids.
Collapse
Affiliation(s)
- Tatiana I Bikchurina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Katerina V Tishakova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Elena A Kizilova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Svetlana A Romanenko
- Novosibirsk State University, Novosibirsk 630090, Russia.
- Institute of Cell and Molecular Biology, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
| | - Natalya A Serdyukova
- Institute of Cell and Molecular Biology, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
| | - Anna A Torgasheva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Pavel M Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
7
|
del Priore L, Pigozzi MI. Broad-scale recombination pattern in the primitive bird Rhea americana (Ratites, Palaeognathae). PLoS One 2017; 12:e0187549. [PMID: 29095930 PMCID: PMC5667853 DOI: 10.1371/journal.pone.0187549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/20/2017] [Indexed: 12/02/2022] Open
Abstract
Birds have genomic and chromosomal features that make them an attractive group to analyze the evolution of recombination rate and the distribution of crossing over. Yet, analyses are biased towards certain species, especially domestic poultry and passerines. Here we analyze for the first time the recombination rate and crossover distribution in the primitive ratite bird, Rhea americana (Rheiformes, Palaeognathae). Using a cytogenetic approach for in situ mapping of crossovers we found that the total genetic map is 3050 cM with a global recombination rate of 2.1 cM/Mb for female rheas. In the five largest macrobivalents there were 3 or more crossovers in most bivalents. Recombination rates for macrobivalents ranges between 1.8-2.1 cM/Mb and the physical length of their synaptonemal complexes is highly predictive of their genetic lengths. The crossover rate at the pseudoautosomal region is 2.1 cM/Mb, similar to those of autosomal pairs 5 and 6 and only slightly higher compared to other macroautosomes. It is suggested that the presence of multiple crossovers on the largest macrobivalents is a feature common to many avian groups, irrespective of their position throughout phylogeny. These data provide new insights to analyze the heterogeneous recombination landscape of birds.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Inés Pigozzi
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Lisachov AP, Trifonov VA, Giovannotti M, Ferguson-Smith MA, Borodin PM. Immunocytological analysis of meiotic recombination in two anole lizards (Squamata, Dactyloidae). COMPARATIVE CYTOGENETICS 2017; 11:129-141. [PMID: 28919954 PMCID: PMC5599703 DOI: 10.3897/compcytogen.v11i1.10916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 05/13/2023]
Abstract
Although the evolutionary importance of meiotic recombination is not disputed, the significance of interspecies differences in the recombination rates and recombination landscapes remains under-appreciated. Recombination rates and distribution of chiasmata have been examined cytologically in many mammalian species, whereas data on other vertebrates are scarce. Immunolocalization of the protein of the synaptonemal complex (SYCP3), centromere proteins and the mismatch-repair protein MLH1 was used, which is associated with the most common type of recombination nodules, to analyze the pattern of meiotic recombination in the male of two species of iguanian lizards, Anolis carolinensis Voigt, 1832 and Deiroptyx coelestinus (Cope, 1862). These species are separated by a relatively long evolutionary history although they retain the ancestral iguanian karyotype. In both species similar and extremely uneven distributions of MLH1 foci along the macrochromosome bivalents were detected: approximately 90% of crossovers were located at the distal 20% of the chromosome arm length. Almost total suppression of recombination in the intermediate and proximal regions of the chromosome arms contradicts the hypothesis that "homogenous recombination" is responsible for the low variation in GC content across the anole genome. It also leads to strong linkage disequilibrium between the genes located in these regions, which may benefit conservation of co-adaptive gene arrays responsible for the ecological adaptations of the anoles.
Collapse
Affiliation(s)
- Artem P. Lisachov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Massimo Giovannotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | |
Collapse
|
9
|
Abstract
The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458;
| | | |
Collapse
|
10
|
Abstract
Meiotic recombination in mammals has been shown to largely cluster into hotspots, which are targeted by the chromatin modifier PRDM9. The canid family, including wolves and dogs, has undergone a series of disrupting mutations in this gene, rendering PRDM9 inactive. Given the importance of PRDM9, it is of great interest to learn how its absence in the dog genome affects patterns of recombination placement. We have used genotypes from domestic dog pedigrees to generate sex-specific genetic maps of recombination in this species. On a broad scale, we find that placement of recombination events in dogs is consistent with that in mice and apes, in that the majority of recombination occurs toward the telomeres in males, while female crossing over is more frequent and evenly spread along chromosomes. It has been previously suggested that dog recombination is more uniform in distribution than that of humans; however, we found that recombination in dogs is less uniform than in humans. We examined the distribution of recombination within the genome, and found that recombination is elevated immediately upstream of the transcription start site and around CpG islands, in agreement with previous studies, but that this effect is stronger in male dogs. We also found evidence for positive crossover interference influencing the spacing between recombination events in dogs, as has been observed in other species including humans and mice. Overall our data suggests that dogs have similar broad scale properties of recombination to humans, while fine scale recombination is similar to other species lacking PRDM9.
Collapse
|
11
|
Fröhlich J, Vozdova M, Kubickova S, Cernohorska H, Sebestova H, Rubes J. Variation of Meiotic Recombination Rates and MLH1 Foci Distribution in Spermatocytes of Cattle, Sheep and Goats. Cytogenet Genome Res 2015; 146:211-21. [PMID: 26406935 DOI: 10.1159/000439452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Despite similar genome sizes, a great variability in recombination rates is observed in mammals. We used antibodies against SYCP3, MLH1 and centromeres to compare crossover frequency, position along chromosome arms and the effect of crossover interference in spermatocytes of 4 species from the family Bovidae (Bos taurus, 2n = 60, tribe Bovini; Ovis aries, 2n = 54, Capra hircus, 2n = 60 and Ammotragus lervia, 2n = 58, tribe Caprini). Despite significant individual variability, our results also show significant differences in both recombination rates and the total length of autosomal synaptonemal complexes (SC) between cattle (47.53 MLH1 foci/cell, 244.59 µm) and members of the tribe Caprini (61.83 MLH1 foci, 296.19 µm) which can be explained by the length of time that has passed since their evolutionary divergence. Sheep displayed the highest number of MLH1 foci per cell and recombination density, although they have a lower diploid chromosome number caused by centric fusions corresponding to cattle chromosomes 1;3, 2;8 and 5;11. However, the proportion of MLH1 foci observed on the fused chromosomes in sheep (26.14%) was significantly lower than on the orthologous acrocentrics in cattle (27.6%) and goats (28.2%), and their distribution along the SC arms differed significantly. The reduced recombination rate in metacentrics is probably caused by interference acting across the centromere.
Collapse
Affiliation(s)
- Jan Fröhlich
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
12
|
Sebestova H, Vozdova M, Kubickova S, Cernohorska H, Kotrba R, Rubes J. Effect of species-specific differences in chromosome morphology on chromatin compaction and the frequency and distribution of RAD51 and MLH1 foci in two bovid species: cattle (Bos taurus) and the common eland (Taurotragus oryx). Chromosoma 2015; 125:137-49. [PMID: 26194101 DOI: 10.1007/s00412-015-0533-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Meiotic recombination between homologous chromosomes is crucial for their correct segregation into gametes and for generating diversity. We compared the frequency and distribution of MLH1 foci and RAD51 foci, synaptonemal complex (SC) length and DNA loop size in two related Bovidae species that share chromosome arm homology but show an extreme difference in their diploid chromosome number: cattle (Bos taurus, 2n = 60) and the common eland (Taurotragus oryx, 2nmale = 31). Compared to cattle, significantly fewer MLH1 foci per cell were observed in the common eland, which can be attributed to the lower number of initial double-strand breaks (DSBs) detected as RAD51 foci in leptonema. Despite the significantly shorter total autosomal SC length and longer DNA loop size of the common eland bi-armed chromosomes compared to those of bovine acrocentrics, the overall crossover density in the common eland was still lower than in cattle, probably due to the reduction in the number of MLH1 foci in the proximal regions of the bi-armed chromosomes. The formation of centric fusions during karyotype evolution of the common eland accompanied by meiotic chromatin compaction has greater implications in the reduction in the number of DSBs in leptonema than in the decrease of MLH1 foci number in pachynema.
Collapse
Affiliation(s)
- Hana Sebestova
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Halina Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Radim Kotrba
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| |
Collapse
|
13
|
Federici F, Mulugeta E, Schoenmakers S, Wassenaar E, Hoogerbrugge JW, van der Heijden GW, van Cappellen WA, Slotman JA, van IJcken WFJ, Laven JSE, Grootegoed JA, Baarends WM. Incomplete meiotic sex chromosome inactivation in the domestic dog. BMC Genomics 2015; 16:291. [PMID: 25884295 PMCID: PMC4399420 DOI: 10.1186/s12864-015-1501-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammalian meiotic prophase, homologous chromosome recognition is aided by formation and repair of programmed DNA double-strand breaks (DSBs). Subsequently, stable associations form through homologous chromosome synapsis. In male mouse meiosis, the largely heterologous X and Y chromosomes synapse only in their short pseudoautosomal regions (PARs), and DSBs persist along the unsynapsed non-homologous arms of these sex chromosomes. Asynapsis of these arms and the persistent DSBs then trigger transcriptional silencing through meiotic sex chromosome inactivation (MSCI), resulting in formation of the XY body. This inactive state is partially maintained in post-meiotic haploid spermatids (postmeiotic sex chromatin repression, PSCR). For the human, establishment of MSCI and PSCR have also been reported, but X-linked gene silencing appears to be more variable compared to mouse. To gain more insight into the regulation and significance of MSCI and PSCR among different eutherian species, we have performed a global analysis of XY pairing dynamics, DSB repair, MSCI and PSCR in the domestic dog (Canis lupus familiaris), for which the complete genome sequence has recently become available, allowing a thorough comparative analyses. RESULTS In addition to PAR synapsis between X and Y, we observed extensive self-synapsis of part of the dog X chromosome, and rapid loss of known markers of DSB repair from that part of the X. Sequencing of RNA from purified spermatocytes and spermatids revealed establishment of MSCI. However, the self-synapsing region of the X displayed higher X-linked gene expression compared to the unsynapsed area in spermatocytes, and was post-meiotically reactivated in spermatids. In contrast, genes in the PAR, which are expected to escape MSCI, were expressed at very low levels in both spermatocytes and spermatids. Our comparative analysis was then used to identify two X-linked genes that may escape MSCI in spermatocytes, and 21 that are specifically re-activated in spermatids of human, mouse and dog. CONCLUSIONS Our data indicate that MSCI is incomplete in the dog. This may be partially explained by extensive, but transient, self-synapsis of the X chromosome, in association with rapid completion of meiotic DSB repair. In addition, our comparative analysis identifies novel candidate male fertility genes.
Collapse
Affiliation(s)
- Federica Federici
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Eskeatnaf Mulugeta
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Present address: Institut Curie, Genetics and Developmental Biology, Unit 11 et 13 rue Pierre et Marie Curie, 75248, Paris, Cedex 05, France.
| | - Sam Schoenmakers
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Jos W Hoogerbrugge
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Godfried W van der Heijden
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Wiggert A van Cappellen
- Department of Pathology, Erasmus Optical Imaging Centre, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Joop S E Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - J Anton Grootegoed
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Lisachov AP, Zadesenets KS, Rubtsov NB, Borodin PM. Sex Chromosome Synapsis and Recombination in Male Guppies. Zebrafish 2015; 12:174-80. [DOI: 10.1089/zeb.2014.1000] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Artem P. Lisachov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Kira S. Zadesenets
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay B. Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| | - Pavel M. Borodin
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
15
|
Del Priore L, Pigozzi MI. Sex-specific recombination maps for individual macrochromosomes in the Japanese quail (Coturnix japonica). Chromosome Res 2015; 23:199-210. [PMID: 25596820 DOI: 10.1007/s10577-014-9448-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 11/29/2022]
Abstract
Meiotic recombination in the Japanese quail was directly studied by immunolocalization of mutL homolog 1 (MLH1), a mismatch repair protein of mature recombination nodules. In total, 15,862 crossovers were scored along the autosomal synaptonemal complexes in 308 meiotic nuclei from males and females. Crossover frequencies calculated from MLH1 foci show wide similitude between males and females with slightly higher number of foci in females. From this analysis, we predict that the sex-averaged map length of the Japanese quail is 2580 cM, with a genome-wide recombination rate of 1.9 cM/Mb. MLH1 focus mapping along the six largest bivalents showed few intersex differences in the distribution of crossovers along with variant patterns in metacentric and acrocentric macrobivalents. These results provide valuable information to complement linkage map analysis in the species while providing insight into our understanding of the mechanisms of crossover distribution along chromosome arms.
Collapse
Affiliation(s)
- Lucía Del Priore
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 Piso 10, C1121ABG, Buenos Aires, Argentina
| | | |
Collapse
|
16
|
Muñoz-Fuentes V, Marcet-Ortega M, Alkorta-Aranburu G, Linde Forsberg C, Morrell JM, Manzano-Piedras E, Söderberg A, Daniel K, Villalba A, Toth A, Di Rienzo A, Roig I, Vilà C. Strong artificial selection in domestic mammals did not result in an increased recombination rate. Mol Biol Evol 2014; 32:510-23. [PMID: 25414125 DOI: 10.1093/molbev/msu322] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination rates vary in intensity and location at the species, individual, sex and chromosome levels. Despite the fundamental biological importance of this process, the selective forces that operate to shape recombination rate and patterns are unclear. Domestication offers a unique opportunity to study the interplay between recombination and selection. In domesticates, intense selection for particular traits is imposed on small populations over many generations, resulting in organisms that differ, sometimes dramatically, in morphology and physiology from their wild ancestor. Although earlier studies suggested increased recombination rate in domesticates, a formal comparison of recombination rates between domestic mammals and their wild congeners was missing. In order to determine broad-scale recombination rate, we used immunolabeling detection of MLH1 foci as crossover markers in spermatocytes in three pairs of closely related wild and domestic species (dog and wolf, goat and ibex, and sheep and mouflon). In the three pairs, and contrary to previous suggestions, our data show that contemporary recombination rate is higher in the wild species. Subsequently, we inferred recombination breakpoints in sequence data for 16 genomic regions in dogs and wolves, each containing a locus associated with a dog phenotype potentially under selection during domestication. No difference in the number and distribution of recombination breakpoints was found between dogs and wolves. We conclude that our data indicate that strong directional selection did not result in changes in recombination in domestic mammals, and that both upper and lower bounds for crossover rates may be tightly regulated.
Collapse
Affiliation(s)
- Violeta Muñoz-Fuentes
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana EBD-CSIC, Sevilla, Spain Department of Population and Conservation Biology, Uppsala University, Uppsala, Sweden
| | - Marina Marcet-Ortega
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain Cytology and Histology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | - Jane M Morrell
- Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Arne Söderberg
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Katrin Daniel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Adrian Villalba
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain Cytology and Histology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Attila Toth
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Anna Di Rienzo
- Department of Human Genetics, Cummings Life Science Center, University of Chicago
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain Cytology and Histology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana EBD-CSIC, Sevilla, Spain
| |
Collapse
|
17
|
Dong CB, Mao JF, Suo YJ, Shi L, Wang J, Zhang PD, Kang XY. A strategy for characterization of persistent heteroduplex DNA in higher plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:282-291. [PMID: 25073546 DOI: 10.1111/tpj.12631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Heteroduplex DNA (hDNA) generated during homologous recombination (HR) is an important component that shapes genetic diversity in sexually reproducing organisms. However, studies of this process in higher plants are limited. This is because hDNAs are difficult to capture in higher plants as their reproductive developmental model only produces normal gametes and does not preserve the mitotic products of the post-meiotic segregation (PMS) process which is crucial for studying hDNAs. In this study, using the model system for tree and woody perennial plant biology (Populus), we propose a strategy for characterizing hDNAs in higher plants. We captured hDNAs by constructing triploid hybrids originating from a cross between unreduced 2n eggs (containing hDNA information as a result of inhibition chromosome segregation at the PMS stage) with normal male gametes. These triploid hybrids allowed us to detect the frequency and location of persistent hDNAs resulting from HR at the molecular level. We found that the frequency of persistent hDNAs, which ranged from 5.3 to 76.6%, was related to locations of the simple sequence repeat markers at the chromosomes, such as the locus-centromere distance, the surrounding DNA sequence and epigenetic information, and the richness of protein-coding transcripts at these loci. In summary, this study provides a method for characterizing persistent hDNAs in higher plants. When high-throughput sequencing techniques can be incorporated, genome-wide persistent hDNA assays for higher plants can be easily carried out using the strategy presented in this study.
Collapse
Affiliation(s)
- Chun-Bo Dong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Anderson LK, Lohmiller LD, Tang X, Hammond DB, Javernick L, Shearer L, Basu-Roy S, Martin OC, Falque M. Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers. Proc Natl Acad Sci U S A 2014; 111:13415-20. [PMID: 25197066 PMCID: PMC4169947 DOI: 10.1073/pnas.1406846111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Crossovers (COs) shuffle genetic information and allow balanced segregation of homologous chromosomes during the first division of meiosis. In several organisms, mutants demonstrate that two molecularly distinct pathways produce COs. One pathway produces class I COs that exhibit interference (lowered probability of nearby COs), and the other pathway produces class II COs with little or no interference. However, the relative contributions, genomic distributions, and interactions of these two pathways are essentially unknown in nonmutant organisms because marker segregation only indicates that a CO has occurred, not its class type. Here, we combine the efficiency of light microscopy for revealing cellular functions using fluorescent probes with the high resolution of electron microscopy to localize and characterize COs in the same sample of meiotic pachytene chromosomes from wild-type tomato. To our knowledge, for the first time, every CO along each chromosome can be identified by class to unveil specific characteristics of each pathway. We find that class I and II COs have different recombination profiles along chromosomes. In particular, class II COs, which represent about 18% of all COs, exhibit no interference and are disproportionately represented in pericentric heterochromatin, a feature potentially exploitable in plant breeding. Finally, our results demonstrate that the two pathways are not independent because there is interference between class I and II COs.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Leslie D Lohmiller
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Xiaomin Tang
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - D Boyd Hammond
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Lauren Javernick
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Lindsay Shearer
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Sayantani Basu-Roy
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Olivier C Martin
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Matthieu Falque
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Mary N, Barasc H, Ferchaud S, Billon Y, Meslier F, Robelin D, Calgaro A, Loustau-Dudez AM, Bonnet N, Yerle M, Acloque H, Ducos A, Pinton A. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PLoS One 2014; 9:e99123. [PMID: 24919066 PMCID: PMC4053413 DOI: 10.1371/journal.pone.0099123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/09/2014] [Indexed: 01/05/2023] Open
Abstract
For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes) were identified by immunostaining and fluorescence in situ hybridization (FISH). The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers), on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells) and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18) and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.
Collapse
Affiliation(s)
- Nicolas Mary
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Harmonie Barasc
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Stéphane Ferchaud
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - Yvon Billon
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - Frédéric Meslier
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - David Robelin
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Anne Calgaro
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Anne-Marie Loustau-Dudez
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Nathalie Bonnet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Martine Yerle
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Hervé Acloque
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Alain Ducos
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Alain Pinton
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
20
|
Vozdova M, Sebestova H, Kubickova S, Cernohorska H, Awadova T, Vahala J, Rubes J. Impact of Robertsonian translocation on meiosis and reproduction: an impala (Aepyceros melampus) model. J Appl Genet 2014; 55:249-58. [DOI: 10.1007/s13353-014-0193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 11/27/2022]
|
21
|
Al-Jaru A, Goodwin W, Skidmore J, Khazanehdari K. Distribution of MLH1 foci in horse male synaptonemal complex. Cytogenet Genome Res 2013; 142:87-94. [PMID: 24356193 DOI: 10.1159/000357152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Advances in molecular cytogenetics have provided the opportunity to study events during prophase I of meiosis. Immunofluorescent localization of different meiotic protein components were used to characterize the early stages of the first meiotic division in horse spermatocytes. The frequency and distribution of recombination events during prophase I were investigated using the mutL homolog 1 (MLH1) protein that is known to be associated with these events. The frequency and distribution of MLH1 foci were investigated in pachytene nuclei of 6 fertile stallions, and the average relative synaptonemal complex length was found to be highly correlated with the average number of MLH1 foci. The frequency and distribution of MLH1 foci were found to closely correspond to the frequency and distribution of chiasmata on metaphase I chromosomes, and genetic length, calculated from MLH1 foci data, for the whole genome was 2,505.5 cM.
Collapse
Affiliation(s)
- A Al-Jaru
- Molecular Biology and Genetic, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | | |
Collapse
|
22
|
Segura J, Ferretti L, Ramos-Onsins S, Capilla L, Farré M, Reis F, Oliver-Bonet M, Fernández-Bellón H, Garcia F, Garcia-Caldés M, Robinson TJ, Ruiz-Herrera A. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc Biol Sci 2013; 280:20131945. [PMID: 24068360 DOI: 10.1098/rspb.2013.1945] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary change. Here, we analysed the recombination features from species representing the major eutherian taxonomic groups Afrotheria, Rodentia, Primates and Carnivora to better understand the dynamics of mammalian recombination. Our results suggest a phylogenetic component in recombination rates (RRs), which appears to be directional, strongly punctuated and subject to selection. Species that diversified earlier in the evolutionary tree have lower RRs than those from more derived phylogenetic branches. Furthermore, chromosome-specific recombination maps in distantly related taxa show that crossover interference is especially weak in the species with highest RRs detected thus far, the tiger. This is the first example of a mammalian species exhibiting such low levels of crossover interference, highlighting the uniqueness of this species and its relevance for the study of the mechanisms controlling crossover formation, distribution and resolution.
Collapse
Affiliation(s)
- Joana Segura
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, , Barcelona, Spain, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, , Barcelona, Spain, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, , Barcelona, Spain, Servei de Cultius Cel·lulars (SCC, SCAC), Universitat Autònoma de Barcelona, , Barcelona, Spain, Parc Zoològic de Barcelona, Parc de la Ciutadella s/n, 08003 Barcelona, Spain, Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, , Matieland, South Africa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lisachov AP. New method for visualization of C-heterochromatin in synaptonemal complex spreads. COMPARATIVE CYTOGENETICS 2013; 7:131-138. [PMID: 24260695 PMCID: PMC3833755 DOI: 10.3897/compcytogen.v7i2.5187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
DAPI staining of the metaphase chromosomes pretreated with barium hydroxide generates a C-like banding pattern. In this work a protocol for visualizing similar pattern at the synaptonemal complex (SC) spreads after immunostaining is suggested. This method was used to visualize centromeric and sex heterochromatin at the SC spreads of guppy fish (Poecilia reticulata Peters, 1859). The efficiency of this method was further confirmed at SC spreads of the northern red-backed vole (Myodes rutilus (Pallas, 1779)), the guinea pig (Cavia porcellus (Linnaeus, 1758)), and the pigmy shrew (Sorex minutus Linnaeus, 1766).
Collapse
Affiliation(s)
- Artem P. Lisachov
- Institute of Cytology and Genetics,Russian Academy of Sciences, Siberian Department & Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
24
|
Vozdova M, Sebestova H, Kubickova S, Cernohorska H, Vahala J, Rubes J. A comparative study of meiotic recombination in cattle (Bos taurus) and three wildebeest species (Connochaetes gnou, C. taurinus taurinus and C. t. albojubatus). Cytogenet Genome Res 2013; 140:36-45. [PMID: 23594414 DOI: 10.1159/000350444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
The karyotypic evolution in the family Bovidae is based on centric fusions of ancestral acrocentric chromosomes. Here, the frequency and distribution of meiotic recombination was analyzed in pachytene spermatocytes from Bos taurus (2n = 60) and 3 wildebeest species (Connochaetes gnou, C. taurinus taurinus and C. t. albojubatus) (2n = 58) using immunofluorescence and fluorescence in situ hybridization. Significant differences in mean numbers of recombination events per cell were observed between B. taurus and members of the genus Connochaetes (47.2 vs. 43.7, p < 0.001). The number of MLH1 foci was significantly correlated with the length of the autosomal synaptonemal complexes. The average interfocus distance was influenced by interference. The male recombination maps of bovine chromosomes 2 and 25 and of their fused homologues in wildebeests were constructed. A significant reduction of recombination in the fused chromosome BTA25 was observed in wildebeests (p = 0.005). This was probably caused by interference acting across the centromere, which was significantly stronger than the intra-arm interference. This comparative meiotic study showed significant differences among the species from the family Bovidae with the same fundamental number of autosomal arms (FNa = 29) which differ by a single centric fusion.
Collapse
Affiliation(s)
- M Vozdova
- Veterinary Research Institute, Brno, CZ–621 00 Czech Republic.
| | | | | | | | | | | |
Collapse
|
25
|
Borodin PM, Basheva EA, Torgasheva AA, Dashkevich OA, Golenishchev FN, Kartavtseva IV, Mekada K, Dumont BL. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res 2011; 20:259-68. [PMID: 22161017 DOI: 10.1007/s10577-011-9261-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/27/2022]
Abstract
In many eutherian mammals, X-Y chromosome pairing and recombination is required for meiotic progression and correct sex chromosome disjunction. Arvicoline rodents present a notable exception to this meiotic rule, with multiple species possessing asynaptic sex chromosomes. Most asynaptic vole species belong to the genus Microtus sensu lato. However, many of the species both inside and outside the genus Microtus display normal X-Y synapsis at meiosis. These observations suggest that the synaptic condition was present in the common ancestor of all voles, but gaps in current taxonomic sampling across the arvicoline phylogeny prevent identification of the lineage(s) along which the asynaptic state arose. In this study, we use electron and immunofluorescent microscopy to assess heterogametic sex chromosome pairing in 12 additional arvicoline species. Our sample includes ten species of the tribe Microtini and two species of the tribe Lagurini. This increased breadth of sampling allowed us to identify asynaptic species in each major Microtine lineage. Evidently, the ability of the sex chromosomes to pair and recombine in male meiosis has been independently lost at least three times during the evolution of Microtine rodents. These results suggest a lack of evolutionary constraint on X-Y synapsis in Microtini, hinting at the presence of alternative molecular mechanisms for sex chromosome segregation in this large mammalian tribe.
Collapse
Affiliation(s)
- Pavel M Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 2011; 7:e1002354. [PMID: 22072983 PMCID: PMC3207851 DOI: 10.1371/journal.pgen.1002354] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022] Open
Abstract
In most species, crossovers (COs) are essential for the accurate segregation of homologous chromosomes at the first meiotic division. Their number and location are tightly regulated. Here, we report a detailed, genome-wide characterization of the rate and localization of COs in Arabidopsis thaliana, in male and female meiosis. We observed dramatic differences between male and female meiosis which included: (i) genetic map length; 575 cM versus 332 cM respectively; (ii) CO distribution patterns: male CO rates were very high at both ends of each chromosome, whereas female CO rates were very low; (iii) correlations between CO rates and various chromosome features: female CO rates correlated strongly and negatively with GC content and gene density but positively with transposable elements (TEs) density, whereas male CO rates correlated positively with the CpG ratio. However, except for CpG, the correlations could be explained by the unequal repartition of these sequences along the Arabidopsis chromosome. For both male and female meiosis, the number of COs per chromosome correlates with chromosome size expressed either in base pairs or as synaptonemal complex length. Finally, we show that interference modulates the CO distribution both in male and female meiosis.
Collapse
Affiliation(s)
- Laurène Giraut
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Matthieu Falque
- UMR de Génétique Végétale du Moulon, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Gif sur Yvette, France
| | - Jan Drouaud
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Lucie Pereira
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Olivier C. Martin
- UMR de Génétique Végétale du Moulon, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Gif sur Yvette, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
27
|
Garcia-Cruz R, Pacheco S, Brieño MA, Steinberg ER, Mudry MD, Ruiz-Herrera A, Garcia-Caldés M. A comparative study of the recombination pattern in three species of Platyrrhini monkeys (primates). Chromosoma 2011; 120:521-30. [PMID: 21735165 DOI: 10.1007/s00412-011-0329-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/30/2011] [Accepted: 06/23/2011] [Indexed: 01/26/2023]
Abstract
Homologous chromosomes exchange genetic information through recombination during meiotic synapsis, a process that increases genetic diversity and is fundamental to sexual reproduction. Meiotic studies in mammalian species are scarce and mainly focused on human and mouse. Here, the meiotic recombination events were determined in three species of Platyrrhini monkeys (Cebus libidinosus, Cebus nigritus and Alouatta caraya) by analysing the distribution of MLH1 foci at the stage of pachytene. Moreover, the combination of immunofluorescence and fluorescent in situ hybridisation has enabled us to construct recombination maps of primate chromosomes that are homologous to human chromosomes 13 and 21. Our results show that (a) the overall number of MLH1 foci varies among all three species, (b) the presence of heterochromatin blocks does not have a major influence on the distribution of MLH1 foci and (c) the distribution of crossovers in the homologous chromosomes to human chromosomes 13 and 21 are conserved between species of the same genus (C. libidinosus and C. nigritus) but are significantly different between Cebus and Alouatta. This heterogeneity in recombination behaviour among Ceboidea species may reflect differences in genetic diversity and genome composition.
Collapse
Affiliation(s)
- Raquel Garcia-Cruz
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, UAB Campus, Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang Q, Zhang D, Leng M, Yang L, Zhong L, Cooke HJ, Shi Q. Synapsis and meiotic recombination in male Chinese muntjac (Muntiacus reevesi). PLoS One 2011; 6:e19255. [PMID: 21559438 PMCID: PMC3084798 DOI: 10.1371/journal.pone.0019255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/23/2011] [Indexed: 11/18/2022] Open
Abstract
The muntjacs (Muntiacus, Cervidae) have been extensively studied in terms of chromosomal and karyotypic evolution. However, little is known about their meiotic chromosomes particularly the recombination patterns of homologous chromosomes. We used immunostained surface spreads to visualise synaptonemal complexes (SCs), recombination foci and kinetochores with antibodies against marker proteins. As in other mammals pachytene was the longest stage of meiotic prophase. 39.4% of XY bivalents lacked MLH1 foci compared to less than 0.5% of autosomes. The average number of MLH1 foci per pachytene cell in M. reevesi was 29.8. The distribution of MLH1 foci differed from other mammals. On SCs with one focus, the distribution was more even in M. reevesi than in other mammals; for SCs that have two or more MLH1 foci, usually there was a larger peak in the sub-centromere region than other regions on SC in M. reevesi. Additionally, there was a lower level of interference between foci in M. reevesi than in mouse or human. These observations may suggest that the regulation of homologous recombination in M. reevesi is slightly different from other mammals and will improve our understanding of the regulation of meiotic recombination, with respect to recombination frequency and position.
Collapse
Affiliation(s)
- Qingling Yang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ding Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Department of Biological Sciences, Bengbu Medical Collage, Bengbu, China
| | - Mei Leng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ling Yang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liangwen Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Howard J. Cooke
- MRC Human Genetics Unit and Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
29
|
Hultén MA. On the origin of crossover interference: A chromosome oscillatory movement (COM) model. Mol Cytogenet 2011; 4:10. [PMID: 21477316 PMCID: PMC3103480 DOI: 10.1186/1755-8166-4-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. RESULTS The Chromosome Oscillatory Movement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. CONCLUSIONS The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.
Collapse
Affiliation(s)
- Maj A Hultén
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, CMM L8:02, Karolinska Institutet, Karolinska University Hospital, Solna, S-17 1 76 Stockholm, Sweden.
| |
Collapse
|
30
|
Abstract
Although very closely related species can differ in their fine-scale patterns of recombination hotspots, variation in the average genomic recombination rate among recently diverged taxa has rarely been surveyed. We measured recombination rates in eight species that collectively represent several temporal scales of divergence within a single rodent family, Muridae. We used a cytological approach that enables in situ visualization of crossovers at meiosis to quantify recombination rates in multiple males from each rodent group. We uncovered large differences in genomic recombination rate between rodent species, which were independent of karyotypic variation. The divergence in genomic recombination rate that we document is not proportional to DNA sequence divergence, suggesting that recombination has evolved at variable rates along the murid phylogeny. Additionally, we document significant variation in genomic recombination rate both within and between subspecies of house mice. Recombination rates estimated in F(1) hybrids reveal evidence for sex-linked loci contributing to the evolution of recombination in house mice. Our results provide one of the first detailed portraits of genomic-scale recombination rate variation within a single mammalian family and demonstrate that the low recombination rates in laboratory mice and rats reflect a more general reduction in recombination rate across murid rodents.
Collapse
|
31
|
Basheva EA, Torgasheva AA, Sakaeva GR, Bidau C, Borodin PM. A- and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosome Res 2010; 18:689-96. [PMID: 20697834 DOI: 10.1007/s10577-010-9149-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 11/26/2022]
Abstract
We examined A- and B-chromosome pairing and recombination in 12 males from the farm-bred population of the silver fox (2n = 34 + 0-10 Bs) by means of electron and immunofluorescent microscopy. To detect recombination at A and B chromosomes, we used immunolocalisation of MLH1, a mismatch repair protein of mature recombination nodules, at synaptonemal complexes. The mean total number of MLH1 foci at A-autosomes was 29.6 foci per cell. The XY bivalent had one MLH1 focus at the pairing region. Total recombination length of the male fox genome map was estimated as 1,530 centimorgans. We detected single MLH1 foci at 61% of linear synaptic configurations involving B chromosomes. The distribution of the foci along B- and A-bivalents was the same. This may be considered as a first molecular evidence that meiotic recombination does occur in mammalian B chromosomes. There was no correlation between the number of synaptic configurations involving B chromosomes per cell and the recombination rate of the A-genome.
Collapse
Affiliation(s)
- Ekaterina A Basheva
- Institute of Cytology and Genetics, Siberian Department, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
32
|
Falque M, Anderson LK, Stack SM, Gauthier F, Martin OC. Two types of meiotic crossovers coexist in maize. THE PLANT CELL 2009; 21:3915-25. [PMID: 20040539 PMCID: PMC2814511 DOI: 10.1105/tpc.109.071514] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/24/2009] [Accepted: 12/10/2009] [Indexed: 05/02/2023]
Abstract
We apply modeling approaches to investigate the distribution of late recombination nodules in maize (Zea mays). Such nodules indicate crossover positions along the synaptonemal complex. High-quality nodule data were analyzed using two different interference models: the "statistical" gamma model and the "mechanical" beam film model. For each chromosome, we exclude at a 98% significance level the hypothesis that a single pathway underlies the formation of all crossovers, pointing to the coexistence of two types of crossing-over in maize, as was previously demonstrated in other organisms. We estimate the proportion of crossovers coming from the noninterfering pathway to range from 6 to 23% depending on the chromosome, with a cell average of approximately 15%. The mean number of noninterfering crossovers per chromosome is significantly correlated with the length of the synaptonemal complex. We also quantify the intensity of interference. Finally, we develop inference tools that allow one to tackle, without much loss of power, complex crossover interference models such as the beam film. The lack of a likelihood function in such models had prevented their use for parameter estimation. This advance will allow more realistic mechanisms of crossover formation to be modeled in the future.
Collapse
Affiliation(s)
- Matthieu Falque
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 0320/Unité Mixte de Recherche 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
33
|
Housworth EA, Stahl FW. Is there variation in crossover interference levels among chromosomes from human males? Genetics 2009; 183:403-5. [PMID: 19581450 PMCID: PMC2746164 DOI: 10.1534/genetics.109.103853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/28/2009] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that recent data from human males are consistent with constant interference levels among chromosomes under the two-pathway model, whereas inappropriately fitting shape parameters of Gamma distributions to immunofluorescent interfoci distances observed on finite chromosomes generates false interpretations of higher levels of interference on shorter chromosomes. We provide appropriate statistical methodology.
Collapse
Affiliation(s)
- E A Housworth
- Mathematics, Biology, and Statistics Departments, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
34
|
Borodin PM, Basheva EA, Zhelezova AI. Immunocytological analysis of meiotic recombination in the American mink (Mustela vison). Anim Genet 2009; 40:235-8. [DOI: 10.1111/j.1365-2052.2008.01808.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|