1
|
Mishra JS, Bosse B, Hoppe KK, Malecki K, Hetzel SJ, Kumar S. Perfluoroalkyl substances (PFAS) exposure and preeclampsia risk: Impaired angiogenesis through suppression of VEGF signaling. Reprod Toxicol 2025; 132:108827. [PMID: 39732411 PMCID: PMC11890960 DOI: 10.1016/j.reprotox.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are linked to preeclampsia (PE), a condition involving abnormal angiogenesis. Prior research on this association has been inconclusive. We investigated the relationship between maternal PFAS exposure and PE risk in Wisconsin. We also examined if PFAS disrupts angiogenesis and, if so, what mechanisms are involved. We conducted a case-control study with 40 PE cases and 40 controls. Maternal serum was analyzed for 38 different PFAS compounds using LC MS/MS. Functional in vitro experiments assessed PFOS effects on angiogenesis and mechanisms. Maternal serum samples from women with PE exhibited significantly higher PFOS and PFHPS concentrations than controls. After adjusting for confounders, each log-scale IQR increase in PFOS and PFHPS concentrations was associated with a 7.18-fold (95 % CI: 2.24, 23.0) and 5.40-fold (95 % CI: 1.81, 16.1) higher odds of PE, respectively. Furthermore, PFOS and PFHPS were positively associated with sFLT1 levels and the sFLT1/PLGF ratio. In vitro experiments revealed that PFOS exposure impaired HUVEC proliferation, migration, and tube formation, essential processes for angiogenesis. The membrane-based antibody array showed that PFOS decreased expression of multiple angiogenic proteins, including I-TAC, uPAR, VEGFR2, MMP-1, IL-1α, Angiopoietin-2, IL-1β, PECAM-1, TIE-2, and TIMP-2. The qPCR analysis demonstrated that PFOS decreased VEGFR2, the upstream target of VEGF, at the transcriptional level. In conclusion, elevated PFAS, especially PFOS and PFHPS, are linked to increased PE risk. PFOS may suppress angiogenesis via attenuated VEGFR2-mediated signaling, providing a molecular mechanism linking PFAS and PE pathogenesis.
Collapse
Affiliation(s)
- Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Bradley Bosse
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kara K Hoppe
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kristen Malecki
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago School of Public Health, Chicago, IL, USA
| | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
2
|
Wang J, Ouyang X, Zhu W, Yi Q, Zhong J. The Role of CXCL11 and its Receptors in Cancer: Prospective but Challenging Clinical Targets. Cancer Control 2024; 31:10732748241241162. [PMID: 38533911 DOI: 10.1177/10732748241241162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Chemokine ligand 11 is a member of the CXC chemokine family and exerts its biological function mainly through binding to CXCR3 and CXCR7. The CXCL11 gene is ubiquitously overexpressed in various human malignant tumors; however, its specific mechanisms vary among different cancer types. Recent studies have found that CXCL11 is involved in the activation of multiple oncogenic signaling pathways and is closely related to tumorigenesis, progression, chemotherapy tolerance, immunotherapy efficacy, and poor prognosis. Depending on the specific expression of its receptor subtype, CXCL11 also has a complex 2-fold role in tumours; therefore, directly targeting the structure-function of CXCL11 and its receptors may be a challenging task. In this review, we summarize the biological functions of CXCL11 and its receptors and their roles in various types of malignant tumors and point out the directions for clinical applications.
Collapse
Affiliation(s)
- Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Baghaie L, Haxho F, Leroy F, Lewis B, Wawer A, Minhas S, Harless WW, Szewczuk MR. Contemporaneous Perioperative Inflammatory and Angiogenic Cytokine Profiles of Surgical Breast, Colorectal, and Prostate Cancer Patients: Clinical Implications. Cells 2023; 12:2767. [PMID: 38067195 PMCID: PMC10706122 DOI: 10.3390/cells12232767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Surgery-induced tumor growth acceleration and synchronous metastatic growth promotion have been observed for decades. Surgery-induced wound healing, orchestrated through growth factors, chemokines, and cytokines, can negatively impact patients harboring residual or metastatic disease. We provide detailed clinical evidence of this process in surgical breast, prostate, and colorectal cancer patients. Plasma samples were analyzed from 68 cancer patients who had not received treatment before surgery or adjuvant therapy until at least four weeks post-surgery. The levels of plasma cytokines, chemokines, and growth factors were simultaneously quantified and profiled using multiplexed immunoassays for eight time points sampled per patient. The immunologic processes are induced immediately after surgery in patients, characterized by a drastic short-term shift in the expression levels of pro-inflammatory and angiogenic molecules and cytokines. A rapid and significant spike in circulating plasma levels of hepatocyte growth factor (HGF), interleukin-6 (IL-6), placental growth factor (PLGF), and matrix metalloproteinase-9 (MMP-9) after surgery was noted. The rise in these molecules was concomitant with a significant drop in transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF-AB/BB), insulin-like growth factor-1 (IGF-1), and monocyte chemoattractant protein-2 (MCP-2). If not earlier, each plasma analyte was normalized to baseline levels within 1-2 weeks after surgery, suggesting that surgical intervention alone was responsible for these effects. The effects of surgical tumor removal on disrupting the pro-inflammatory and angiogenic plasma profiles of cancer patients provide evidence for potentiating malignant progression. Our findings indicate a narrow therapeutic window of opportunity after surgery to prevent disease recurrence.
Collapse
Affiliation(s)
- Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
| | - Fiona Haxho
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
- Dermatology Residency Program, the Cumming School of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada
| | - Fleur Leroy
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
- Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France
| | - Beth Lewis
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Alexander Wawer
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Shamano Minhas
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - William W. Harless
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
| |
Collapse
|
4
|
Alessandrini L, Astolfi L, Daloiso A, Sbaraglia M, Mondello T, Zanoletti E, Franz L, Marioni G. Diagnostic, Prognostic, and Therapeutic Role for Angiogenesis Markers in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Int J Mol Sci 2023; 24:10733. [PMID: 37445908 DOI: 10.3390/ijms241310733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Despite refinements to diagnostic and therapeutic approaches over the last two decades, the outcome of patients with head and neck squamous cell carcinoma (HNSCC) has not shown substantial improvements, especially regarding those with advanced-stage disease. Angiogenesis is believed to be a turning point in the development of solid tumors, being a premise for mass growth and potential distant dissemination. Cancer-induced angiogenesis is a result of increased expression of angiogenic factors, decreased expression of anti-angiogenic factors, or a combination of both. The assessment of angiogenesis has also emerged as a potentially useful biological prognostic and predictive factor in HNSCC. The aim of this review is to assess the level of current knowledge on the neo-angiogenesis markers involved in the biology, behavior, and prognosis of HNSCC. A search (between 1 January 2012 and 10 October 2022) was run in PubMed, Scopus, and Web of Science electronic databases. After full-text screening and application of inclusion/exclusion criteria, 84 articles are included. The current knowledge and debate on angiogenesis in HNSCC presented in the eligible articles are stratified as follows: (i) diagnostic markers; (ii) prognostic markers; (iii) predictive markers; and (iv) markers with a potential therapeutic role. Angiogenesis is a biological and pathological indicator of malignancies progression and has negative implications in prognosis of some solid tumors; several signals capable of tripping the "angiogenic switch" have also been identified in HNSCC. Although several studies suggested that antiangiogenic agents might be a valuable adjunct to conventional chemo-radiation of HNSCC, their long-term therapeutic value remains uncertain. Further investigations are required on combinations of antiangiogenic agents with conventional chemotherapeutic ones, immunotherapeutic and molecularly targeted agents in HNSCC. Additional data are necessary to pinpoint which patients could benefit most from these treatments.
Collapse
Affiliation(s)
- Lara Alessandrini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Laura Astolfi
- Bioacustic Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Leonardo Franz
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
| |
Collapse
|
5
|
Koch C, Fischer NC, Puchert M, Engele J. Interactions of the chemokines CXCL11 and CXCL12 in human tumor cells. BMC Cancer 2022; 22:1335. [PMID: 36539774 PMCID: PMC9768901 DOI: 10.1186/s12885-022-10451-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The chemokines, CXCL12 and CXCL11, are upregulated in tumors from many organs and control their progression. CXCL12 and CXCL11 affect tumor cell functions by either binding their prime receptors, CXCR4 and CXCR3, respectively, and/or CXCR7 as a common second chemokine receptor. In humans, CXCR3 exists in the functional splice variants, CXCR3A and CXCR3B, which either have pro- or anti-tumor activity, respectively. Despite the intimate crosstalk between the CXCL12- and CXCL11-system, the impact of a combination of CXCL12 and CXCL11 on tumor progression remains vague. METHODS In the present work, we have analyzed CXCL12 and CXCL11 for combined effects on migration, invasion, proliferation, and cytostatic-induced apoptosis of the human tumor cells, A549, A767, A772, DLD-1, and MDA-MB-231. RESULTS We demonstrate that the mode of interaction differs with respect to cell type and function and allows for either potentiation, attenuation or no changes of cellular responses. The divergent responses are not the result of the distinct use of different CXCL12- and CXCL11-receptors by the respective tumor cells, but in case of cell migration seem to be associated with the activation of p38 signaling pathways. CONCLUSIONS Our findings point to therapeutic limitations of ongoing efforts to selectively target CXCR3, CXCR4, or CXCR7 in cancer patients, and rather favor individualized targeting strategies.
Collapse
Affiliation(s)
- Christian Koch
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Nina Charlotte Fischer
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany
| | - Malte Puchert
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Kitaeva KV, Chulpanova DS, Zhuravleva MN, Filin IY, Deviatiiarov RM, Ballard-Reisch AC, Rizvanov AA, Solovyeva VV. Characteristics and Resistance to Cisplatin of Human Neuroblastoma Cells Co-Cultivated with Immune and Stromal Cells. Bioengineering (Basel) 2022; 9:655. [PMID: 36354566 PMCID: PMC9687654 DOI: 10.3390/bioengineering9110655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2023] Open
Abstract
We investigated the features of the morphology and cytokine profiles of neuroblastoma SH-SY5Y cells, bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs), and peripheral blood mononuclear cells (PBMCs) in double (BM-MSCs + SH-SY5Y cells) and triple (BM-MSCs + SH-SY5Y cells + PBMCs) co-cultures incubated on plastic and Matrigel. Cells in the co-cultures communicated by vesicular transport and by exchanging membrane and cytoplasmic components. The cytokine profile of double and triple co-cultures incubated on Matrigel and plastic had differences and showed the highest concentration of a number of chemokines/cytokines, such as CXCL8/IL-8, I-TAC/CXCL11, IP10/CXCL10, MDC/CCL22, MIP-1α/CCL3, IL-1β, ENA-78/CXCL5, Gro-α/CXCL1, MCP-1/CCL2, TERC/CCL25, CXCL8/IL-8, and IL-6. High concentrations of inflammatory chemokines/cytokines in the conditioned medium of triple co-culture form a chronic inflammation, which brings the presented co-cultivation system closer to a natural tumor. Triple co-cultures were more resistant to cisplatin (CDDP) than the double- and monoculture of SH-SY5Y. The mRNA levels of BCL2, BCL2L1, RAC1, CAV1, CASP3, and BAX genes were changed in cells after co-culturing and CDDP treatment in double and triple co-cultures. The expression of the BCL2, BAX, CAV1, and CASP3 proteins in SH-SY5Y cells after the triple co-culture and CAV1 and BAX protein expression in SH-SY5Y cells after the double co-culture were determined. This study demonstrated the nature of the cellular interactions between components of tumor niche and the intercellular influence on chemoresistance observed in our tumor model, which should enable the development of novel test systems for anti-tumor agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Situ Y, Lu X, Cui Y, Xu Q, Deng L, Lin H, Shao Z, Chen J. Systematic Analysis of CXC Chemokine-Vascular Endothelial Growth Factor A Network in Colonic Adenocarcinoma from the Perspective of Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5137301. [PMID: 36246978 PMCID: PMC9553499 DOI: 10.1155/2022/5137301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Background Tumor angiogenesis plays a vital role in tumorigenesis, proliferation, and metastasis. Recently, vascular endothelial growth factor A (VEGFA) and CXC chemokines have been shown to play vital roles in angiogenesis. Exploring the expression level, gene regulatory network, prognostic value, and target prediction of the CXC chemokine-VEGFA network in colon adenocarcinoma (COAD) is crucial from the perspective of tumor angiogenesis. Methods In this study, we analyzed gene expression and regulation, prognostic value, target prediction, and immune infiltrates related to the CXC chemokine-VEGFA network in patients with COAD using multiple databases (cBioPortal, UALCAN, Human Protein Atlas, GeneMANIA, GEPIA, TIMER (version 2.0), TRRUST (version 2), LinkedOmics, and Metascape). Results Our results showed that CXCL1/2/3/5/6/8/11/16/17 and VEGFA were markedly overexpressed, while CXCL12/13/14 were underexpressed in patients with COAD. Moreover, genetic alterations in the CXC chemokine-VEGFA network found at varying rates in patients with COAD were as follows: CXCL1/2/17 (2.1%), CXCL3/16 (2.6%), CXCL5/14 (2.4%), CXCL6 (3%), CXCL8 (0.8%), CXCL11/13 (1.9%), CXCL12 (0.6%), and VEGFA (1.3%). Promoter methylation of CXCL1/2/3/11/13/17 was considerably lower in patients with COAD, whereas methylation of CXCL5/6/12/14 and VEGFA was considerably higher. Furthermore, CXCL9/10/11 and VEGFA expression was notably correlated with the pathological stages of COAD. In addition, patients with COAD with high CXCL8/11/14 or low VEGFA expression levels survived longer than patients with dissimilar expression levels. CXC chemokines and VEGFA form a complex regulatory network through coexpression, colocalization, and genetic interactions. Moreover, many transcription factor targets of the CXC chemokine-VEGFA network in patients with COAD were identified: RELA, NFKB1, ZFP36, XBP1, HDAC2, SP1, ATF4, EP300, BRCA1, ESR1, HIF1A, EGR1, STAT3, and JUN. We further identified the top three miRNAs involved in regulating each CXC chemokine within the network: miR-518C, miR-369-3P, and miR-448 regulated CXCL1; miR-518C, miR-218, and miR-493 regulated CXCL2; miR-448, miR-369-3P, and miR-221 regulated CXCL3; miR-423 regulated CXCL13; miR-378, miR-381, and miR-210 regulated CXCL14; miR-369-3P, miR-382, and miR-208 regulated CXCL17; miR-486 and miR-199A regulated VEGFA. Furthermore, the CXC chemokine-VEGFA network in patients with COAD was notably associated with immune infiltration. Conclusions This study revealed that the CXC chemokine-VEGFA network might act as a prognostic biomarker for patients with COAD. Moreover, our study provides new therapeutic targets for COAD, serving as a reference for further research in the future.
Collapse
Affiliation(s)
- Yongli Situ
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Xiaoyong Lu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Yongshi Cui
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Qinying Xu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Li Deng
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Zheng Shao
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Jv Chen
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong, China
| |
Collapse
|
8
|
Zou Q, Lei X, Xu A, Li Z, He Q, Huang X, Xu G, Tian F, Ding Y, Zhu W. Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Front Immunol 2022; 13:724139. [PMID: 35935996 PMCID: PMC9353076 DOI: 10.3389/fimmu.2022.724139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Plenty of factors affect the oncogenesis and progression of colorectal cancer in the tumor microenvironment, including various immune cells, stromal cells, cytokines, and other factors. Chemokine is a member of the cytokine superfamily. It is an indispensable component in the tumor microenvironment. Chemokines play an antitumor or pro-tumor role by recruitment or polarization of recruiting immune cells. Meanwhile, chemokines, as signal molecules, participate in the formation of a cross talk among signaling pathways and non-coding RNAs, which may be involved in promoting tumor progression. In addition, they also function in immune escape. Chemokines are related to drug resistance of tumor cells and may even provide reference for the diagnosis, therapy, and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qian Zou
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xiujuan Huang
- Department of Pathology, Guangdong Medical University, Dongguan, China
- Department of Hematology, Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| | - Faqing Tian
- Department of Pathology, Guangdong Medical University, Dongguan, China
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Faqing Tian, ; Yuanlin Ding, ; Wei Zhu,
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, China
- *Correspondence: Faqing Tian, ; Yuanlin Ding, ; Wei Zhu,
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
- *Correspondence: Faqing Tian, ; Yuanlin Ding, ; Wei Zhu,
| |
Collapse
|
9
|
Xu J, Li JQ, Chen QL, Shestakova EA, Misyurin VA, Pokrovsky VS, Tchevkina EM, Chen HB, Song H, Zhang JY. Advances in Research on the Effects and Mechanisms of Chemokines and Their Receptors in Cancer. Front Pharmacol 2022; 13:920779. [PMID: 35770088 PMCID: PMC9235028 DOI: 10.3389/fphar.2022.920779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer is a common and intractable disease that seriously affects quality of life of patients and imposes heavy economic burden on families and the entire society. Current medications and intervention strategies for cancer have respective shortcomings. In recent years, it has been increasingly spotlighted that chemokines and their receptors play vital roles in the pathophysiology of cancer. Chemokines are a class of structurally similar short-chain secreted proteins that initiate intracellular signaling pathways through the activation of corresponding G protein-coupled receptors and participate in physiological and pathological processes such as cell migration and proliferation. Studies have shown that chemokines and their receptors have close relationships with cancer epigenetic regulation, growth, progression, invasion, metastasis, and angiogenesis. Chemokines and their receptors may also serve as potential targets for cancer treatment. We herein summarize recent research progresses on anti-tumor effects and mechanisms of chemokines and their receptors, suggesting avenues for future studies. Perspectives for upcoming explorations, such as development of multi-targeted chemokine-based anti-tumor drugs, are also discussed in the present review.
Collapse
Affiliation(s)
- Jing Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qi-lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Elena A. Shestakova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod A. Misyurin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Elena M. Tchevkina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Hu-biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022; 11:cells11020249. [PMID: 35053365 PMCID: PMC8773892 DOI: 10.3390/cells11020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common cause of cancer and cancer-related death. Surgery is the only curative modality. Fluorescence-enhanced visualization of CRC with targeted fluorescent probes that can delineate boundaries and target tumor-specific biomarkers can increase rates of curative resection. Approaches to enhancing visualization of the tumor-to-normal tissue interface are active areas of investigation. Nonspecific dyes are the most-used approach, but tumor-specific targeting agents are progressing in clinical trials. The present narrative review describes the principles of fluorescence targeting of CRC for diagnosis and fluorescence-guided surgery with molecular biomarkers for preclinical or clinical evaluation.
Collapse
|
11
|
Zou DD, Xu D, Deng YY, Wu WJ, Zhang J, Huang L, He L. Identification of key genes in cutaneous squamous cell carcinoma: a transcriptome sequencing and bioinformatics profiling study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1497. [PMID: 34805359 PMCID: PMC8573448 DOI: 10.21037/atm-21-3915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Background Long-term exposure to ultraviolet (UV) radiation can cause cutaneous squamous cell carcinoma (cSCC), which is one of the most common malignant cancers worldwide. Actinic keratosis (AK) is generally considered a precancerous lesion of cSCC. However, the pathogenesis and oncogenic processes of AK and cSCC remain elusive, especially in the context of photodamage. Methods In this study, transcriptome sequencing was performed on AK, cSCC, normal sun-exposed skin (NES) tissues, and normal non-sun-exposed skin (NNS) from 24 individuals. Bioinformatics analysis to identify the differentially expressed genes (DEGs) of 4 groups, and potential key genes of cSCC were validated by real-time quantitative reverse transcription PCR (qRT-PCR). Results A total of 46,930 genes were differentially expressed in the 4 groups, including 127 genes that were differentially expressed between NES and NNS, 420 DEGs in AK compared to NES, 1,658 DEGs in cSCC compared to NES, and 1,389 DEGs in cSCC compared to AK. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the DEGs are involved in multiple pathways, including extracellular matrix (ECM)-receptor interaction, immune, inflammatory, microbial infection, and other related pathways. Finally, 5 new genes (HEPHL1, FBN2, SULF1, SULF2, and TCN1) were confirmed significantly upregulated in cSCC. Conclusions Using transcriptome sequencing and integrated bioinformatical analysis, we have identified key DEGs and pathways in cSCC, which could improve our understanding of the cause and underlying molecular events of AK and cSCC. HEPHL1, FBN2, SULF1, SULF2, and TCN1 may be novel potential biomarkers and therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan-Yuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, Dali, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Vella V, Giuliano M, La Ferlita A, Pellegrino M, Gaudenzi G, Alaimo S, Massimino M, Pulvirenti A, Dicitore A, Vigneri P, Vitale G, Malaguarnera R, Morrione A, Sims AH, Ferro A, Maggiolini M, Lappano R, De Francesco EM, Belfiore A. Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells. Cells 2021; 10:3145. [PMID: 34831367 PMCID: PMC8621444 DOI: 10.3390/cells10113145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Marika Giuliano
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Alessandro La Ferlita
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Michele Massimino
- Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.M.); (P.V.)
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Alessandra Dicitore
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
| | - Paolo Vigneri
- Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.M.); (P.V.)
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | | | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland EH4 2XR, UK;
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| |
Collapse
|
13
|
Nag JK, Malka H, Appasamy P, Sedley S, Bar-Shavit R. GPCR Partners as Cancer Driver Genes: Association with PH-Signal Proteins in a Distinctive Signaling Network. Int J Mol Sci 2021; 22:8985. [PMID: 34445691 PMCID: PMC8396503 DOI: 10.3390/ijms22168985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
The essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.g., PAR1 and PAR2), a novel PH-binding motif is allocated as critical for tumor growth. Animal models have indicated the generation of large tumors in the presence of PAR1 or PAR2 oncogenes. These tumors showed effective inhibition when the PH-binding motif was either modified or were inhibited by a specific inhibitor targeted to the PH-binding motif. In the second part of the review we discuss several aspects of some cardinal GPCRs in tumor angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.N.); (H.M.); (P.A.); (S.S.)
| |
Collapse
|
14
|
The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis. Br J Cancer 2021; 125:390-401. [PMID: 34088989 PMCID: PMC8328993 DOI: 10.1038/s41416-021-01340-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated. METHODS Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro. RESULTS Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer-endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR via a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network. CONCLUSIONS The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.
Collapse
|
15
|
Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
17
|
Yang X, Wei Y, Sheng F, Xu Y, Liu J, Gao L, Yang J, Sun X, Huang J, Guo Q. Comprehensive analysis of the prognosis and immune infiltration for CXC chemokines in colorectal cancer. Aging (Albany NY) 2021; 13:17548-17567. [PMID: 34233297 PMCID: PMC8312455 DOI: 10.18632/aging.203245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/14/2021] [Indexed: 02/05/2023]
Abstract
The C-X-C motif (CXC) chemokines are a family of chemotactic molecules that have been identified as potential prognostic markers and prospective therapeutic targets for many kinds of cancer types. Increasing evidence shows that CXC chemokines are associated with the progression of colorectal cancer (CRC); however, the correlations of CXC chemokines with prognostic and immune infiltrates in CRC remain to be clarified. In this study, we analyzed the mRNA expression level, prognostic data and immune infiltrates of CXC chemokines in CRC patients from the Gene Expression Profiling Interactive Analysis, Oncomine, cBioPortal and databases using GeneMANIA, STRING, DAVID 6.8, and TIMER. Our results showed that CXCL1/2/3/4/5/8/9/10/11/13/14/16 were significantly overexpressed in CRC tissues. Furthermore, expression of CXCL1/2/3/9/10/11 was associated with tumor stage in CRC. A significant association was also identified between the co-expression of CXCL16 with EGFR, KRAS and NRAS. In addition, the survival analysis suggested that high CXCL2/3/8/9/10/11/14 expression is correlated with clinical outcomes of CRC patients. Moreover, a significant association was observed between the CXCL8/9/10/11 expression and immune infiltration in colonic and rectal adenocarcinoma. Overall, CXC chemokines are not only implicated as prognostic biomarkers for CRC patients, but may also influence the immune status of CRC tissues.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Sheng
- Department of Neurosurgery, Taizhou People's Hospital, Taizhou, China
| | - Yirong Xu
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Jiao Liu
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ju Yang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Qing Guo
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
18
|
Wang Z, Ao X, Shen Z, Ao L, Wu X, Pu C, Guo W, Xing W, He M, Yuan H, Yu J, Li L, Xu X. TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. Int J Biol Sci 2021; 17:2683-2702. [PMID: 34345201 PMCID: PMC8326125 DOI: 10.7150/ijbs.61350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation-induced metastases have long been regarded as one of the significant obstacles in treating cancer. Tumor necrosis factor-α (TNF-α), a main inflammation mediator within tumor microenvironment, affects tumor development by inducing multiple chemokines to establish a complex network. Recent reports have revealed that CXCL10/CXCR3 axis affects cancer cells invasiveness and metastases, and Epithelial-mesenchymal transition (EMT) is the main reason for frequent proliferation and distant organ metastases of colon cancer (CC) cells, However, it is unclear whether TNF-α- mediated chronic inflammation can synergically enhance EMT-mediated CC metastasis through promoting chemokine expression. According to this study, TNF-α activated the PI3K/Akt and p38 MAPK parallel signal transduction pathways, then stimulate downstream NF-κB pathway p65 into the nucleus to activate CXCL10 transcription. CXCL10 enhanced the metastases of CC-cells by triggering small GTPases such as RhoA and cdc42. Furthermore, overexpression of CXCL10 significantly enhanced tumorigenicity and mobility of CC cells in vivo. We further clarified that CXCL10 activated the PI3K/Akt pathway through CXCR3, resulting in suppression of GSK-3β phosphorylation and leading to upregulation of Snail expression, thereby regulating EMT in CC cells. These outcomes lay the foundation for finding new targets to inhibit CC metastases.
Collapse
Affiliation(s)
- Zhengcheng Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhilin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chengxiu Pu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianhua Yu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
19
|
Circulating Levels of the Interferon-γ-Regulated Chemokines CXCL10/CXCL11, IL-6 and HGF Predict Outcome in Metastatic Renal Cell Carcinoma Patients Treated with Antiangiogenic Therapy. Cancers (Basel) 2021; 13:cancers13112849. [PMID: 34200459 PMCID: PMC8201218 DOI: 10.3390/cancers13112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Sunitinib and pazopanib are standard first-line treatments for patients with metastatic renal cell carcinoma (mRCC). Nonetheless, as the number of treatment options increases, there is a need to identify biomarkers that can predict drug efficacy and toxicity. In this prospective study we evaluated a set of biomarkers that had been previously identified within a secretory signature in mRCC patients. This set includes tumor expression of c-Met and serum levels of HGF, IL-6, IL-8, CXCL9, CXCL10 and CXCL11. Our cohort included 60 patients with mRCC from 10 different Spanish hospitals who received sunitinib (n = 51), pazopanib (n = 4) or both (n = 5). Levels of biomarkers were studied in relation to response rate, progression-free survival (PFS) and overall survival (OS). High tumor expression of c-Met and high basal serum levels of HGF, IL-6, CXCL11 and CXCL10 were significantly associated with reduced PFS and/or OS. In multivariable Cox regression analysis, CXCL11 was identified as an independent biomarker predictive of shorter PFS and OS, and HGF was an independent predictor of reduced PFS. Correlation analyses using our cohort of patients and patients from TCGA showed that HGF levels were significantly correlated with those of IL-6, CXCL11 and CXCL10. Bioinformatic protein-protein network analysis revealed a significant interaction between these proteins, all this suggesting a coordinated expression and secretion. We also developed a prognostic index that considers this group of biomarkers, where high values in mRCC patients can predict higher risk of relapse (HR 5.28 [2.32-12.0], p < 0.0001). In conclusion, high plasma HGF, CXCL11, CXCL10 and IL-6 levels are associated with worse outcome in mRCC patients treated with sunitinib or pazopanib. Our findings also suggest that these factors may constitute a secretory cluster that acts coordinately to promote tumor growth and resistance to antiangiogenic therapy.
Collapse
|
20
|
Chen Q, Wang WJ, Jia YX, Yuan H, Wu PF, Ge WL, Meng LD, Huang XM, Shen P, Yang TY, Miao Y, Zhang JJ, Jiang KR. Effect of the transcription factor YY1 on the development of pancreatic endocrine and exocrine tumors: a narrative review. Cell Biosci 2021; 11:86. [PMID: 33985581 PMCID: PMC8120816 DOI: 10.1186/s13578-021-00602-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic tumors are classified into endocrine and exocrine types, and the clinical manifestations in patients are nonspecific. Most patients, especially those with pancreatic ductal adenocarcinoma (PDAC), have lost the opportunity to receive for the best treatment at the time of diagnosis. Although chemotherapy and radiotherapy have shown good therapeutic results in other tumors, their therapeutic effects on pancreatic tumors are minimal. A multifunctional transcription factor, Yin-Yang 1 (YY1) regulates the transcription of a variety of important genes and plays a significant role in diverse tumors. Studies have shown that targeting YY1 can improve the survival time of patients with tumors. In this review, we focused on the mechanism by which YY1 affects the occurrence and development of pancreatic tumors. We found that a YY1 mutation is specific for insulinomas and has a role in driving the degree of malignancy. In addition, changes in the circadian network are a key causative factor of PDAC. YY1 promotes pancreatic clock progression and induces malignant changes, but YY1 seems to act as a tumor suppressor in PDAC and affects many biological behaviors, such as proliferation, migration, apoptosis and metastasis. Our review summarizes the progress in understanding the role of YY1 in pancreatic endocrine and exocrine tumors and provides a reasonable assessment of the potential for therapeutic targeting of YY1 in pancreatic tumors.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wu-Jun Wang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | | | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng-Fei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Tao-Yue Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Yanagiya M, Dawood RIH, Maishi N, Hida Y, Torii C, Annan DA, Kikuchi H, Yanagawa Matsuda A, Kitamura T, Ohiro Y, Shindoh M, Tanaka S, Kitagawa Y, Hida K. Correlation between endothelial CXCR7 expression and clinicopathological factors in oral squamous cell carcinoma. Pathol Int 2021; 71:383-391. [PMID: 33783897 DOI: 10.1111/pin.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Oral squamous cell carcinoma (OSCC) impairs functionality and sensuousness resulting in poor quality of life. Biomarkers can predict disease trajectory and lead to effective treatments. Transcriptomics have identified genes that are upregulated in tumor endothelial cells (TECs) compared with normal endothelial cells (NECs). Among them, chemokine receptor 7 (CXCR7) is highly expressed in TECs of several cancers and involved in angiogenesis of TECs. However, levels of CXCR7 in OSCC blood vessels have not been fully investigated. In this study, we analyzed the correlation between CXCR7 expression in TECs and clinicopathological factors in OSCC. Immunohistochemistry for CXCR7 and CD34 was performed on 59 OSCC tissue specimens resected between 1996 and 2008 at Hokkaido University Hospital. CXCR7 expression in blood vessels was evaluated by the ratio of CXCR7+/CD34+ blood vessels. CXCR7 expression was 42% and 19% in tumor and non-tumor parts, respectively, suggesting that CXCR7 expression is higher in TECs than in NECs. CXCR7 expression in TECs correlated with advanced T-stage and cancer stage. Overall survival and disease-free survival rates were higher in low-expressing CXCR7 patients than in high-expressing. These results suggest that CXCR7 expression in blood vessels may be a useful diagnostic and prognostic marker for OSCC patients.
Collapse
Affiliation(s)
- Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Randa I H Dawood
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular Thoracic Surgery, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Chisaho Torii
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Aya Yanagawa Matsuda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan.,Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan.,Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Yoichi Ohiro
- Department of Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| |
Collapse
|
22
|
Cao Y, Jiao N, Sun T, Ma Y, Zhang X, Chen H, Hong J, Zhang Y. CXCL11 Correlates With Antitumor Immunity and an Improved Prognosis in Colon Cancer. Front Cell Dev Biol 2021; 9:646252. [PMID: 33777950 PMCID: PMC7991085 DOI: 10.3389/fcell.2021.646252] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The chemokine ligand C-X-C motif chemokine ligand 11 (CXCL11) is involved in the progression of various cancers, but its biological roles in colorectal cancer (CRC) remain confused. Therefore, the prognostic value and underlying mechanism of CXCL11 in CRC were preliminarily evaluated. Three independent datasets were used for mRNA-related analysis: one dataset from the Cancer Genome Atlas (TCGA, n = 451) and two single-cell RNA sequencing (scRNA-seq) datasets from Gene Expression Omnibus (GEO): GSE146771 and GSE132465. In addition, a colon adenocarcinoma (COAD) patient cohort (the Yijishan Hospital cohort, YJSHC, n = 108) was utilized for analysis of cell infiltration by immunohistochemistry. We determined the distribution of CXCL11 in tumor tissue across all TCGA cancers and found that CXCL11 expression was significantly upregulated in both COAD and rectal adenocarcinoma (READ). However, the upregulation of CXCL11 mRNA was associated with a better prognosis in COAD, but not in READ. Within the YJSHC, the patients with a high abundance of intratumoral CXCL11+ cells had prolonged survival (p = 0.001). Furthermore, we found that the high CXCL11 expression group had a higher proportion of antitumor immune cells, and a lower proportion of protumor immune cells. Additionally, we discovered the changes of gene expression and enriched immune pathway network mediated by CXCL11. Interestingly, both cytotoxic genes (IFNG, GZMA, GZMB, GZMK, GZMM, and PRF1) and immunosuppressive molecules, including PD-L1, were positively correlated with CXCL11 expression. CXCL11, which promoted antitumor immunity to benefit survival, was identified as an independent prognostic biomarker in patients with COAD.
Collapse
Affiliation(s)
- Yingying Cao
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Nanlin Jiao
- Department of Pathology, Affiliated Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Tiantian Sun
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Yanru Ma
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Wang X, Zhang J, Zhou G. The CXCL11-CXCR3A axis influences the infiltration of CD274 and IDO1 in oral squamous cell carcinoma. J Oral Pathol Med 2020; 50:362-370. [PMID: 33187013 DOI: 10.1111/jop.13130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The CXCL9/10/11-CXCR3 axis plays pivotal roles in the recruitment of immune cells and the formation of cancer-specific immunity in various cancers. High expression of immune checkpoints, which could be regulated by cytokines, is closely related to the establishment of immune escape in tumor microenvironment. Therefore, the study was tried to provide insights into the influence of the CXCL9/10/11-CXCR3 axis on immune checkpoints in oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs), especially oral leukoplakia (OLK). METHODS The mRNA levels of CXCL9/10/11 and CXCR3 were analyzed in TCGA, GEO and Oncomine and verified in OLK and OSCC. The specimens were used to analysis the relationship between CXCL9/10/11 and CXCR3 variants. The correlation between CXCL9/10/11 and immune checkpoint/ligand in head and neck squamous cell carcinoma was analyzed in TIMER and confirmed in samples. Small interference transfection of CXCL11 in SCC25 cells was used to evaluate the function of CXCL11 on CD274/IDO1 expression. RESULTS CXCL9/10/11 had increase expression trends from normal tissues to OSCC. The proportion of CXCR3A (one variant of CXCR3) was significantly increased in OSCC comparing with normal tissues, while other variants-CXCR3B and CXCR3alt-did not. CXCL9/10/11 was positively correlated with CXCR3A and immune checkpoints/ligand (IDO1, LAG3, and CD274) in OLK and OSCC. CXCL11-knockdown SCC25 cells could directly inhibit the intracellular expression of CD274 and IDO1. CONCLUSION The upregulated CXCL9/10/11-CXCR3A axis may interact with immune checkpoints/their ligands in OLK and OSCC. Furthermore, CXCL11 may affect the expression of CD274 and IDO1 in an autocrine mode in OSCC.
Collapse
Affiliation(s)
- Xin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Koch C, Engele J. Functions of the CXCL12 Receptor ACKR3/CXCR7-What Has Been Perceived and What Has Been Overlooked. Mol Pharmacol 2020; 98:577-585. [PMID: 32883765 DOI: 10.1124/molpharm.120.000056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
The CXCL12 system is central to the development of many organs and is further crucially engaged in pathophysiological processes underlying cancer, inflammation, and cardiovascular disorders. This disease-associated role presently focuses major interest on the two CXCL12 receptors, CXCR4 and atypical chemokine receptor 3 (ACKR3)/CXCR7, as promising therapeutic targets. Major obstacles in these ongoing efforts are confusing reports on the differential use of either ACKR3/CXCR7 and/or CXCR4 across various cells as well as on the specific function(s) of ACKR3/CXCR7. Although basically no doubts remain that CXCR4 represents a classic chemokine receptor, functions assigned to ACKR3/CXCR7 range from those of a strictly silent scavenger receptor eventually modulating CXCR4 signaling to an active and independent signaling receptor. In this review, we depict a thorough analysis of our present knowledge on different modes of organization and functions of the cellular CXCL12 system. We further highlight the potential role of ACKR3/CXCR7 as a "crosslinker" of different receptor systems. Finally, we discuss mechanisms with the potency to impinge on the cellular organization of the CXCL12 system and hence might represent additional future therapeutic targets. SIGNIFICANCE STATEMENT: Delineating the recognized functions of atypical chemokine receptor 3 and CXCR4 in CXCL12 signaling is central to the more detailed understanding of the role of the CXCL12 system in health and disease and will help to guide future research efforts.
Collapse
Affiliation(s)
- Christian Koch
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| |
Collapse
|
25
|
Feng H, Liu K, Shen X, Liang J, Wang C, Qiu W, Cheng X, Zhao R. Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5 + colorectal cancer. Cell Death Dis 2020; 11:916. [PMID: 33099574 PMCID: PMC7585575 DOI: 10.1038/s41419-020-03111-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
In our previous study, ETV5 mediated-angiogenesis was demonstrated to be dependent upon the PDGF-BB/PDGFR-β/Src/STAT3/VEGFA pathway in colorectal cancer (CRC). However, the ability of ETV5 to affect the efficacy of anti-angiogenic therapy in CRC requires further investigation. Gene set enrichment analysis (GSEA) and a series of experiments were performed to identify the critical candidate gene involved in Bevacizumab resistance. Furthermore, the ability of treatment targeting the candidate gene to enhance Bevacizumab sensitivity in vitro and in vivo was investigated. Our results revealed that ETV5 directly bound to the VEGFA promoter to promote translation of VEGFA. However, according to in vitro and in vivo experiments, ETV5 unexpectedly accelerated antiVEGF therapy (Bevacizumab) resistance. GSEA and additional assays confirmed that ETV5 could promote angiogenesis by inducing the secretion of another tumor angiogenesis factor (CCL2) in CRC cells to facilitate Bevacizumab resistance. Mechanistically, ETV5 upregulated CCL2 by activating STAT3 to facilitate binding with the CCL2 promoter. ETV5 induced-VEGFA translation and CCL2 secretion were mutually independent mechanisms, that induced angiogenesis by activating the PI3K/AKT and p38/MAPK signaling pathways in human umbilical vein endothelial cells (HUVECs). In CRC tissues, ETV5 protein levels were positively associated with CD31, CCL2, and VEGFA protein expression. CRC patients possessing high expression of ETV5/VEGFA or ETV5/CCL2 exhibited a poorer prognosis compared to that of other patients. Combined antiCCL2 and antiVEGFA (Bevacizumab) treatment could inhibit tumor angiogenesis and growth more effectively than single treatments in CRCs with high expression of ETV5 (ETV5+ CRCs). In conclusion, our results not only revealed ETV5 as a novel biomarker for anti-angiogenic therapy, but also indicated a potential combined therapy strategy that involved in targeting of both CCL2 and VEGFA in ETV5+ CRC.
Collapse
Affiliation(s)
- Haoran Feng
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China
| | - Xiaonan Shen
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Juyong Liang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| |
Collapse
|
26
|
Chang SC, Hsu W, Su ECY, Hung CS, Ding JL. Human FBXL8 Is a Novel E3 Ligase Which Promotes BRCA Metastasis by Stimulating Pro-Tumorigenic Cytokines and Inhibiting Tumor Suppressors. Cancers (Basel) 2020; 12:cancers12082210. [PMID: 32784654 PMCID: PMC7465060 DOI: 10.3390/cancers12082210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023] Open
Abstract
The initiation and progression of breast cancer (BRCA) is associated with inflammation and immune-overactivation, which is critically modulated by the E3 ubiquitin ligase. However, the underlying mechanisms and key factors involved in BRCA formation and disease advancement remains under-explored. By retrospective studies of BRCA patient tissues; and gene knockdown and gain/loss-of-function studies, we uncovered a novel E3 ligase, FBXL8, in BRCA. A signature expression profile of F-box factors that specifically target and degrade proteins involved in cell death/survival, was identified. FBXL8 emerged as a prominent member of the F-box factors. Ex vivo analysis of 1349 matched BRCA tissues indicated that FBXL8 promotes cell survival and tumorigenesis, and its level escalates with BRCA progression. Knockdown of FBXL8 caused: (i) intrinsic apoptosis, (ii) inhibition of cell migration and invasion, (iii) accumulation of two tumor-suppressors, CCND2 and IRF5, and (iv) downregulation of cancer-promoting cytokines/chemokines; all of which curtailed the tumor microenvironment and displayed potential to suppress cancer progression. Co-IP study suggests that two tumor-suppressors, CCND2 and IRF5 are part of the immune-complex of FBXL8. The protein levels of CCND2 and IRF5 inversely correlated with FBXL8 expression, implying that FBXL8 E3 ligase was associated with the degradation of CCND2 and IRF5. Altogether, we propose the exploitation of the ubiquitin signaling axis of FBXL8-CCND2-IRF5 for anti-cancer strategies and potential therapeutics.
Collapse
Affiliation(s)
- Shu-Chun Chang
- The Ph.D. Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Wayne Hsu
- Division of Acute Care Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (J.L.D.)
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- Correspondence: (C.-S.H.); (J.L.D.)
| |
Collapse
|
27
|
Hwang HJ, Lee YR, Kang D, Lee HC, Seo HR, Ryu JK, Kim YN, Ko YG, Park HJ, Lee JS. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett 2020; 490:100-110. [PMID: 32659248 DOI: 10.1016/j.canlet.2020.06.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The effects of senescence associated secretory phenotype (SASP) from therapy-induced senescent endothelial cells on tumor microenvironment (TME) remains to be clarified. Here, we investigated effects of ionizing radiation (IR)- and doxorubicin-induced senescent HUVEC on TME. MDA-MB-231 cancer cells treated with conditioned medium (CM) from senescent HUVEC or co-cultured with senescent HUVEC significantly increased cancer cell proliferation, migration, and invasion. We found that CXCL11 plays a principal role in the senescent CM-induced aggressive activities of MDA-MB-231 cells. When we treated HUVEC with a neutralizing anti-CXCL11 antibody or CXCL11 SiRNA, or treated MDA-MB-231 cells with CXCR3 SiRNA, we observed synergistic diminution of the ability of the HUVEC SASP to alter the migration and spheroid invasion of cancer cells. ERK activation was involved in the HUVEC SASP-induced aggressive activity of MDA-MB-231 cells. Finally, we observed the in vivo effect of CXCL11 from the senescent HUVEC in tumor-bearing mice. Together, our results demonstrate that SASP from endothelial cells experiencing therapy-induced senescence promotes the aggressive behavior of cancer cells, and that CXCL11 can potentially be targeted to prevent the adverse effects of therapy-induced senescent endothelial cells on the tumor microenvironment.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Ye-Rim Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Donghee Kang
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Hyung Chul Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Haeng Ran Seo
- Cancer Biology Research Laboratory, Institute Pasteur Korea, Gyeonggi-do, South Korea
| | - Ji-Kan Ryu
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Urology, Inha University College of Medicine, Incheon, South Korea
| | - Yong-Nyun Kim
- Division of Translational Research, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Microbiology, Inha University College of Medicine, Incheon, South Korea
| | - Jae-Seon Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea.
| |
Collapse
|
28
|
Xin Q, Sun Q, Zhang CS, Zhang Q, Li CJ. Functions and mechanisms of chemokine receptor 7 in tumors of the digestive system. World J Clin Cases 2020; 8:2448-2463. [PMID: 32607322 PMCID: PMC7322425 DOI: 10.12998/wjcc.v8.i12.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7), recently termed ACKR3, belongs to the G protein-coupled cell surface receptor family, binds to stromal cell-derived factor-1 [SDF-1, or chemokine (C-X-C motif) ligand 12] or chemokine (C-X-C motif) ligand 11, and is the most common chemokine receptor expressed in a variety of cancer cells. SDF-1 binds to its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and regulates cell proliferation, survival, angiogenesis and migration. In recent years, another new receptor for SDF-1, CXCR7, has been discovered, and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells. Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells. Unlike CXCR4, CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca2+ release following ligand binding, which is essential for recruiting and activating G proteins. CXCR7 is generally thought to work in three ways: (1) Recruiting β-arrestin 2; (2) Heterodimerizing with CXCR4; and (3) Acting as a “scavenger” of SDF-1, thus lowering the level of SDF-1 to weaken the activity of CXCR4. In the present review, the expression and role of CXCR7, as well as its prognosis in cancers of the digestive system, were investigated.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Quan Sun
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| |
Collapse
|
29
|
Ge WL, Chen Q, Meng LD, Huang XM, Shi GD, Zong QQ, Shen P, Lu YC, Zhang YH, Miao Y, Zhang JJ, Jiang KR. The YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and metastasis in human pancreatic cancer. Cell Death Dis 2020; 11:294. [PMID: 32341359 PMCID: PMC7186231 DOI: 10.1038/s41419-020-2475-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is a malignant tumor with a poor prognosis and high mortality. However, the biological role of miR-548t-5p in PC has not been reported. In this study, we found that miR-548t-5p expression was significantly decreased in PC tissues compared with adjacent tissues, and that low miR-548t-5p expression was associated with malignant PC behavior. In addition, high miR-548t-5p expression inhibited the proliferation, migration, and invasion of PC cell lines. Regarding the molecular mechanism, the luciferase reporter gene, chromatin immunoprecipitation (ChIP), and functional recovery assays revealed that YY1 binds to the miR-548t-5p promoter and positively regulates the expression and function of miR-548t-5p. miR-548t-5p also directly regulates CXCL11 to inhibit its expression. A high level of CXCL11 was associated with worse Tumor Node Metastasis (TNM) staging in patients with PC, enhancing proliferation and metastasis in PC cells. Our study shows that the YY1/miR-548t-5p/CXCL11 axis plays an important role in PC and provides a new potential candidate for the treatment of PC.
Collapse
Affiliation(s)
- Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Guo-Dong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Qing-Qing Zong
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Ultrasonography, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi-Chao Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi-Han Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Identification of Hub Genes Related to Carcinogenesis and Prognosis in Colorectal Cancer Based on Integrated Bioinformatics. Mediators Inflamm 2020; 2020:5934821. [PMID: 32351322 PMCID: PMC7171686 DOI: 10.1155/2020/5934821] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
The high mortality of colorectal cancer (CRC) patients and the limitations of conventional tumor-node-metastasis (TNM) stage emphasized the necessity of exploring hub genes closely related to carcinogenesis and prognosis in CRC. The study is aimed at identifying hub genes associated with carcinogenesis and prognosis for CRC. We identified and validated 212 differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA) database. We investigated functional enrichment analysis for DEGs. The protein-protein interaction (PPI) network was constructed, and hub modules and genes in CRC carcinogenesis were extracted. A prognostic signature was developed and validated based on Cox proportional hazards regression analysis. The DEGs mainly regulated biological processes covering response to stimulus, metabolic process, and affected molecular functions containing protein binding and catalytic activity. The DEGs played important roles in CRC-related pathways involving in preneoplastic lesions, carcinogenesis, metastasis, and poor prognosis. Hub genes closely related to CRC carcinogenesis were extracted including six genes in model 1 (CXCL1, CXCL3, CXCL8, CXCL11, NMU, and PPBP) and two genes and Metallothioneins (MTs) in model 2 (SLC26A3 and SLC30A10). Among them, CXCL8 was also related to prognosis. An eight-gene signature was proposed comprising AMH, WBSCR28, SFTA2, MYH2, POU4F1, SIX4, PGPEP1L, and PAX5. The study identified hub genes in CRC carcinogenesis and proposed an eight-gene signature with good reproducibility and robustness at the molecular level for CRC, which might provide directive significance for treatment selection and survival prediction.
Collapse
|
31
|
Mitchell A, Hasanali SL, Morera DS, Baskar R, Wang X, Khan R, Talukder A, Li CS, Manoharan M, Jordan AR, Wang J, Bollag RJ, Singh N, Albo D, Ghosh S, Lokeshwar VB. A chemokine/chemokine receptor signature potentially predicts clinical outcome in colorectal cancer patients. Cancer Biomark 2020; 26:291-301. [PMID: 31524146 DOI: 10.3233/cbm-190210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Differential expression of chemokines/chemokine receptors in colorectal cancer (CRC) may enable molecular characterization of patients' tumors for predicting clinical outcome. OBJECTIVE To evaluate the prognostic ability of these molecules in a CRC cohort and the CRC TCGA-dataset. METHODS Chemokine (CXCL-12α, CXCL-12β, IL-17A, CXCL-8, GM-CSF) and chemokine receptor (CXCR-4, CXCR-7) transcripts were analyzed by RT-qPCR in 76 CRC specimens (normal: 27, tumor: 49; clinical cohort). RNA-Seq data was analyzed from the TCGA-dataset (n= 375). Transcript levels were correlated with outcome; analyses: univariate, multivariable, Kaplan-Meier. RESULTS In the clinical cohort, chemokine/chemokine receptor levels were elevated 3-10-fold in CRC specimens (P⩽ 0.004) and were higher in patients who developed metastasis (P= 0.03 - < 0.0001). CXCR-4, CXCR-7, CXCL-12α, CXCL-8, IL-17 and GM-CSF levels predicted metastasis (P⩽ 0.0421) and/or overall survival (OS; P⩽ 0.0373). The CXCR-4+CXCR-7+CXCL-12 marker (CXCR-4/7+CXCL-12 (α/b) signature) stratified patients into risk for metastasis (P= 0.0014; OR, 2.72) and OS (P= 0.0442; OR, 2.7); sensitivity: 86.67%, specificity: 97.06%. In the TCGA-dataset, the CXCR-4/7+CXCL-12 signature predicted metastasis (P= 0.011; OR, 2.72) and OS (P= 0.0006; OR: 4.04). In both datasets, the signature was an independent predictor of clinical outcome. CONCLUSIONS Results of 451 specimens from both cohorts reveal that the CXCR-4/7+CXCL-12 signature potentially predicts outcome in CRC patients and may allow earlier intervention.
Collapse
Affiliation(s)
- Andrew Mitchell
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sarrah L Hasanali
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daley S Morera
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rohitha Baskar
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xin Wang
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rahil Khan
- Bio-Repository Alliance of Georgia for Oncology at Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Asif Talukder
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Charles S Li
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Andre R Jordan
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami-Miller School of Medicine, Miami, FL, USA
| | - Jiaojiao Wang
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Roni J Bollag
- Bio-Repository Alliance of Georgia for Oncology at Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nagendra Singh
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel Albo
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Santu Ghosh
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vinata B Lokeshwar
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
32
|
Kudryavtseva AV, Lukyanova EN, Kharitonov SL, Nyushko KM, Krasheninnikov AA, Pudova EA, Guvatova ZG, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Snezhkina AV, Krasnov GS. Bioinformatic identification of differentially expressed genes associated with prognosis of locally advanced lymph node-positive prostate cancer. J Bioinform Comput Biol 2020; 17:1950003. [PMID: 30866732 DOI: 10.1142/s0219720019500033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the primary causes of cancer-related mortality in men worldwide. Patients with locally advanced PCa with metastases in regional lymph nodes are usually marked as a high-risk group. One of the chief concerns for this group is to make an informed decision about the necessity of conducting adjuvant androgen deprivation therapy after radical surgical treatment. During the oncogenic transformation and progression of the disease, the expression of many genes is altered. Some of these genes can serve as markers for diagnosis, predicting the prognosis or effectiveness of drug therapy, as well as possible therapeutic targets. We undertook bioinformatic analysis of the RNA-seq data deposited in The Cancer Genome Atlas consortium database to identify possible prognostic markers. We compared the groups with favorable and unfavorable prognosis for the cohort of patients with PCa showing lymph node metastasis (pT2N1M0, pT3N1M0, and pT4N1M0) and for the most common molecular type carrying the fusion transcript TMPRSS2-ERG. For the entire cohort, we revealed at least six potential markers (IDO1, UGT2B15, IFNG, MUC6, CXCL11, and GBP1). Most of these genes are involved in the positive regulation of immune response. For the TMPRSS2-ERG subtype, we also identified six genes, the expression of which may be associated with prognosis: TOB1, GALNT7, INAFM1, APELA, RAC3, and NNMT. The identified genes, after additional studies and validation in the extended cohort, could serve as a prognostic marker of locally advanced lymph node-positive PCa.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Elena N Lukyanova
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Sergey L Kharitonov
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Kirill M Nyushko
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Alexey A Krasheninnikov
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Elena A Pudova
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Zulfiya G Guvatova
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Boris Y Alekseev
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Marina V Kiseleva
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Andrey D Kaprin
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Alexey A Dmitriev
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Anastasiya V Snezhkina
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - George S Krasnov
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| |
Collapse
|
33
|
Puchert M, Obst J, Koch C, Zieger K, Engele J. CXCL11 promotes tumor progression by the biased use of the chemokine receptors CXCR3 and CXCR7. Cytokine 2019; 125:154809. [PMID: 31437604 DOI: 10.1016/j.cyto.2019.154809] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The chemokine, CXCL11, is highly expressed in different solid tumors and controls tumor growth, metastasis, and lymphocyte infiltration. Although of potential clinical interest, it is presently unknown whether these tumor-promoting activities involve the CXCL11 receptors, CXCR3 and/or CXCR7. This issue is further intrigued by the fact that CXCR3 exists in the two functionally divergent splice variants, CXCR3A and CXCR3B, which exert pro- and anti-tumorigenic influences, respectively. To unravel the role of the various CXCL11 receptors in tumor progression, we have now defined their role in CXCL11-induced chemotaxis of the tumor cell lines, A549, C33-A, DLD-1, MDA-MB-231, and PC-3. CXCL11-induced cell migration was either sensitive to the CXCR3 antagonist, ÀMG487 (DLD-1), the CXCR7 antagonist, CCX771 (C33-A, PC-3), or both (A549, MDA-231). Moreover, in C33-A and PC-3 cells, but not in the other tumor cells, pharmacological activation and inhibition of CXCR3B prevented and potentiated CXCL11-induced cell migration, respectively. Both immunocytochemistry and Western blot analysis finally revealed that the observed cell type specific organization of the CXCL11 system is not the result of differences in expression levels or subcellular location of CXCL11 receptors. Our findings imply that the therapeutic use of CXCR3 antagonists in cancer patients requires exact knowledge of the organization of the CXCR3 system in the respective tumor.
Collapse
Affiliation(s)
- Malte Puchert
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Jessica Obst
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Christian Koch
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Konstanze Zieger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany.
| |
Collapse
|
34
|
Reynders N, Abboud D, Baragli A, Noman MZ, Rogister B, Niclou SP, Heveker N, Janji B, Hanson J, Szpakowska M, Chevigné A. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 2019; 8:cells8060613. [PMID: 31216755 PMCID: PMC6627231 DOI: 10.3390/cells8060613] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
First thought to orchestrate exclusively leukocyte trafficking, chemokines are now acknowledged for their multiple roles in the regulation of cell proliferation, differentiation, and survival. Dysregulation of their normal functions contributes to various pathologies, including inflammatory diseases and cancer. The two chemokine receptor 3 variants CXCR3-A and CXCR3-B, together with their cognate chemokines (CXCL11, CXCL10, CXCL9, CXCL4, and CXCL4L1), are involved in the control but also in the development of many tumors. CXCR3-A drives the infiltration of leukocytes to the tumor bed to modulate tumor progression (paracrine axis). Conversely, tumor-driven changes in the expression of the CXCR3 variants and their ligands promote cancer progression (autocrine axis). This review summarizes the anti- and pro-tumoral activities of the CXCR3 variants and their associated chemokines with a focus on the understanding of their distinct biological roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Nathan Reynders
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
- Faculty of Science, Technology and Communication, University of Luxembourg, L-1526 Luxembourg, Luxembourg.
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
| | - Alessandra Baragli
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Muhammad Zaeem Noman
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, B-4000 Liège, Belgium.
- Neurology Department, CHU, Academic Hospital, University of Liège, B-4000 Liège, Belgium.
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal H3T 1C5, Canada.
- Department of Biochemistry, University of Montreal, Montréal H3T 1J4, Canada.
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicine (CIRM), University of Liège, CHU, B-4000 Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
35
|
Chen L, Lu D, Sun K, Xu Y, Hu P, Li X, Xu F. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene 2019; 692:119-125. [PMID: 30654001 DOI: 10.1016/j.gene.2019.01.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The current study aimed to identify potential diagnostic and prognostic gene biomarkers for colorectal cancer (CRC) based on the Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) dataset. METHODS Microarray data of gene expression profiles of CRC from GEO and RNA-sequencing dataset of CRC from TCGA were downloaded. After screening overlapping differentially expressed genes (DEGs) by R software, functional enrichment analyses of the DEGs were performed using the DAVID database. Then, the STRING database and Cytoscape were used to construct a protein-protein interaction (PPI) network and identify hub genes. The receiver operating characteristic (ROC) curves were conducted to assess the diagnostic values of the hub genes. Cox proportional hazards regression was performed to screen the potential prognostic genes. Kaplan-Meier curve and the time-dependent ROC curve were used to assess the prognostic values of the potential prognostic genes for CRC patients. RESULTS Integrated analysis of GEO and TCGA databases revealed 207 common DEGs in CRC. A PPI network consisted of 70 nodes and 170 edges were constructed and top 10 hub genes were identified. The area under curve (AUC) of the ROC curves of the hub genes were 0.900, 0.927, 0.869, 0.863, 0.980, 0.682, 0.903, 0.790, 0.995, and 0.989 for CCL19, CXCL1, CXCL5, CXCL11, CXCL12, GNG4, INSL5, NMU, PYY, and SST, respectively. A prognostic gene signature consisted of 9 genes including SLC4A4, NFE2L3, GLDN, PCOLCE2, TIMP1, CCL28, SCGB2A1, AXIN2, and MMP1 was constructed with a good performance in predicting overall survivals of CRC patients. The AUC of the time-dependent ROC curve was 0.741 for 5-year survival. CONCLUSION The results in this study might provide some directive significance for further exploring the potential biomarkers for diagnosis and prognosis prediction of CRC patients.
Collapse
Affiliation(s)
- Linbo Chen
- Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China
| | - Dewen Lu
- Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China
| | - Keke Sun
- Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China
| | - Yuemei Xu
- Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China
| | - Pingping Hu
- Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China
| | - Xianpeng Li
- Department of Infectious Diseases, Ningbo Yinzhou People's Hospital, Ningbo 315040, China.
| | - Feng Xu
- Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China.
| |
Collapse
|
36
|
Sánchez-Alonso S, Alcaraz-Serna A, Sánchez-Madrid F, Alfranca A. Extracellular Vesicle-Mediated Immune Regulation of Tissue Remodeling and Angiogenesis After Myocardial Infarction. Front Immunol 2018; 9:2799. [PMID: 30555478 PMCID: PMC6281951 DOI: 10.3389/fimmu.2018.02799] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia-related disorders constitute a major health problem, being a leading cause of death in the world. Upon ischemia, tissue remodeling processes come into play, comprising a series of inter-dependent stages, including inflammation, cell proliferation and repair. Neovessel formation during late phases of remodeling provides oxygen supply, together with cellular and soluble components necessary for an efficient myocardial reconstruction. Immune system plays a central role in processes aimed at repairing ischemic myocardium, mainly in inflammatory and angiogenesis phases. In addition to cellular components and soluble mediators as chemokines and cytokines, the immune system acts in a paracrine fashion through small extracellular vesicles (EVs) release. These vesicular structures participate in multiple biological processes, and transmit information through bioactive cargoes from one cell to another. Cell therapy has been employed in an attempt to improve the outcome of these patients, through the promotion of tissue regeneration and angiogenesis. However, clinical trials have shown variable results, which put into question the actual applicability of cell-based therapies. Paracrine factors secreted by engrafted cells partially mediate tissue repair, and this knowledge has led to the hypothesis that small EVs may become a useful tool for cell-free myocardial infarction therapy. Current small EVs engineering strategies allow delivery of specific content to selected cell types, thus revealing the singular properties of these vesicles for myocardial ischemia treatment.
Collapse
Affiliation(s)
- Santiago Sánchez-Alonso
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Alcaraz-Serna
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
37
|
Heras SCDL, Martínez-Balibrea E. CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J Gastroenterol 2018; 24:4738-4749. [PMID: 30479461 PMCID: PMC6235799 DOI: 10.3748/wjg.v24.i42.4738] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women, worldwide. In the early stages of the disease, biomarkers predicting early relapse would improve survival rates. In metastatic patients, the use of predictive biomarkers could potentially result in more personalized treatments and better outcomes. The CXC family of chemokines (CXCL1 to 17) are small (8 to 10 kDa) secreted proteins that attract neutrophils and lymphocytes. These chemokines signal through chemokine receptors (CXCR) 1 to 8. Several studies have reported that these chemokines and receptors have a role in either the promotion or inhibition of cancer, depending on their capacity to suppress or stimulate the action of the immune system, respectively. In general terms, activation of the CXCR1/CXCR2 pathway or the CXCR4/CXCR7 pathway is associated with tumor aggressiveness and poor prognosis; therefore, the specific inhibition of these receptors is a possible therapeutic strategy. On the other hand, the lesser known CXCR3 and CXCR5 axes are generally considered to be tumor suppressor signaling pathways, and their stimulation has been suggested as a way to fight cancer. These pathways have been studied in tumor tissues (using immunohistochemistry or measuring mRNA levels) or serum [using enzyme-linked immuno sorbent assay (ELISA) or multiplexing techniques], among other sample types. Common variants in genes encoding for the CXC chemokines have also been investigated as possible biomarkers of the disease. This review summarizes the most recent findings on the role of CXC chemokines and their receptors in CRC and discusses their possible value as prognostic or predictive biomarkers as well as the possibility of targeting them as a therapeutic strategy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/mortality
- Colorectal Neoplasms/pathology
- Humans
- Neoplasm Recurrence, Local/diagnosis
- Prognosis
- Receptors, CXCR/antagonists & inhibitors
- Receptors, CXCR/immunology
- Receptors, CXCR/metabolism
- Signal Transduction/drug effects
- Survival Rate
Collapse
Affiliation(s)
- Sara Cabrero-de las Heras
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Germans Trias i Pujol health research institute (IGTP), Badalona, Barcelona 08916, Catalunya, Spain
- Program of Predictive and Personalized Cancer Medicine (PMPPC), Germans Trias i Pujol health research institute (IGTP), Badalona, Barcelona 08916, Catalunya, Spain
| | | |
Collapse
|
38
|
Gao YJ, Liu DL, Li S, Yuan GF, Li L, Zhu HY, Cao GY. Down-regulation of CXCL11 inhibits colorectal cancer cell growth and epithelial-mesenchymal transition. Onco Targets Ther 2018; 11:7333-7343. [PMID: 30425523 PMCID: PMC6205823 DOI: 10.2147/ott.s167872] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The poor prognosis of colorectal cancer (CRC) largely results from local invasion and tumor metastases. Epithelial-mesenchymal transition (EMT) is a key step in the progression of solid tumors and plays a vital role in tumor metastasis. Recent studies demonstrate that C-X-C motif chemokine 11 (CXCL11) is involved in various cancers’ progression. However, its biological activity in CRC needs deeper exploration. Methods The level of CXCL11 in CRC tissues and cell lines was determined using the quantitative real-time PCR (qRT-PCR) assay. The MTT, colony formation, wound healing and Transwell invasion assays were applied to assess the role of CXCL11 in CRC cell growth, migration and invasion, in vitro, respectively. A xenograft model was constructed to analyze the function of CXCL11 in CRC cell growth in vivo. Results CXCL11 was over-expressed in CRC tissues and cell lines. Repression of CXCL11 significantly inhibited CRC cell migration, invasion and EMT in vitro. In addition, down-regulation of CXCL11 reduced CRC cell growth and metastasis in vivo. Finally, we revealed that repression of CXCL11 inhibited the metastatic ability of CRC cell in a N-cadherin dependent manner. Conclusion In summary, this study explicates the oncogenic activities of CXCL11 in CRC cell growth and metastasis.
Collapse
Affiliation(s)
- Yu Jie Gao
- Department of Medical Oncology, Suqian First Hospital, Suqian, Jiangsu, China
| | - De Lin Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Li
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gao Feng Yuan
- Department of Medical Oncology, Suqian First Hospital, Suqian, Jiangsu, China
| | - Li Li
- Department of Medical Oncology, Suqian First Hospital, Suqian, Jiangsu, China
| | - Hong Yan Zhu
- Department of General Surgery, Suqian First Hospital, Suqian, Jiangsu, China, ;
| | - Guan Yi Cao
- Department of General Surgery, Suqian First Hospital, Suqian, Jiangsu, China, ;
| |
Collapse
|
39
|
Lee NH, Nikfarjam M, He H. Functions of the CXC ligand family in the pancreatic tumor microenvironment. Pancreatology 2018; 18:705-716. [PMID: 30078614 DOI: 10.1016/j.pan.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance is the major contributor to the poor prognosis of and low survival from pancreatic cancer (PC). Cancer progression is a complex process reliant on interactions between the tumor and the tumor microenvironment (TME). Members of the CXCL family of chemokines are present in the pancreatic TME and seem to play a vital role in regulating PC progression. As pancreatic tumors interact with the TME and with PC stem cells (CSCs), determining the roles of specific members of the CXCL family is vital to the development of improved therapies. This review highlights the roles of selected CXCLs in the interactions between pancreatic tumor and its stroma, and in CSC phenotypes, which can be used to identify potential treatment targets.
Collapse
Affiliation(s)
- Nien-Hung Lee
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Huang Z, Yang Q, Huang Z. Identification of Critical Genes and Five Prognostic Biomarkers Associated with Colorectal Cancer. Med Sci Monit 2018; 24:4625-4633. [PMID: 29973580 PMCID: PMC6065283 DOI: 10.12659/msm.907224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor with high incidence and mortality worldwide. The aim of this study was to evaluate the association between differentially expressed genes (DEGs), which may function as biomarkers for CRC prognosis and therapies, and the clinical outcome in patients with CRC. MATERIAL AND METHODS A total of 116 normal mucous tissue and 930 CRC tissue datasets were downloaded from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA). After screening DEGs based on limma package in R. Gene Ontology (GO) and KEGG enrichment analysis as well as the protein-protein interaction (PPI) networks were performed to predict the function of these DEGs. Meanwhile, Cox proportional hazards regression was used to build a prognostic model of these DEGs. Then, Kaplan-Meier risk analysis was used to test the model in TCGA datasets and validation datasets. RESULTS In the present study, 300 DEGs with 100 upregulated genes and 200 downregulated genes were identified. The PPI networks including 162 DEGs and 256 nodes were constructed and 2 modules with high degree were selected. Moreover, 5 genes (MMP1, ACSL6, SMPD1, PPARGC1A, and HEPACAM2) were identified using the Cox proportional hazards stepwise regression. Kaplan-Meier risk curve in the TCGA and validation cohorts showed that high-risk group had significantly poor overall survival than the low-risk group. CONCLUSIONS Our study provided insights into the mechanisms of CRC formation and found 5 prognostic genes, which could potentially inform further studies and clinical therapies.
Collapse
Affiliation(s)
- Zuoliang Huang
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan, China (mainland)
| | - Qin Yang
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan, China (mainland)
| | - Zezhi Huang
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan, China (mainland)
| |
Collapse
|
41
|
Han B, Feng D, Yu X, Liu Y, Yang M, Luo F, Zhou L, Liu F. MicroRNA-144 mediates chronic inflammation and tumorigenesis in colorectal cancer progression via regulating C-X-C motif chemokine ligand 11. Exp Ther Med 2018; 16:1935-1943. [PMID: 30186421 PMCID: PMC6122338 DOI: 10.3892/etm.2018.6389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The aim of the present study was to investigate the expression of microRNA-144 (miR-144) and C-X-C motif chemokine ligand 11 (CXCL11) in CRC and their association. Data from Gene Expression Omnibus (GEO) DataSets were analyzed to obtain the expression profile of CXCL11 in CRC. Subsequently, serum samples were collected from 65 subjects, including 39 patients with CRC and 26 controls; CRC and adjacent normal tissues were collected from all 39 CRC patients and the expression of CXCL11 was measured in these specimens. After searching for the potential regulator of CXCL11 through bioinformatics analysis, the levels of miR-144 in the clinical specimens were also detected. Finally, the regulatory association between miR-144 and CXCL11 was certified via the dual-luciferase reporter assay. Microarray data and bioinformatics analysis demonstrated that CXCL11 was significantly upregulated in CRC tissues and miR-144 was a potential regulator of CXCL11. In line with this finding, the expression of CXCL11 was significantly increased in the serum and tumor samples of patients with CRC, while that of miR-144 was downregulated. Dual-luciferase reporter assay revealed that miR-144 directly targets the 3′-untranslated region of CXCL11 mRNA to regulate its expression. These results demonstrated that enhanced CXCL11 expression in patients with CRC was associated with reduced miR-144 expression. The results of the present study may indicate a novel regulatory role of miR-144 in CRC through CXCL11 downregulation.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan 637000, P.R. China
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
42
|
De Francesco EM, Sotgia F, Clarke RB, Lisanti MP, Maggiolini M. G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. Int J Mol Sci 2017; 18:ijms18122713. [PMID: 29240722 PMCID: PMC5751314 DOI: 10.3390/ijms18122713] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy. Here, we highlight the GPCR-mediated angiogenic function focusing on the molecular mechanisms and transduction effectors driving the patho-physiological vasculogenesis. Specifically, we describe evidence for the role of heptahelic receptors and associated G proteins in promoting angiogenic responses in pathologic conditions, especially tumor angiogenesis and progression. Likewise, we discuss opportunities to manipulate aberrant GPCR-mediated angiogenic signaling for therapeutic benefit using innovative GPCR-targeted and patient-tailored pharmacological strategies.
Collapse
Affiliation(s)
- Ernestina M De Francesco
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
| |
Collapse
|
43
|
Koo YJ, Kim TJ, Min KJ, So KA, Jung US, Hong JH. CXCL11 mediates TWIST1-induced angiogenesis in epithelial ovarian cancer. Tumour Biol 2017; 39:1010428317706226. [PMID: 28488542 DOI: 10.1177/1010428317706226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To investigate the role of TWIST1 in tumor angiogenesis in epithelial ovarian cancer and to identify key molecules involved in angiogenesis. TWIST1 small interfering RNA was transfected into A2780 cells, while a complementary DNA vector was transfected into non-malignant human ovarian surface epithelial cells to generate a TWIST1-overexpressing cell line. To evaluate how this affects angiogenesis, human umbilical vein endothelial cell tube formation assays were performed using the control and transfected cell lines. An antibody-based cytokine array was used to identify the molecules involved in TWIST1-mediated angiogenesis. After knockdown of TWIST1 via transfection of TWIST1 small interfering RNA into A2780 cells, the number of tubes formed by human umbilical vein endothelial cells significantly decreased in a tube formation assay. In a cytokine array, TWIST1 downregulation did not significantly decrease the secretion of the common pro-angiogenic factor, vascular endothelial growth factor, but instead inhibited the expression of the CXC chemokine ligand 11, which was confirmed by both an enzyme-linked immunosorbent assay and western blotting. In contrast, TWIST1 overexpression resulted in increased secretion of CXC chemokine ligand 11. Conversely, CXC chemokine ligand 11 downregulation did not inhibit the expression of TWIST1. Furthermore, the ability of TWIST1-expressing A2780 cells to induce angiogenesis was found to be inhibited after CXC chemokine ligand 11 knockdown in a tube formation assay. TWIST1 plays an important role in angiogenesis in epithelial ovarian cancer and is mediated by a novel pro-angiogenic factor, CXC chemokine ligand 11. Downregulation of CXC chemokine ligand 11 can inhibit tumor angiogenesis, suggesting that anti-CXC chemokine ligand 11 therapy may offer an alternative treatment strategy for TWIST1-positive ovarian cancer.
Collapse
Affiliation(s)
- Yu-Jin Koo
- 1 Department of Obstetrics and Gynecology, Yeungnam University Medical Center, Daegu, Korea
| | - Tae-Jin Kim
- 2 Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Kyung-Jin Min
- 3 Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Ansan, Korea
| | - Kyeong-A So
- 2 Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Un-Suk Jung
- 4 Department of Obstetrics and Gynecology, Hanyang University Guri Hospital, Guri, Korea
| | - Jin-Hwa Hong
- 5 Department of Obstetrics and Gynecology, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
44
|
Ding C, Luo J, Fan X, Li L, Li S, Wen K, Feng J, Wu G. Elevated Gab2 induces tumor growth and angiogenesis in colorectal cancer through upregulating VEGF levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:56. [PMID: 28420432 PMCID: PMC5395829 DOI: 10.1186/s13046-017-0524-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 01/19/2023]
Abstract
Background Grb2-associated binder 2 (Gab2) is a scaffolding protein that serves as a critical signaling amplifier downstream of tyrosine kinase receptors. Our previous study has shown that Gab2 induces epithelial-to-mesenchymal transition (EMT) and promotes metastasis in colorectal cancer (CRC). However, the role of Gab2 in CRC growth and angiogenesis remains unclear. Methods The expression of vascular endothelial growth factor (VEGF) in different colorectal tissues was detected by immunohistochemistry and qRT-PCR to evaluate its correlation with Gab2. Lentiviral vectors bearing Gab2 gene and its small interfering RNAs were constructed and transfected into CRC cell lines. The effects of Gab2 on the cell proliferation in vitro and tumorigenesis in vivo, were examined via CCK‑8 assay, colony formation assay as well as tumorigenicity assay respectively. Moreover, to assess its potential role in tumor growth and angiogenesis, the expression of Ki67, CD34 and vascular endothelial growth factor receptor-2 (VEGFR2) were detected by immunohistochemistry in CRC cells tumors. Finally, we evaluated the impact of Gab2 on the expression of c-Myc and VEGF, and the probable effect of mechanistic targeted extracellular signal-regulated kinase (ERK) pathway in suppressing tumor growth and angiogenesis. Results Up-regulation of Gab2 expression was found to be positively correlated with VEGF in CRC tissues. Exogenous expression of Gab2 obviously promoted, whereas silencing of Gab2 inhibited, proliferation and clone formation of human CRC cells in vitro. Of note, Gab2 enhanced tumorigenesis and tumor growth in mouse xenografts with high Ki67 expression, and led to an increased vessel density with strong CD34 and VEGFR2 activity. In addition, elevated Gab2 expression obviously up-regulated the expression of VEGF, and stimulated the activation of its downstream genes, ERK1/2 and c-Myc in CRC cells. Instead, down-regulated Gab2 expression significantly reduced the levels of VEGF, and inhibited the transduction of ERK/c-Myc pathway. Finally, we revealed that mechanistic target of mitogen-activated protein kinase (MEK) could attenuate Gab2-induced tumor growth and angiogenesis via altering VEGF and c-Myc levels. Conclusions The results from our study suggest that Gab2 promotes intestinal tumor growth and angiogenesis through upregulation of VEGF expression mediated by the MEK/ERK/c-Myc pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0524-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical College, Zunyi, 563003, People's Republic of China.
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Longmei Li
- Department of Immunology, Zunyi Medical College, Zunyi, 563003, People's Republic of China
| | - Shanshan Li
- Department of Immunology, Zunyi Medical College, Zunyi, 563003, People's Republic of China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Zunyi Medical College, Zunyi, 563003, People's Republic of China
| | - Jihong Feng
- Department of Oncology, the Affiliated Hospital of Zunyi Medical College, Zunyi, 563003, People's Republic of China.
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China. .,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
45
|
Xu C, Zhou D, Pan F, Liu Y, Zhang D, Lin A, Miao X, Ni Y, Lv D, Zhang S, Li X, Zhu Y, Lai M. A novel variant on chromosome 6p21.1 is associated with the risk of developing colorectal cancer: a two-stage case-control study in Han Chinese. BMC Cancer 2016; 16:807. [PMID: 27756247 PMCID: PMC5069896 DOI: 10.1186/s12885-016-2843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genes in inflammatory pathways play a pivotal role in the development of colorectal cancer. We conducted a two-stage case-control study and aimed at screening the colorectal cancer-associated genetic variations in inflammatory genes. METHODS Twenty-three candidate variants were genotyped in 952 primary colorectal cancer cases and 875 cancer-free controls from eastern China. Promising single nucleotide polymorphisms were further genotyped in 518 cases and 554 controls from middle China. Expression quantitative trait loci and differential gene expression analyses were performed for the associated gene. RESULTS rs2282151 presented consistently significant associations with the risk of colorectal cancer in both stages (odds ratio (95 % confidence interval) = 1.30 (1.16-1.46), risk allele = C, P combined = 8.9E-6). Gene expression quantitative trait loci analyzes uncovered consistent cis-regulatory signals which showed that the C allele of rs2282151 was associated with increased expression level of heat shock protein 90 alpha family class B member 1 (HSP90AB1). Then we found that the mRNA expression levels of HSP90AB1 were significantly higher in tumor tissues than normal tissues (fold-change = 1.83) in 28 pairs of colorectal tissue samples. The expression difference was consistent with data from online datasets. Additionally, we observed notable peaks of H3K27ac and H3K4me3 near the first intron of HSP90AB1 using ChIP-seq data from multiple cell lines (including HCT116). CONCLUSIONS Our findings indicate that the C allele of the novel colorectal cancer-associated variant rs2282151 is associated with increased expression levels of HSP90AB1, which is expressed higher in colorectal tumor tissues than in normal tissues.
Collapse
Affiliation(s)
- Chunxiao Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.,Department of Chronic Non-Communicable Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Dan Zhou
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feixia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yi Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Dandan Zhang
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Aifen Lin
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Zhejiang, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Zhejiang, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yaqin Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Duo Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Shuai Zhang
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering, Lishui University, Lishui, Zhejiang, China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
46
|
Liu F, Qin J, Zhang H, Li N, Shan M, Lan L, Wang Y. IP-10 and fractalkine induce cytotoxic phenotype of murine NK cells. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
YUN HWANJUNG, RYU HYEWON, CHOI YOONSEOK, SONG IKCHAN, JO DEOGYEON, KIM SAMYONG, LEE HYOJIN. C-X-C motif receptor 7 in gastrointestinal cancer. Oncol Lett 2015; 10:1227-1232. [PMID: 26622655 PMCID: PMC4533134 DOI: 10.3892/ol.2015.3407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
Chemokine receptors are key mediators of normal physiology and numerous pathological conditions, including inflammation and cancer. This receptor family is an emerging target for anticancer drug development. C-X-C motif receptor 7 (CXCR7) is an atypical chemokine receptor that was first cloned from a canine cDNA library as an orphan receptor and was initially named receptor dog cDNA 1 (RDC1). Shortly after demonstrating that RDC1 binds with its ligand, stromal cell-derived factor-1α and interferon-inducible T-cell α chemoattractant, RDC1 was officially deorphanized and renamed CXCR7, as the seventh receptor in the CXC class of the chemokine receptor family. Recent accumulating evidence has demonstrated that CXCR7 expression is augmented in the majority of tumor cells compared with their normal counterparts and is involved in cell proliferation, survival, migration, invasion and angiogenesis during the initiation and progression of breast, lung and prostate cancer. In the present review, the expression and role of CXCR7, as well as its clinical relevance in cancer of the gastrointestinal system, were investigated. In addition, the potential of this chemokine receptor as a therapeutic target in the treatment of gastrointestinal cancer was discussed.
Collapse
Affiliation(s)
- HWAN-JUNG YUN
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
- Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - HYEWON RYU
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - YOON SEOK CHOI
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - IK-CHAN SONG
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - DEOG-YEON JO
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
- Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - SAMYONG KIM
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
- Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - HYO JIN LEE
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
- Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| |
Collapse
|
48
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|
49
|
LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials 2015; 71:84-99. [PMID: 26318819 DOI: 10.1016/j.biomaterials.2015.07.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/28/2022]
Abstract
This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin, survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice.
Collapse
|
50
|
Mahboob S, Ahn SB, Cheruku HR, Cantor D, Rennel E, Fredriksson S, Edfeldt G, Breen EJ, Khan A, Mohamedali A, Muktadir MG, Ranganathan S, Tan SH, Nice E, Baker MS. A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. Clin Proteomics 2015; 12:10. [PMID: 25987887 PMCID: PMC4435647 DOI: 10.1186/s12014-015-9081-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
Background Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection. Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently found in plasma at very low concentration (pg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 μL) obtained from 75 patients with Dukes’ staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion criteria) were assayed for expression of 92 human proteins employing the Proseek® Multiplex Oncology I proximity extension assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex Pro™ human cytokine 27-plex immunoassay. Results Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage. Conclusions CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes’ A + B) and malignant (Dukes’ C + D) stages. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9081-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sadia Mahboob
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Seong Beom Ahn
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Harish R Cheruku
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - David Cantor
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Emma Rennel
- Olink Bioscience, Dag Hammarskjölds Väg, 54A, 75183 Uppsala, Sweden
| | | | | | - Edmond J Breen
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Abidali Mohamedali
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Md Golam Muktadir
- School of Science and Health, University of Western Sydney, NSW, Australia
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Sock-Hwee Tan
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800 Australia
| | - Mark S Baker
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| |
Collapse
|