1
|
Chen W, Yan M, Chen S, Sun J, Wang J, Meng D, Li J, Zhang L, Guo L. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres. NATURE PLANTS 2024; 10:1928-1943. [PMID: 39543324 DOI: 10.1038/s41477-024-01849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Nicotiana benthamiana is a model organism widely adopted in plant biology. Its complete assembly remains unavailable despite several recent improvements. To further improve its usefulness, we generate and phase the complete 2.85 Gb genome assembly of allotetraploid N. benthamiana. We find that although Solanaceae centromeres are widely dominated by Ty3/Gypsy retrotransposons, satellite-based centromeres are surprisingly common in N. benthamiana, with 11 of 19 centromeres featured by megabase-scale satellite arrays. Interestingly, the satellite-enriched and satellite-free centromeres are extensively invaded by distinct Gypsy retrotransposons which CENH3 protein more preferentially occupies, suggestive of their crucial roles in centromere function. We demonstrate that ribosomal DNA is a major origin of centromeric satellites, and mitochondrial DNA could be employed as a core component of the centromere. Subgenome analysis indicates that the emergence of satellite arrays probably drives new centromere formation. Altogether, we propose that N. benthamiana centromeres evolved via neocentromere formation, satellite expansion, retrotransposon enrichment and mtDNA integration.
Collapse
Affiliation(s)
- Weikai Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Ming Yan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shaoying Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jie Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jingxuan Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dian Meng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jun Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Lili Zhang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, China
| | - Li Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
2
|
Tourdot E, Martin PGP, Maza E, Mauxion JP, Djari A, Gévaudant F, Chevalier C, Pirrello J, Gonzalez N. Ploidy-specific transcriptomes shed light on the heterogeneous identity and metabolism of developing tomato pericarp cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:997-1015. [PMID: 38281284 DOI: 10.1111/tpj.16646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| |
Collapse
|
3
|
Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Jankásek M, Reichard M, Nguyen P, Sember A. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res 2023; 31:33. [PMID: 37985497 PMCID: PMC10661780 DOI: 10.1007/s10577-023-09742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
Collapse
Affiliation(s)
- Anna Voleníková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
4
|
Alisawi O, Richert-Pöggeler KR, Heslop-Harrison J(P, Schwarzacher T. The nature and organization of satellite DNAs in Petunia hybrida, related, and ancestral genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232588. [PMID: 37868307 PMCID: PMC10587573 DOI: 10.3389/fpls.2023.1232588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Introduction The garden petunia, Petunia hybrida (Solanaceae) is a fertile, diploid, annual hybrid species (2n=14) originating from P. axillaris and P. inflata 200 years ago. To understand the recent evolution of the P. hybrida genome, we examined tandemly repeated or satellite sequences using bioinformatic and molecular cytogenetic analysis. Methods Raw reads from available genomic assemblies and survey sequences of P. axillaris N (PaxiN), P. inflata S6, (PinfS6), P. hybrida (PhybR27) and the here sequenced P. parodii S7 (PparS7) were used for graph and k-mer based cluster analysis of TAREAN and RepeatExplorer. Analysis of repeat specific monomer lengths and sequence heterogeneity of the major tandem repeat families with more than 0.01% genome proportion were complemented by fluorescent in situ hybridization (FISH) using consensus sequences as probes to chromosomes of all four species. Results Seven repeat families, PSAT1, PSAT3, PSAT4, PSAT5 PSAT6, PSAT7 and PSAT8, shared high consensus sequence similarity and organisation between the four genomes. Additionally, many degenerate copies were present. FISH in P. hybrida and in the three wild petunias confirmed the bioinformatics data and gave corresponding signals on all or some chromosomes. PSAT1 is located at the ends of all chromosomes except the 45S rDNA bearing short arms of chromosomes II and III, and we classify it as a telomere associated sequence (TAS). It is the most abundant satellite repeat with over 300,000 copies, 0.2% of the genomes. PSAT3 and the variant PSAT7 are located adjacent to the centromere or mid-arm of one to three chromosome pairs. PSAT5 has a strong signal at the end of the short arm of chromosome III in P. axillaris and P.inflata, while in P. hybrida additional interstitial sites were present. PSAT6 is located at the centromeres of chromosomes II and III. PSAT4 and PSAT8 were found with only short arrays. Discussion These results demonstrate that (i) repeat families occupy distinct niches within chromosomes, (ii) they differ in the copy number, cluster organization and homogenization events, and that (iii) the recent genome hybridization in breeding P. hybrida preserved the chromosomal position of repeats but affected the copy number of repetitive DNA.
Collapse
Affiliation(s)
- Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
| | - Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J.S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Haerter CAG, Blanco DR, Traldi JB, Feldberg E, Margarido VP, Lui RL. Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity. PLoS One 2023; 18:e0285388. [PMID: 37310952 DOI: 10.1371/journal.pone.0285388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/22/2023] [Indexed: 06/15/2023] Open
Abstract
The scattered distribution pattern of microsatellites is a challenging problem in fish cytogenetics. This type of array hinders the identification of useful patterns and the comparison between species, often resulting in over-limited interpretations that only label it as "scattered" or "widely distributed". However, several studies have shown that the distribution pattern of microsatellites is non-random. Thus, here we tested whether a scattered microsatellite could have distinct distribution patterns on homeologous chromosomes of closely related species. The clustered sites of 18S and 5S rDNA, U2 snRNA and H3/H4 histone genes were used as a guide to compare the (GATA)n microsatellite distribution pattern on the homeologous chromosomes of six Trachelyopterus species: T. coriaceus and Trachelyopterus aff. galeatus from the Araguaia River basin; T. striatulus, T. galeatus and T. porosus from the Amazonas River basin; and Trachelyopterus aff. coriaceus from the Paraguay River basin. Most species had similar patterns of the (GATA)n microsatellite in the histone genes and 5S rDNA carriers. However, we have found a chromosomal polymorphism of the (GATA)n sequence in the 18S rDNA carriers of Trachelyopterus galeatus, which is in Hard-Weinberg equilibrium and possibly originated through amplification events; and a chromosome polymorphism in Trachelyopterus aff. galeatus, which combined with an inversion polymorphism of the U2 snRNA in the same chromosome pair resulted in six possible cytotypes, which are in Hardy-Weinberg disequilibrium. Therefore, comparing the distribution pattern on homeologous chromosomes across the species, using gene clusters as a guide to identify it, seems to be an effective way to further the analysis of scattered microsatellites in fish cytogenetics.
Collapse
Affiliation(s)
| | | | - Josiane Baccarin Traldi
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| |
Collapse
|
6
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
7
|
van Rengs WMJ, Schmidt MHW, Effgen S, Le DB, Wang Y, Zaidan MWAM, Huettel B, Schouten HJ, Usadel B, Underwood CJ. A chromosome scale tomato genome built from complementary PacBio and Nanopore sequences alone reveals extensive linkage drag during breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:572-588. [PMID: 35106855 DOI: 10.1111/tpj.15690] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
The assembly and scaffolding of plant crop genomes facilitate the characterization of genetically diverse cultivated and wild germplasm. The cultivated tomato (Solanum lycopersicum) has been improved through the introgression of genetic material from related wild species, including resistance to pandemic strains of tobacco mosaic virus (TMV) from Solanum peruvianum. Here we applied PacBio HiFi and ONT Nanopore sequencing to develop independent, highly contiguous and complementary assemblies of an inbred TMV-resistant tomato variety. We show specific examples of how HiFi and ONT datasets can complement one another to improve assembly contiguity. We merged the HiFi and ONT assemblies to generate a long-read-only assembly where all 12 chromosomes were represented as 12 contiguous sequences (N50 = 68.5 Mbp). This chromosome scale assembly did not require scaffolding using an orthogonal data type. The merged assembly was validated by chromosome conformation capture data and is highly consistent with previous tomato genome assemblies that made use of genetic maps and Hi-C for scaffolding. Our long-read-only assembly reveals that a complex series of structural variants linked to the TMV resistance gene likely contributed to linkage drag of a 64.1-Mbp region of the S. peruvianum genome during tomato breeding. Through marker studies and ONT-based comprehensive haplotyping we show that this minimal introgression region is present in six cultivated tomato hybrid varieties developed in three commercial breeding programs. Our results suggest that complementary long read technologies can facilitate the rapid generation of near-complete genome sequences.
Collapse
Affiliation(s)
- Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | | | - Sieglinde Effgen
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Duyen Bao Le
- Heinrich Heine University Düsseldorf, Institute of Biological Data Science, Düsseldorf, Germany
| | - Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Bruno Huettel
- Max Planck-Genome-center Cologne, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Henk J Schouten
- Department of Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700, AJ, Wageningen, The Netherlands
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
- Heinrich Heine University Düsseldorf, Institute of Biological Data Science, Düsseldorf, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
8
|
Sevilleno SS, Ju YH, Kim JS, Mancia FH, Byeon EJ, Cabahug RA, Hwang YJ. Cytogenetic analysis of Bienertia sinuspersici Akhani as the first step in genome sequencing. Genes Genomics 2020; 42:337-345. [PMID: 31902107 DOI: 10.1007/s13258-019-00908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND C4 plants are efficient in suppressing photorespiration and enhancing carbon gain as compared to C3 plants. Bienertia sinuspersici Akhani is one of the few species in the family Amaranthaceae that can perform C4 photosynthesis within individual chlorenchyma cells, without the conventional Kranz anatomy in its leaf. This plant is salt-tolerant and is well-adapted to thrive in hot and humid climates. To date, there have been no reported cytogenetic analyses yet on this species. OBJECTIVE This study aims to provide a cytogenetic analysis of B. sinuspersici as the first step in genome sequencing. METHODS Fluorescence in situ hybridization (FISH) karyotype analysis was conducted using the metaphase chromosomes of B. sinuspersici probed with 5S and 45S rDNA and Arabidopsis-type telomeric repeats. RESULTS Results of the cytogenetic analysis confirmed that B. sinuspersici has 2n = 2x = 18 consisting of nine pairs of metacentric chromosomes. Two loci of 45S rDNA were found on the distal regions of the short arm of chromosome 7. Nine loci of 5S rDNA were found in the pericentromeric regions of chromosomes 1, 3, 4, 6, and 8, which also colocalized with Arabidopsis-type telomeric repeats; while four loci in the interstitial regions of chromosome 5 and 8 can be observed. The single locus of 5S rDNA that was found in chromosome 8 appears to be hemizygous. CONCLUSION The FISH karyotype analysis, based on the combination of rDNAs, telomeric tandem repeat markers and C0t DNA chromosome landmarks, allowed efficient chromosome identification and provided useful information in characterizing the genome of B. sinuspersici.
Collapse
Affiliation(s)
| | - Yoon Ha Ju
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jung Sun Kim
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Franklin Hinosa Mancia
- Department of Environmental Horticulture, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Eun Ju Byeon
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Raisa Aone Cabahug
- Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
9
|
Gaiero P, Vaio M, Peters SA, Schranz ME, de Jong H, Speranza PR. Comparative analysis of repetitive sequences among species from the potato and the tomato clades. ANNALS OF BOTANY 2019; 123:521-532. [PMID: 30346473 PMCID: PMC6377101 DOI: 10.1093/aob/mcy186] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/20/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The genus Solanum includes important vegetable crops and their wild relatives. Introgression of their useful traits into elite cultivars requires effective recombination between hom(e)ologues, which is partially determined by genome sequence differentiation. In this study we compared the repetitive genome fractions of wild and cultivated species of the potato and tomato clades in a phylogenetic context. METHODS Genome skimming followed by a clustering approach was used as implemented in the RepeatExplorer pipeline. Repeat classes were annotated and the sequences of their main domains were compared. KEY RESULTS Repeat abundance and genome size were correlated and the larger genomes of species in the tomato clade were found to contain a higher proportion of unclassified elements. Families and lineages of repetitive elements were largely conserved between the clades, but their relative proportions differed. The most abundant repeats were Ty3/Gypsy elements. Striking differences in abundance were found in the highly dynamic Ty3/Gypsy Chromoviruses and Ty1/Copia Tork elements. Within the potato clade, early branching Solanum cardiophyllum showed a divergent repeat profile. There were also contrasts between cultivated and wild potatoes, mostly due to satellite amplification in the cultivated species. Interspersed repeat profiles were very similar among potatoes. The repeat profile of Solanum etuberosum was more similar to that of the potato clade. CONCLUSIONS The repeat profiles in Solanum seem to be very similar despite genome differentiation at the level of collinearity. Removal of transposable elements by unequal recombination may have been responsible for structural rearrangements across the tomato clade. Sequence variability in the tomato clade is congruent with clade-specific amplification of repeats after its divergence from S. etuberosum and potatoes. The low differentiation among potato and its wild relatives at the level of interspersed repeats may explain the difficulty in discriminating their genomes by genomic in situ hybridization techniques.
Collapse
Affiliation(s)
- Paola Gaiero
- Laboratory of Genetics, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
- Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Garzón, Montevideo, Uruguay
| | - Magdalena Vaio
- Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Garzón, Montevideo, Uruguay
| | - Sander A Peters
- Applied Bioinformatics, Department of Bioscience, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Pablo R Speranza
- Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Garzón, Montevideo, Uruguay
- For correspondence. E-mail:
| |
Collapse
|
10
|
Hoang PNT, Michael TP, Gilbert S, Chu P, Motley ST, Appenroth KJ, Schubert I, Lam E. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:670-684. [PMID: 30054939 DOI: 10.1111/tpj.14049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole-genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes (BACs) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mcFISH) to seven S. polyrhiza clones, using 106 BACs that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high-depth Oxford Nanopore (ON) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome-wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale, and illustrates the complementarity of independent approaches to produce whole-genome assemblies in the absence of a genetic map.
Collapse
Affiliation(s)
- Phuong N T Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, D-06466, Germany
- Dalat University, Lamdong Province, Vietnam
| | | | - Sarah Gilbert
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | | | - Klaus J Appenroth
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller- University of Jena, Jena, D-07743, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, D-06466, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
11
|
Chiarini F, Sazatornil F, Bernardello G. Data reassessment in a phylogenetic context gives insight into chromosome evolution in the giant genus Solanum (Solanaceae). SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1431320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Franco Chiarini
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
| | - Federico Sazatornil
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
| | - Gabriel Bernardello
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Casilla de Correo 495, 5000 Córdoba Argentina
| |
Collapse
|
12
|
Demirci S, van Dijk ADJ, Sanchez Perez G, Aflitos SA, de Ridder D, Peters SA. Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:554-564. [PMID: 27797425 DOI: 10.1111/tpj.13406] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 05/20/2023]
Abstract
We determined the crossover (CO) distribution, frequency and genomic sequences involved in interspecies meiotic recombination by using parent-assigned variants of 52 F6 recombinant inbred lines obtained from a cross between tomato, Solanum lycopersicum, and its wild relative, Solanum pimpinellifolium. The interspecific CO frequency was 80% lower than reported for intraspecific tomato crosses. We detected regions showing a relatively high and low CO frequency, so-called hot and cold regions. Cold regions coincide to a large extent with the heterochromatin, although we found a limited number of smaller cold regions in the euchromatin. The CO frequency was higher at the distal ends of chromosomes than in pericentromeric regions and higher in short arm euchromatin. Hot regions of CO were detected in euchromatin, and COs were more often located in non-coding regions near the 5' untranslated region of genes than expected by chance. Besides overrepresented CCN repeats, we detected poly-A/T and AT-rich motifs enriched in 1-kb promoter regions flanking the CO sites. The most abundant sequence motifs at CO sites share weak similarity to transcription factor-binding sites, such as for the C2H2 zinc finger factors class and MADS box factors, while InterPro scans detected enrichment for genes possibly involved in the repair of DNA breaks.
Collapse
Affiliation(s)
- Sevgin Demirci
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gabino Sanchez Perez
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Saulo A Aflitos
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
13
|
Gaiero P, van de Belt J, Vilaró F, Schranz ME, Speranza P, de Jong H. Collinearity between potato (Solanum tuberosum L.) and wild relatives assessed by comparative cytogenetic mapping. Genome 2016; 60:228-240. [PMID: 28169563 DOI: 10.1139/gen-2016-0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major bottleneck to introgressive hybridization is the lack of genome collinearity between the donor (alien) genome and the recipient crop genome. Structural differences between the homeologs may create unbalanced segregation of chromosomes or cause linkage drag. To assess large-scale collinearity between potato and two of its wild relatives (Solanum commersonii and Solanum chacoense), we used BAC-FISH mapping of sequences with known positions on the RH potato map. BAC probes could successfully be hybridized to the S. commersonii and S. chachoense pachytene chromosomes, confirming their correspondence with linkage groups in RH potato. Our study shows that the order of BAC signals is conserved. Distances between BAC signals were quantified and compared; some differences found suggest either small-scale rearrangements or reduction/amplification of repeats. We conclude that S. commersonii and S. chacoense are collinear with cultivated Solanum tuberosum on the whole chromosome scale, making these amenable species for efficient introgressive hybridization breeding.
Collapse
Affiliation(s)
- Paola Gaiero
- a Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Garzón 780, PC 12900, Montevideo, Uruguay.,b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| | - José van de Belt
- b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| | - Francisco Vilaró
- c Horticulture Unit, National Institute for Agricultural Research, Ruta 48 km 10, Las Brujas, Uruguay
| | - M Eric Schranz
- d Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Pablo Speranza
- a Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Garzón 780, PC 12900, Montevideo, Uruguay
| | - Hans de Jong
- b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
14
|
Application of a modified drop method for high-resolution pachytene chromosome spreads in two Phalaenopsis species. Mol Cytogenet 2016; 9:44. [PMID: 27275186 PMCID: PMC4893830 DOI: 10.1186/s13039-016-0254-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preparation of good chromosome spreads without cytoplasmic contamination is the crucial step in cytogenetic mapping. To date, cytogenetic research in the Orchidaceae family has been carried out solely on mitotic metaphase chromosomes. Well-spread meiotic pachytene chromosomes can provide higher resolution and fine detail for analysis of chromosomal structure and are also beneficial for chromosomal FISH (fluorescence in situ hybridization) mapping. However, an adequate method for the preparation of meiotic pachytene chromosomes in orchid species has not yet been reported. RESULTS Two Taiwanese native Phalaenopsis species were selected to test the modified drop method for preparation of meiotic pachytene chromosomes from pollinia. In this modified method, pollinia were ground and treated with an enzyme mixture to completely remove cell walls. Protoplasts were resuspended in ethanol/glacial acetic acid and dropped onto a wet inclined slide of 30° from a height of 0.5 m. The sample was then flowed down the inclined plane to spread the chromosomes. Hundreds of pachytene chromosomes with little to no cytoplasmic contamination were well spread on each slide. We also showed that the resolution of 45S rDNA-containing chromosomes at the pachytene stage was up to 20 times higher than that at metaphase. Slides prepared following this modified drop method were amenable to FISH mapping of both 45S and 5S rDNA on pachytene chromosomes and, after FISH, the chromosomal structure remained intact for further analysis. CONCLUSION This modified drop method is suitable for pachytene spreads from pollinia of Phalaenopsis orchids. The large number and high-resolution pachytene spreads, with little or no cytoplasmic contamination, prepared by the modified drop method could be used for FISH mapping of DNA fragments to accelerate the integration of cytogenetic and molecular research in Phalaenopsis orchids.
Collapse
|
15
|
Iwata-Otsubo A, Lin JY, Gill N, Jackson SA. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res 2016; 24:197-216. [PMID: 26758200 PMCID: PMC4856725 DOI: 10.1007/s10577-015-9515-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022]
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.,Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jer-Young Lin
- Department of Agronomy, Purdue University, 170 S. University Street, West Lafayette, IN, USA.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Navdeep Gill
- Department of Agronomy, Purdue University, 170 S. University Street, West Lafayette, IN, USA.,Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Mehra M, Gangwar I, Shankar R. A Deluge of Complex Repeats: The Solanum Genome. PLoS One 2015; 10:e0133962. [PMID: 26241045 PMCID: PMC4524691 DOI: 10.1371/journal.pone.0133962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50-60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosomes, Plant/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genome, Plant
- Humans
- INDEL Mutation
- Solanum lycopersicum/genetics
- MicroRNAs/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Alignment
- Solanum tuberosum/genetics
- Species Specificity
- Terminal Repeat Sequences
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| |
Collapse
|
17
|
Resequencing at ≥40-Fold Depth of the Parental Genomes of a Solanum lycopersicum × S. pimpinellifolium Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function. G3-GENES GENOMES GENETICS 2015; 5:971-81. [PMID: 25809074 PMCID: PMC4426381 DOI: 10.1534/g3.114.016121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A recombinant in-bred line population derived from a cross between Solanum lycopersicum var. cerasiforme (E9) and S. pimpinellifolium (L5) has been used extensively to discover quantitative trait loci (QTL), including those that act via rootstock genotype, however, high-resolution single-nucleotide polymorphism genotyping data for this population are not yet publically available. Next-generation resequencing of parental lines allows the vast majority of polymorphisms to be characterized and used to progress from QTL to causative gene. We sequenced E9 and L5 genomes to 40- and 44-fold depth, respectively, and reads were mapped to the reference Heinz 1706 genome. In L5 there were three clear regions on chromosome 1, chromosome 4, and chromosome 8 with increased rates of polymorphism. Two other regions were highly polymorphic when we compared Heinz 1706 with both E9 and L5 on chromosome 1 and chromosome 10, suggesting that the reference sequence contains a divergent introgression in these locations. We also identified a region on chromosome 4 consistent with an introgression from S. pimpinellifolium into Heinz 1706. A large dataset of polymorphisms for the use in fine-mapping QTL in a specific tomato recombinant in-bred line population was created, including a high density of InDels validated as simple size-based polymerase chain reaction markers. By careful filtering and interpreting the SnpEff prediction tool, we have created a list of genes that are predicted to have highly perturbed protein functions in the E9 and L5 parental lines.
Collapse
|
18
|
Vašut RJ, Vijverberg K, van Dijk PJ, de Jong H. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 2015; 57:609-20. [PMID: 25760668 DOI: 10.1139/gen-2014-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is discussed.
Collapse
Affiliation(s)
- Radim J Vašut
- Laboratory of Genetics, Wageningen University and Research Centre, P.O. Box 309, NL-6700 AH Wageningen, the Netherlands
| | | | | | | |
Collapse
|
19
|
Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome. Mol Genet Genomics 2014; 289:1307-19. [PMID: 25106953 DOI: 10.1007/s00438-014-0891-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.
Collapse
|
20
|
Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3-GENES GENOMES GENETICS 2014; 4:1395-405. [PMID: 24879607 PMCID: PMC4132171 DOI: 10.1534/g3.114.011197] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome–fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps.
Collapse
|
21
|
Milani D, Cabral-de-Mello DC. Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes. PLoS One 2014; 9:e97956. [PMID: 24871300 PMCID: PMC4037182 DOI: 10.1371/journal.pone.0097956] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022] Open
Abstract
With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used fluorescent in situ hybridization (FISH) to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae), which harbors B chromosome. FISH revealed two main patterns: (i) exclusively scattered signals, and (ii) scattered and specific signals, forming evident blocks. The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C)30 was absent in heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the B chromosome more distinctive blocks for (GA)15 and (GAG)10. For A complement distinctive blocks were noticed for (A)30, (CA)15, (CG)15, (GA)15, (CAC)10, (CAA)10, (CGG)10, (GAA)10, (GAC)10 and (GATA)8. These results revealed an intense spreading of microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers including the B chromosomes.
Collapse
Affiliation(s)
- Diogo Milani
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, São Paulo, Brazil
| | | |
Collapse
|
22
|
Fonsêca A, Richard MM, Geffroy V, Pedrosa-Harand A. Epigenetic Analyses and the Distribution of Repetitive DNA and Resistance Genes Reveal the Complexity of Common Bean ( Phaseolus vulgaris L., Fabaceae) Heterochromatin. Cytogenet Genome Res 2014; 143:168-78. [DOI: 10.1159/000360572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
El-Rehem FAERAA, Ali RFM. Proximate compositions, phytochemical constituents, antioxidant activities and phenolic contents of seed and leaves extracts of Egyptian leek (Allium ampeloprasum var. kurrat). EUROPEAN JOURNAL OF CHEMISTRY 2013; 4:185-190. [DOI: 10.5155/eurjchem.4.3.185-190.711] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M, Brown S, Moïse A, Peypelut M, Rouyère V, Renaudin JP, Chevalier C, Frangne N. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 2012; 139:3817-26. [PMID: 22991446 DOI: 10.1242/dev.084053] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin and nucleolar organisation, nuclear shape and relationship with other cellular organelles such as mitochondria. We demonstrate that endopolyploidy in pericarp leads to the formation of polytene chromosomes and markedly affects nuclear structure. Nuclei manifest a complex shape, with numerous deep grooves that are filled with mitochondria, affording a fairly constant ratio between nuclear surface and nuclear volume. We provide the first direct evidence that endopolyploidy plays a role in increased transcription of rRNA and mRNA on a per-nucleus basis. Overall, our results provide quantitative evidence in favour of the karyoplasmic theory and show that endoreduplication is associated with complex cellular organisation during tomato fruit development.
Collapse
Affiliation(s)
- Matthieu Bourdon
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, BP 81, F-33140 Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai Y, de Jong H. Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:602-14. [PMID: 22463056 DOI: 10.1111/j.1365-313x.2012.05012.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have analysed the structural homology in euchromatin regions of tomato, potato and pepper with special attention for the long arm of chromosome 2 (2L). Molecular organization and colinear junctions were delineated using multi-color BAC FISH analysis and comparative sequence alignment. We found large-scale rearrangements including inversions and segmental translocations that were not reported in previous comparative studies. Some of the structural rearrangements are specific for the tomato clade, and differentiate tomato from potato, pepper and other Solanaceous species. Although local gene vicinity is largely preserved, there are many small-scale synteny perturbations. Gene adjacency in the aligned segments was frequently disrupted for 47% of the ortholog pairs as a result of gene and LTR retrotransposon insertions, and occasionally by single gene inversions and translocations. Our data also suggests that long distance intra-chromosomal rearrangements and local gene rearrangements have evolved frequently during speciation in the Solanum genus, and that small changes are more prevalent than large-scale differences. The occurrence of sonata and harbinger transposable elements and other repeats near or at junction breaks is considered in the light of repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L topology is discussed.
Collapse
Affiliation(s)
- Sander A Peters
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Szinay D, Wijnker E, van den Berg R, Visser RGF, de Jong H, Bai Y. Chromosome evolution in Solanum traced by cross-species BAC-FISH. THE NEW PHYTOLOGIST 2012; 195:688-698. [PMID: 22686400 DOI: 10.1111/j.1469-8137.2012.04195.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chromosomal rearrangements are relatively rare evolutionary events and can be used as markers to study karyotype evolution. This research aims to use such rearrangements to study chromosome evolution in Solanum. Chromosomal rearrangements between Solanum crops and several related wild species were investigated using tomato and potato bacterial artificial chromosomes (BACs) in a multicolour fluorescent in situ hybridization (FISH). The BACs selected are evenly distributed over seven chromosomal arms containing inversions described in previous studies. The presence/absence of these inversions among the studied Solanum species were determined and the order of the BAC-FISH signals was used to construct phylogenetic trees.Compared with earlier studies, data from this study provide support for the current grouping of species into different sections within Solanum; however, there are a few notable exceptions, such as the tree positions of S. etuberosum (closer to the tomato group than to the potato group) and S. lycopersicoides (sister to S. pennellii). These apparent contradictions might be explained by interspecific hybridization events and/or incomplete lineage sorting. This cross-species BAC painting technique provides unique information on genome organization, evolution and phylogenetic relationships in a wide variety of species. Such information is very helpful for introgressive breeding.
Collapse
Affiliation(s)
- Dóra Szinay
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Ronald van den Berg
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
27
|
Guarido PCP, de Paula AA, da Silva CRM, Rodriguez C, Vanzela ALL. Hypomethylation of cytosine residues in cold-sensitive regions of Cestrum strigilatum (Solanaceae). Genet Mol Biol 2012; 35:455-9. [PMID: 22888295 PMCID: PMC3389534 DOI: 10.1590/s1415-47572012005000026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/13/2012] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin comprises a fraction of the genome usually with highly repeated DNA sequences and lacks of functional genes. This region can be revealed by using Giemsa C-banding, fluorochrome staining and cytomolecular tools. Some plant species are of particular interest through having a special type of heterochromatin denominated the cold-sensitive region (CSR). Independent of other chromosomal regions, when biological materials are subjected to low temperatures (about 0 °C), CSRs appear slightly stained and decondensed. In this study, we used Cestrum strigilatum (Solanaceae) to understand some aspects of CSR condensation associated with cytosine methylation levels, and to compare the behavior of different heterochromatin types of this species, when subjected to low temperatures.
Collapse
Affiliation(s)
- Paula Carolina Paes Guarido
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Adriano Alves de Paula
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | - André Luís Laforga Vanzela
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
28
|
Nagaki K, Shibata F, Kanatani A, Kashihara K, Murata M. Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco. PLANT CELL REPORTS 2012; 31:771-9. [PMID: 22147136 DOI: 10.1007/s00299-011-1198-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/22/2011] [Accepted: 11/26/2011] [Indexed: 05/26/2023]
Abstract
The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | | | | | | | | |
Collapse
|
29
|
Di Filippo M, Traini A, D'Agostino N, Frusciante L, Chiusano ML. Euchromatic and heterochromatic compositional properties emerging from the analysis of Solanum lycopersicum BAC sequences. Gene 2012; 499:176-81. [PMID: 22391094 DOI: 10.1016/j.gene.2012.02.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/20/2012] [Indexed: 11/15/2022]
Abstract
The consortium responsible for the sequencing of the tomato (Solanum lycopersicum) genome initially focused on the sequencing of the euchromatic regions using a BAC-by-BAC strategy. We analyzed the compositional features of the whole collection of BAC sequences publically available. This analysis highlights specific peculiarities of heterochromatic and euchromatic BACs, in particular: the whole BAC collection has i) a large variability in repeat and gene content, ii) a positive and significant correlation of LTR retrotransposons of the Gypsy class with the repeat content and iii) the preferential location of the SINEs (short interspersed nuclear elements) in BAC sequences showing a low repeat content. Our results point out a typical design of the tomato chromosomes and pave the way for further investigations on the relationship between DNA primary structure and chromatin organization in Solanaceae genomes.
Collapse
Affiliation(s)
- Miriam Di Filippo
- University of Naples Federico II, Dept. of Soil, Plant, Environmental and Animal Production Sciences, Via Università 100, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
30
|
de Boer JM, Borm TJA, Jesse T, Brugmans B, Wiggers-Perebolte L, de Leeuw L, Tang X, Bryan GJ, Bakker J, van Eck HJ, Visser RGF. A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome. BMC Genomics 2011; 12:594. [PMID: 22142254 PMCID: PMC3261212 DOI: 10.1186/1471-2164-12-594] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 12/05/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH). RESULTS First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. CONCLUSIONS The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches.
Collapse
Affiliation(s)
- Jan M de Boer
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalstesteeg 1, 6708 PD Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Genetics 2011; 190:263-74. [PMID: 22042572 DOI: 10.1534/genetics.111.134643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The environment can have a decisive influence on the structure of the genome, changing it in a certain direction. Therefore, the genomic distribution of environmentally sensitive transposable elements may vary measurably across a species area. In the present research, we aimed to detect and evaluate the level of LTR retrotransposon intraspecific variability in Aegilops speltoides (2n = 2x = 14), a wild cross-pollinated relative of cultivated wheat. The interretrotransposon amplified polymorphism (IRAP) protocol was applied to detect and evaluate the level of retrotransposon intraspecific variability in Ae. speltoides and closely related species. IRAP analysis revealed significant diversity in TE distribution. Various genotypes from the 13 explored populations significantly differ with respect to the patterns of the four explored LTR retrotransposons (WIS2, Wilma, Daniela, and Fatima). This diversity points to a constant ongoing process of LTR retrotransposon fraction restructuring in populations of Ae. speltoides throughout the species' range and within single populations in time. Maximum changes were recorded in genotypes from small stressed populations. Principal component analysis showed that the dynamics of the Fatima element significantly differ from those of WIS2, Wilma, and Daniela. In terms of relationships between Sitopsis species, IRAP analysis revealed a grouping with Ae. sharonensis and Ae. longissima forming a separate unit, Ae. speltoides appearing as a dispersed group, and Ae. bicornis being in an intermediate position. IRAP display data revealed dynamic changes in LTR retrotransposon fractions in the genome of Ae. speltoides. The process is permanent and population specific, ultimately leading to the separation of small stressed populations from the main group.
Collapse
|
32
|
Comparative Cytogenetics Analysis of Chlamys farreri, Patinopecten yessoensis, and Argopecten irradians with Ct-1 DNA by Fluorescence In Situ Hybridization. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:785831. [PMID: 21845202 PMCID: PMC3138726 DOI: 10.1155/2011/785831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/16/2011] [Indexed: 11/17/2022]
Abstract
The chromosomes of
Chlamys farreri,
Patinopecten yessoensis, and
Argopecten irradians were
studied by FISH using C. farreri C0t-1 DNA probes. The results showed that C0t-1 DNA signals spread on all chromosomes in the three scallops, whereas signal density and intensity were different strikingly. Clustering brighter signals presented in the centromeric and telomeric regions of most C. farreri chromosomes, and in the centromeric or pericentromeric regions of several P. yessoensis chromosomes. Comparative analysis of the mapping indicated a relatively higher homology in the repetitive DNA sequences of the genome between C. farreri and P. yessoensis than that between C. farreri and A. irradians. In addition, FISH showed that the distribution of C0t-1 DNA clustering signals in C. farreri displayed completely similar signal bands between homologous chromosomes. Based on the C0t-1 DNA fluorescent bands, a more exact karyotype of C. farreri has been obtained. In this study, the comparative analysis based on C0t-1 DNA provides a new insight into
the chromosomal reconstructions during the evolution process, and
it is helpful for understanding an important source of genomic
diversity, species relationships, and genome
evolution.
Collapse
|
33
|
Altrock S, Fonsêca A, Pedrosa-Harand A. Chromosome identification in the Andean common bean accession G19833 (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 2011; 34:459-63. [PMID: 21931520 PMCID: PMC3168188 DOI: 10.1590/s1415-47572011005000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/28/2011] [Indexed: 12/01/2022] Open
Abstract
Characterization of all chromosomes of the Andean G19833 bean genotype was carried out by fluorescent in situ hybridization. Eleven single-copy genomic sequences, one for each chromosome, two BACs containing subtelomeric and pericentromeric repeats and the 5S and 45S ribosomal DNA (rDNA) were used as probes. Comparison to the Mesoamerican accession BAT93 showed little divergence, except for additional 45S rDNA sites in four chromosome pairs. Altogether, the results indicated a relative karyotypic stability during the evolution of the Andean and Mesoamerican gene pools of P. vulgaris.
Collapse
Affiliation(s)
- Sarah Altrock
- Laboratório de Citogenética Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | |
Collapse
|
34
|
Nagaki K, Shibata F, Suzuki G, Kanatani A, Ozaki S, Hironaka A, Kashihara K, Murata M. Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chromosome Res 2011; 19:591-605. [PMID: 21626175 DOI: 10.1007/s10577-011-9219-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/05/2023]
Abstract
Although a centromeric DNA fragment of tobacco (Nicotiana tabacum), Nt2-7, has been reported, the overall structure of the centromeres remains unknown. To characterize the centromeric DNA sequences, we conducted a chromatin immunoprecipitation assay using anti-NtCENH3 antibody and chromatins isolated from two ancestral diploid species (Nicotiana sylvestris and Nicotiana tomentosiformis) of N. tabacum and isolated a 178-pb fragment, Nto1 from N. tomentosiformis, as a novel centromeric DNA. Fluorescence in situ hybridization (FISH) showed that Nto1 localizes on 24 out of 48 chromosomes in some cells of a BY-2 cell line. To identify the origins of the Nt2-7 and Nto1, a tobacco bacterial artificial chromosome (BAC) library was constructed from N. tabacum, and then screened by polymerase chain reaction (PCR) with primer sets designed from the Nt2-7 and Not1 DNA sequences. Twelve BAC clones were found to localize on the centromeric regions by FISH. We selected three BAC clones for sequencing and identified two centromeric retrotransposons, NtCR and NtoCR, the DNA sequences of which are similar to that of Nt2-7 and Nto1, respectively. Quantitative PCR analysis using coprecipitated DNA with anti-NtCENH3 clearly showed coexistence of NtCENH3 with both retrotransposons. These results indicate the possibility that these two retrotransposons act as centromeric DNA sequences in tobacco. NtoCR was found to be specific to N. tomentosiformis and T genome of N. tabacum, and a NtCR-like centromeric retrotransposon (TGRIV) exists in tomato. This specificity suggests that the times of amplification of these centromeric retrotransposons were different.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A. Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 2011; 19:521-30. [DOI: 10.1007/s10577-011-9203-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
36
|
Feitoza L, Guerra M. Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA. Genetica 2011; 139:305-14. [PMID: 21327493 DOI: 10.1007/s10709-011-9550-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/12/2011] [Indexed: 11/26/2022]
Abstract
Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.
Collapse
Affiliation(s)
- Lidiane Feitoza
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
37
|
Qiao H, Lohmiller LD, Anderson LK. Cohesin proteins load sequentially during prophase I in tomato primary microsporocytes. Chromosome Res 2011; 19:193-207. [PMID: 21234670 DOI: 10.1007/s10577-010-9184-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Proteins of the cohesin complex are essential for sister chromatid cohesion and proper chromosome segregation during both mitosis and meiosis. Cohesin proteins are also components of axial elements/lateral elements (AE/LEs) of synaptonemal complexes (SCs) during meiosis, and cohesins are thought to play an important role in meiotic chromosome morphogenesis and recombination. Here, we have examined the cytological behavior of four cohesin proteins (SMC1, SMC3, SCC3, and REC8/SYN1) during early prophase I in tomato microsporocytes using immunolabeling. All four cohesins are discontinuously distributed along the length of AE/LEs from leptotene through early diplotene. Based on current models for the cohesin complex, the four cohesin proteins should be present at the same time and place in equivalent amounts. However, we observed that cohesins often do not colocalize at the same AE/LE positions, and cohesins differ in when they load onto and dissociate from AE/LEs of early prophase I chromosomes. Cohesin labeling of LEs from pachytene nuclei is similar through euchromatin, pericentric heterochromatin, and kinetochores but is distinctly reduced through the nucleolar organizer region of chromosome 2. These results indicate that the four cohesin proteins may form different complexes and/or perform additional functions during meiosis in plants, which are distinct from their essential function in sister chromatid cohesion.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523-1878, USA
| | | | | |
Collapse
|
38
|
Fonsêca A, Ferreira J, dos Santos TRB, Mosiolek M, Bellucci E, Kami J, Gepts P, Geffroy V, Schweizer D, dos Santos KGB, Pedrosa-Harand A. Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosome Res 2010; 18:487-502. [PMID: 20449646 PMCID: PMC2886897 DOI: 10.1007/s10577-010-9129-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/12/2010] [Accepted: 03/28/2010] [Indexed: 01/01/2023]
Abstract
A cytogenetic map of common bean was built by in situ hybridization of 35 bacterial artificial chromosomes (BACs) selected with markers mapping to eight linkage groups, plus two plasmids for 5S and 45S ribosomal DNA and one bacteriophage. Together with three previously mapped chromosomes (chromosomes 3, 4, and 7), 43 anchoring points between the genetic map and the cytogenetic map of the species are now available. Furthermore, a subset of four BAC clones was proposed to identify the 11 chromosome pairs of the standard cultivar BAT93. Three of these BACs labelled more than a single chromosome pair, indicating the presence of repetitive DNA in their inserts. A repetitive distribution pattern was observed for most of the BACs; for 38% of them, highly repetitive pericentromeric or subtelomeric signals were observed. These distribution patterns corresponded to pericentromeric and subtelomeric heterochromatin blocks observed with other staining methods. Altogether, the results indicate that around half of the common bean genome is heterochromatic and that genes and repetitive sequences are intermingled in the euchromatin and heterochromatin of the species.
Collapse
Affiliation(s)
- Artur Fonsêca
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | - Joana Ferreira
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | | | - Magdalena Mosiolek
- Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Elisa Bellucci
- Dipartimento di Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, 60131 Ancona, Italy
- National Institute of Agricultural Botany, Cambridge, CB3 0LE UK
| | - James Kami
- Department of Plant Sciences/MS1, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780 USA
| | - Paul Gepts
- Department of Plant Sciences/MS1, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780 USA
| | - Valérie Geffroy
- Institut de Biotechnologie des Plantes, UMR-CNRS 8618, INRA, Université Paris Sud, 91405 Orsay, France
- Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Agronomique, 91190 Gif-sur-Yvette, France
| | - Dieter Schweizer
- Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Karla G. B. dos Santos
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
- Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
39
|
Ashrafi H, Kinkade M, Foolad MR. A new genetic linkage map of tomato based on a Solanum lycopersicum x S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 2010; 52:935-56. [PMID: 19935918 DOI: 10.1139/g09-065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The narrow genetic base of the cultivated tomato, Solanum lycopersicum L., necessitates introgression of new variation from related species. Wild tomato species represent a rich source of useful genes and traits. Exploitation of genetic variation within wild species can be facilitated by the use of molecular markers and genetic maps. Recently we identified an accession (LA2093) within the red-fruited wild tomato species Solanum pimpinellifolium L. with exceptionally desirable characteristics, including disease resistance, abiotic stress tolerance, and high fruit lycopene content. To facilitate genetic characterization of such traits and their exploitation in tomato crop improvement, we developed a new recombinant inbred line (RIL) population from a cross between LA2093 and an advanced tomato breeding line (NCEBR-1). Furthermore, we constructed a medium-density molecular linkage map of this population using 294 polymorphic markers, including standard RFLPs, EST sequences (used as RFLP probes), CAPS, and SSRs. The map spanned 1091 cM of the tomato genome with an average marker spacing of 3.7 cM. A majority of the EST sequences, which were mainly chosen based on the putative role of their unigenes in disease resistance, defense-related response, or fruit quality, were mapped onto the tomato chromosomes for the first time. Co-localizations of relevant EST sequences with known disease resistance genes in tomato were also examined. This map will facilitate identification, genetic exploitation, and positional cloning of important genes or quantitative trait loci in LA2093. It also will allow the elucidation of the molecular mechanism(s) underlying important traits segregating in the RIL population. The map may further facilitate characterization and exploitation of genetic variation in other S. pimpinellifolium accessions as well as in modern cultivars of tomato.
Collapse
Affiliation(s)
- Hamid Ashrafi
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
40
|
Santos J, Serra L, Solé E, Pascual M. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosome Res 2010; 18:213-26. [PMID: 20198419 DOI: 10.1007/s10577-010-9112-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 12/24/2022]
Abstract
Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller's chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.
Collapse
Affiliation(s)
- Josiane Santos
- Departament de Genètica, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Tang X, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H. Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 2009; 17:899-915. [PMID: 19774472 PMCID: PMC2776164 DOI: 10.1007/s10577-009-9077-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/20/2009] [Indexed: 11/30/2022]
Abstract
A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC) clones from the RHPOTKEY BAC library. This diagnostic set of selected BACs (five per chromosome) hybridizes to euchromatic regions and corresponds to well-defined loci in the ultradense genetic map, and with these probes a new detailed and reliable pachytene karyotype could be established. Chromosome size has been estimated both from microscopic length measurements and from 4′,6-diamidino-2-phenylindole fluorescence-based DNA content measurements. In both approaches, chromosome 1 is the largest (100–115 Mb) and chromosome 11 the smallest (49–53 Mb). Detailed measurements of mega-base-pair to micrometer ratios have been obtained for chromosome 5, with average values of 1.07 Mb/μm for euchromatin and 3.67 Mb/μm for heterochromatin. In addition, our FISH results helped to solve two discrepancies in the potato genetic map related to chromosomes 8 and 12. Finally, we discuss the significance of the potato cytogenetic map for extended FISH studies in potato and related Solanaceae, which will be especially beneficial for the potato genome-sequencing project.
Collapse
Affiliation(s)
- Xiaomin Tang
- Wageningen UR Plant Breeding, Wageningen University and Research Center, 6708 PB, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Zou J, Gong H, Yang TJ, Meng J. Retrotransposons - a major driving force in plant genome evolution and a useful tool for genome analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12892-009-0070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci U S A 2009; 106:14937-41. [PMID: 19706458 DOI: 10.1073/pnas.0904833106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The centromere of an eukaryotic chromosome can move to a new position during evolution, which may result in a major alteration of the chromosome morphology and karyotype. This centromere repositioning phenomenon has been extensively documented in mammalian species and was implicated to play an important role in mammalian genome evolution. Here we report a centromere repositioning event in plant species. Comparative fluorescence in situ hybridization mapping using common sets of fosmid clones between two pairs of cucumber (Cucumis sativus L.) and melon (Cucumis melo L.) chromosomes revealed changes in centromere positions during evolution. Pachytene chromosome analysis revealed that the current centromeres of all four cucumber and melon chromosomes are associated with distinct pericentromeric heterochromatin. Interestingly, inactivation of a centromere in the original centromeric region was associated with a loss or erosion of its affixed pericentromeric heterochromatin. Thus, both centromere activation and inactivation in cucurbit species were associated with a gain/loss of a large amount of pericentromeric heterochromatin.
Collapse
|
44
|
Brasileiro-Vidal AC, Melo-Oliveira MB, Carvalheira GMG, Guerra M. Different chromatin fractions of tomato (Solanum lycopersicum L.) and related species. Micron 2009; 40:851-9. [PMID: 19646883 DOI: 10.1016/j.micron.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/17/2022]
Abstract
Conventional chromosome staining has suggested that more than 75% of the tomato chromosomes are constituted by heterochromatin. In order to determine whether more deeply stained proximal regions are classic heterochromatin, the distributions of C-bands and chromomycin A(3) (CMA) bands, and the prophase condensation patterns, were analysed in tomato. In this and most other species of the tomato clade, the 5S and 45S rDNA sites were also localised. In tomato, CMA banding was similar to C-banding. After conventional staining, all species displayed large condensed heteropycnotic regions that did not correspond to C-bands or CMA bands. Analyses of the CMA banded karyotypes revealed a low heterochromatin content. Around 12-17% of the chromatin of tomato was CMA(+) and 1/4 to 1/5 of this heterochromatin corresponded to 45S rDNA. In other species, the CMA(+) heterochromatin showed extensive variation (8-35%), but was never near the values found in the literature for tomato. These data suggest the existence of three principal fractions of chromatin in tomato and related species: the late condensed euchromatin corresponding to the terminal regions of the chromosomes, the precocious condensed euchromatin that occupies the major part of the chromosomes and the constitutive heterochromatin that represents those regions revealed by C-bands.
Collapse
Affiliation(s)
- A C Brasileiro-Vidal
- Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n Cidade, 50670-901 Recife, PE, Brazil.
| | | | | | | |
Collapse
|
45
|
Peters SA, Datema E, Szinay D, van Staveren MJ, Schijlen EGWM, van Haarst JC, Hesselink T, Abma-Henkens MHC, Bai Y, de Jong H, Stiekema WJ, Klein Lankhorst RM, van Ham RCHJ. Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:857-69. [PMID: 19207213 DOI: 10.1111/j.1365-313x.2009.03822.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We studied the physical and genetic organization of chromosome 6 of tomato (Solanum lycopersicum) cv. Heinz 1706 by combining bacterial artificial chromosome (BAC) sequence analysis, high-information-content fingerprinting, genetic analysis, and BAC-fluorescent in situ hybridization (FISH) mapping data. The chromosome positions of 81 anchored seed and extension BACs corresponded in most cases with the linear marker order on the high-density EXPEN 2000 linkage map. We assembled 25 BAC contigs and eight singleton BACs spanning 2.0 Mb of the short-arm euchromatin, 1.8 Mb of the pericentromeric heterochromatin and 6.9 Mb of the long-arm euchromatin. Sequence data were combined with their corresponding genetic and pachytene chromosome positions into an integrated map that covers approximately a third of the chromosome 6 euchromatin and a small part of the pericentromeric heterochromatin. We then compared physical length (Mb), genetic (cM) and chromosome distances (microm) for determining gap sizes between contigs, revealing relative hot and cold spots of recombination. Through sequence annotation we identified several clusters of functionally related genes and an uneven distribution of both gene and repeat sequences between heterochromatin and euchromatin domains. Although a greater number of the non-transposon genes were located in the euchromatin, the highly repetitive (22.4%) pericentromeric heterochromatin displayed an unexpectedly high gene content of one gene per 36.7 kb. Surprisingly, the short-arm euchromatin was relatively rich in repeats as well, with a repeat content of 13.4%, yet the ratio of Ty3/Gypsy and Ty1/Copia retrotransposable elements across the chromosome clearly distinguished euchromatin (2:3) from heterochromatin (3:2).
Collapse
Affiliation(s)
- Sander A Peters
- Wageningen University Centre for Biosystems Genomics, Droevendaalsesteeg 1 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nagaki K, Walling J, Hirsch C, Jiang J, Murata M. Structure and evolution of plant centromeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:153-79. [PMID: 19521815 DOI: 10.1007/978-3-642-00182-6_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
47
|
Szinay D, Chang SB, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, van Ham RCHJ, de Jong H, Klein Lankhorst RM. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:627-37. [PMID: 18643986 DOI: 10.1111/j.1365-313x.2008.03626.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Within the framework of the International Solanaceae Genome Project, the genome of tomato (Solanum lycopersicum) is currently being sequenced. We follow a 'BAC-by-BAC' approach that aims to deliver high-quality sequences of the euchromatin part of the tomato genome. BACs are selected from various libraries of the tomato genome on the basis of markers from the F2.2000 linkage map. Prior to sequencing, we validated the precise physical location of the selected BACs on the chromosomes by five-colour high-resolution fluorescent in situ hybridization (FISH) mapping. This paper describes the strategies and results of cytogenetic mapping for chromosome 6 using 75 seed BACs for FISH on pachytene complements. The cytogenetic map obtained showed discrepancies between the actual chromosomal positions of these BACs and their markers on the linkage group. These discrepancies were most notable in the pericentromere heterochromatin, thus confirming previously described suppression of cross-over recombination in that region. In a so called pooled-BAC FISH, we hybridized all seed BACs simultaneously and found a few large gaps in the euchromatin parts of the long arm that are still devoid of seed BACs and are too large for coverage by expanding BAC contigs. Combining FISH with pooled BACs and newly recruited seed BACs will thus aid in efficient targeting of novel seed BACs into these areas. Finally, we established the occurrence of repetitive DNA in heterochromatin/euchromatin borders by combining BAC FISH with hybridization of a labelled repetitive DNA fraction (Cot-100). This strategy provides an excellent means to establish the borders between euchromatin and heterochromatin in this chromosome.
Collapse
Affiliation(s)
- Dóra Szinay
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 2008; 180:1319-28. [PMID: 18791231 DOI: 10.1534/genetics.108.093211] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ongoing genomics projects of tomato (Solanum lycopersicum) and potato (S. tuberosum) are providing unique tools for comparative mapping studies in Solanaceae. At the chromosomal level, bacterial artificial chromosomes (BACs) can be positioned on pachytene complements by fluorescence in situ hybridization (FISH) on homeologous chromosomes of related species. Here we present results of such a cross-species multicolor cytogenetic mapping of tomato BACs on potato chromosomes 6 and vice versa. The experiments were performed under low hybridization stringency, while blocking with Cot-100 was essential in suppressing excessive hybridization of repeat signals in both within-species FISH and cross-species FISH of tomato BACs. In the short arm we detected a large paracentric inversion that covers the whole euchromatin part with breakpoints close to the telomeric heterochromatin and at the border of the short arm pericentromere. The long arm BACs revealed no deviation in the colinearity between tomato and potato. Further comparison between tomato cultivars Cherry VFNT and Heinz 1706 revealed colinearity of the tested tomato BACs, whereas one of the six potato clones (RH98-856-18) showed minor putative rearrangements within the inversion. Our results present cross-species multicolor BAC-FISH as a unique tool for comparative genetic studies across Solanum species.
Collapse
|