1
|
Song Y, He S, Zeng L, He Y, Huang L. Ticagrelor inhibits the growth of lung adenocarcinoma by downregulating SYK expression and modulating the PI3K/AKT pathway. Sci Rep 2025; 15:17457. [PMID: 40394120 DOI: 10.1038/s41598-025-02721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/15/2025] [Indexed: 05/22/2025] Open
Abstract
Lung cancer is one of the malignant tumors with the highest morbidity and mortality in China. Despite the use of some targeted therapies in lung cancer treatment, the prognosis remains suboptimal, highlighting the urgent need for new, effective drugs to enhance outcomes. Ticagrelor, a marketed anti-platelet drug, has been reported to have anti-tumor effects. This study primarily investigates the inhibitory effect of Ticagrelor on lung adenocarcinoma in both in vivo and in vitro models, as well as its molecular mechanisms. Firstly, the effects of ticagrelor on the proliferation (CCK-8 and Edu staining), migration (scratch test), and invasion (Transwell chamber) of lung adenocarcinoma cells were evaluated using a variety of lung adenocarcinoma cell models. Secondly, the efficacy of ticagrelor on lung adenocarcinoma in vivo was evaluated by A549, H1975 tumor-bearing mouse models. Finally, transcriptomic sequencing (RNA-Seq) and immunohistochemistry were used to explore the molecular mechanism of the intervention effect of ticagrelor on lung cancer. Ticagrelor significantly inhibits the proliferation, migration and invasion of various lung cancer cells in vitro, and markedly suppressed tumor growth in A549 and NCI-H1975 CDX model in vivo. The pathological results showed that the number of tumor cells in the intervention group was significantly reduced, with large area necrosis, and the expression of Ki-67 in the intervention group was significantly decreased by immunohistochemistry. RNA-seq sequencing results from NCI-H1975 xenograft showed that several integrin-related pathways were down-regulated in the Ticagrelor treatment group, along with a significant reduction in spleen tyrosine kinase (SYK), a pivotal protein related to integrin signaling. Furthermore, we demonstrated that ticagrelor inhibits lung adenocarcinoma by down-regulating SYK and regulating PI3K/AKT pathway using WB. Ticagrelor has obvious inhibitory effect on a variety of lung adenocarcinoma cell lines and cell line transplanted tumors, and its antitumor effect may be related to the inhibition of SYK signaling pathway and PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yuanhong Song
- Department of Pathology, Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China
| | - Suwei He
- School of Traditional Chinese Medicine, Jinggangshan University Medical Science Center, Ji'an, 343000, China
| | - Lanhui Zeng
- Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, 330031, China
- Key Laboratory of New Drug Evaluation and Transformation of Jiangxi Province, Nanchang, 330031, China
- Nanchang Royo Biotech Co. Ltd, Nanchang, 330031, China
| | - Ling Huang
- Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China.
| |
Collapse
|
2
|
Elkhouly HM, Abdin AA, Kabel AM, Aboalsoud A, Abd Elmonem FF. The potential effects of ticagrelor and/or sodium butyrate on imiquimod-induced psoriasis in mice model: The role of NLRP3 inflammasome signaling pathway. Eur J Pharmacol 2025:177738. [PMID: 40383221 DOI: 10.1016/j.ejphar.2025.177738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/05/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated inflammatory skin disease with a huge negative impact on patients' quality of life and an increasing need to discover new alternatives for psoriasis treatment with better efficacy and fewer adverse effects. This study was designed to investigate the immunomodulatory and anti-inflammatory effects of ticagrelor (TICA) and/or sodium butyrate (NaB) in imiquimod (IMQ)-induced psoriasis model. METHODS Mice were randomly allocated into five equal groups: control group, untreated IMQ group, IMQ+TICA group, IMQ+NaB group, and IMQ+TICA+NaB group. IMQ cream (62.5 mg) was applied topically on the shaved dorsal skin and 5 mg on the right ear for 7 consecutive days. The treatment protocol started post-induction and for 10 days with daily intraperitoneal injection of (10 mg/kg TICA) and (500 mg/kg NaB). The effects of these drugs on inflammatory, immune-modulatory, pyroptosis, and multi drug resistance 1 (MDR1) levels were assessed. RESULTS IMQ+TICA+NaB group showed enhanced amelioration of disease activity, with significant improvements in body weight, Psoriasis area severity index (PASI) score, ear thickness, and spleen index. The levels of the inflammatory and immune markers [interleukin-1β (IL-1β) and IL-17] and MDR1 level, as well as the immunohistochemical expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, and nuclear factor-kappa B (NF-κB/p65), were significantly alleviated. Moreover, the superiority of the combination extended to histopathological findings, epidermal thickness, and Baker's scoring. CONCLUSION TICA and NaB might be considered promising candidates for psoriasis treatment via modulation of IL-17 and NF-κB/NLRP3/IL-1β pathway.
Collapse
Affiliation(s)
- Hanan M Elkhouly
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Amany A Abdin
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fleur F Abd Elmonem
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Yoshikawa N, Xia M, Nakamura K. Inhibitory Effect of Clopidogrel, a P2Y 12 Receptor Antagonist, on Hematogenic Metastasis in B16-BL6 Mouse Melanoma Cells. In Vivo 2025; 39:1325-1330. [PMID: 40295007 PMCID: PMC12041989 DOI: 10.21873/invivo.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM The complex interactions between circulating platelets and tumor cells play important roles in tumor metastasis. Tumor cells can activate platelets by releasing mediators such as adenosine diphosphate (ADP). Treatments with anticoagulants have been shown to attenuate tumor metastasis. However, the role of ADP receptor P2Y12 in tumor cell metastasis has not been fully clarified. MATERIALS AND METHODS In this study, highly metastatic B16-BL6 mouse melanoma cells were injected into the tail vein of mice as a model of hematogenic tumor metastasis to investigate the effects of P2Y12 antagonist clopidogrel on tumor metastasis. RESULTS A high dose (25 mg/kg) of clopidogrel weakly but significantly inhibited lung metastasis and increased both the time to hemostasis and blood loss in the tail tip-excision mouse model. CONCLUSION Although it is necessary to consider increased bleeding as a side-effect, clopidogrel may be an effective antimetastatic drug.
Collapse
Affiliation(s)
- Noriko Yoshikawa
- Department of Pharmacology I, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Mingyu Xia
- Department of Pharmacology I, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Kazuki Nakamura
- Department of Pharmacology I, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
4
|
Reghukumar SK, Inkielewicz-Stepniak I. Tumour cell-induced platelet aggregation in breast cancer: Scope of metal nanoparticles. Biochim Biophys Acta Rev Cancer 2025; 1880:189276. [PMID: 39921012 DOI: 10.1016/j.bbcan.2025.189276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Breast cancer is a major cause of cancer-related mortality among the female population worldwide. Among the various factors promoting breast cancer metastasis, the role of cancer-cell platelet interactions leading to tumour cell-induced platelet aggregation (TCIPA) has garnered significant attention recently. Our state-of-the-art literature review verifies the implications of metal nanoparticles in breast cancer research and TCIPA-specific breast cancer metastasis. We have evaluated in vitro and in vivo research data as well as clinical investigations within the scope of this topic presented in the last ten years. Nanoparticle-based drug delivery platforms in cancer therapy can combat the growing concerns of multi-drug resistance, the alarming rates of chemotherapy-induced toxicities and cancer progression. Metal nanoparticles conjugated with chemotherapeutics can outperform their free drug counterparts in achieving targeted drug delivery and desired drug concentration inside the tumour tissue with minimal toxic effects. Existing data highlights the potential of metal nanoparticles as a promising tool for targeting the platelet-specific interactions associated with breast cancer metastasis including TCIPA.
Collapse
|
5
|
Miao L, Yang Y, Cheng M, Chen L, Han C. Ginsenoside Rb prevents the metastasis of hepatocarcinoma by blocking the platelet-tumor cell interaction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1721-1733. [PMID: 39172150 DOI: 10.1007/s00210-024-03387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The interaction between platelets and tumor cells is a crucial step in the progression of tumor metastasis. Blocking platelet-tumor cell interaction is a potential target against metastasis. Ginsenoside Rb (G-Rb) exhibits potential anti-tumor pharmacological properties and may offer a therapeutic option for cancer. PURPOSE This study aimed to investigate anti-metastatic effects of G-Rb through regulating the crosstalk of platelets with tumor cells. METHODS In order to explore anti-metastatic effects of G-Rb in vitro, HepG2 cell and platelets were co-cultured to mimic the interaction of platelets with tumor cells. Wound healing and Transwell assays were used to assess the effect of G-Rb on cell migration and invasion. The expression of epithelial-mesenchymal transition (EMT)-related markers was determined by RT-qPCR and western blot assays. The aggregation and activation of platelets were detected by flow cytometry. Moreover, a lung metastasis model of mice was established to evaluate inhibitory effects of G-Rb in vivo. Metastatic nodules on the lung surface were counted and sections of lung tissues were stained by H&E. RESULTS G-Rb effectively suppressed tumor metastasis in the co-culture of platelets with HepG2 cell. First, G-Rb treatment significantly inhibited the migration and invasion of HepG2 cells induced by platelets. Second, the expressions of EMT-related markers, including N-cadherin, Snail, and MMP9, were decreased by the treatment of G-Rb in the presence of platelets. Meanwhile, G-Rb also suppressed platelet hyperactivity by regulating the adhesion to tumor cells, activation, TCIPA, and TGF-β1 secretion of platelets in vitro. In addition, the results of in vivo experiments proved G-Rb administration not only significantly decreased lung metastasis but also attenuated platelets aberrant aggregation and activation in vivo. CONCLUSION Our findings showed that G-Rb inhibited tumor metastasis and platelet activation through mediating platelet-tumor cell interaction, indicating the potential values of G-Rb in tumor metastasis therapy.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, 250002, People's Republic of China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
6
|
Faria PCL, Resende RS, Cardoso AM. Metastasis and angiogenesis in cervical cancer: key aspects of purinergic signaling in platelets and possible therapeutic targets. Purinergic Signal 2024; 20:607-616. [PMID: 38753131 PMCID: PMC11554953 DOI: 10.1007/s11302-024-10020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/09/2024] [Indexed: 11/13/2024] Open
Abstract
Cervical cancer ranks as the fourth most common and fatal cancer among women worldwide. Studies have demonstrated a strong association between purinergic platelet signaling and tumor progression in this type of cancer. The literature shows that neoplastic cells, when in the bloodstream, secrete adenosine triphosphate (ATP) and adenosine nucleotide diphosphate (ADP) that act on their corresponding platelet P2Y and P2X receptors. The interaction of these nucleotides with their receptors results in platelet activation and degranulation, ensuing several consequences, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, matrix metalloproteinases, ADP, and ATP. These molecules play essential roles in angiogenesis and tumor metastasis in cervical cancer. Several purinergic receptors are found in endothelial cells. Their activation, especially P2Y2, by the nucleotides released by platelets can induce relaxation of the endothelial barrier and consequent extravasation of tumor cells, promoting the development of metastases. Cancer cells that enter the bloodstream during the metastatic process are also subject to high shear stress and immune surveillance. In this context, activated platelets bind to circulating tumor cells and protect them against shear stress and the host's immune system, especially against natural killer cells, facilitating their spread throughout the body. Furthermore, activation of the P2Y12 receptor present on the platelet surface promotes the release of VEGF, the main inducer of angiogenesis in cervical cancer, in addition to increasing the concentration of several other pro-angiogenic molecules. Therefore, this review will address the role of platelet purinergic signaling in tumor progression of cervical cancer and propose possible therapeutic targets.
Collapse
Affiliation(s)
- Paula C L Faria
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Rackel S Resende
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Andréia M Cardoso
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
7
|
Sharma S, Ghimeray K, Rahman MM, Upadrasta A, Akundi RS. P2Y12 receptor-mediated cyclooxygenase 2 (COX-2) expression enhances tumor cell progression in a mouse model of lymphoma. Purinergic Signal 2024:10.1007/s11302-024-10057-4. [PMID: 39467946 DOI: 10.1007/s11302-024-10057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The pro-inflammatory enzyme cyclooxygenase 2 (COX-2) has been known to impart metastatic property to cancer cells. However, blocking of COX-2 with nonsteroidal anti-inflammatory drugs or COX-2-specific inhibitors has failed in clinical trials due to adverse effects associated with their prolonged use. We have previously shown that extracellular ATP (eATP), a major component of the tumor microenvironment, enhances COX-2 expression several-fold, both in macrophages and in various cancer cells, by acting on purinergic (P2) receptors. In this study, we show that blocking of P2 receptors significantly reduced tumor growth in a mouse model of lymphoma. Tumors were induced in mice through subcutaneous injection of syngeneic EL4 lymphoma cells. Various P2 receptor antagonists were injected within the tumors after they were palpable. The broad-spectrum P2 receptor antagonist, suramin, P2X7 receptor-specific antagonist, oATP, P2Y6 receptor-specific antagonist, MRS 2578, and P2Y12 receptor-specific antagonist, AR-C 69931, all showed significant arrest in tumor growth. Both suramin and AR-C 69931-treated tumors showed strong reduction in COX-2 expression and modulation of various metastatic markers. Disaggregated cells from AR-C 69931-treated tumors, when injected intravenously in naïve mice, did not exhibit metastasis in various tissues which was observed in mice injected with cells from saline-treated tumors. Our results show that blocking of P2 receptors is a therapeutic alternative to inhibit COX-2 expression, and thereby, arrest tumor progression and metastasis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Khagendra Ghimeray
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Md Mostafizur Rahman
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Aparna Upadrasta
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
8
|
Manoharan V, Adegbayi OO, Maynard JP. P2 purinergic receptor expression and function in tumor-related immune cells. Purinergic Signal 2024:10.1007/s11302-024-10054-7. [PMID: 39387963 DOI: 10.1007/s11302-024-10054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
P2 purinergic receptor expression is dysregulated in multiple cancer subtypes and is associated with worse outcomes. Studies identify roles for P2 purinergic receptors in tumor cells that drive disease aggressiveness. There is also sufficient evidence that P2 purinergic receptor expression within the tumor microenvironment (TME) is critical for disease initiation and progression. Immune cells constitute a significant component of the TME and display both tumorigenic and anti-tumorigenic potential. Studies pre-dating the investigation of P2 purinergic receptors in cancer identify P2 receptor expression on multiple immune cells including macrophages, neutrophils, T-cells, and dendritic cells; all of which are implicated in tumor initiation, tumor promotion, or response to treatment. Herein, we discuss P2 purinergic receptor expression and function in tumor-related immune cells. We provide a rationale for further investigations of P2 purinergic receptors within the TME to better define the mechanistic pathways of inflammation-mediate tumorigenesis and explore P2 purinergic receptors as potential targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vahinipriya Manoharan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwafemi O Adegbayi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Graff RC, Haimowitz A, Aguilan JT, Levine A, Zhang J, Yuan W, Roose-Girma M, Seshagiri S, Porcelli SA, Gamble MJ, Sidoli S, Bresnick AR, Backer JM. Platelet PI3Kβ regulates breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612261. [PMID: 39314490 PMCID: PMC11419023 DOI: 10.1101/2024.09.10.612261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Platelets promote tumor metastasis by several mechanisms. Platelet-tumor cell interactions induce the release of platelet cytokines, chemokines, and other factors that promote tumor cell epithelial-mesenchymal transition and invasion, granulocyte recruitment to circulating tumor cells (CTCs), and adhesion of CTCs to the endothelium, assisting in their extravasation at metastatic sites. Previous studies have shown that platelet activation in the context of thrombus formation requires the Class IA PI 3-kinase PI3Kβ. We now define a role for platelet PI3Kβ in breast cancer metastasis. Platelet PI3Kβ is essential for platelet-stimulated tumor cell invasion through Matrigel. Consistent with this finding, in vitro platelet-tumor cell binding and tumor cell-stimulated platelet activation are reduced in platelets isolated from PI3Kβ mutant mice. RNAseq and proteomic analysis of human breast epithelial cells co-cultured with platelets revealed that platelet PI3Kβ regulates the expression of EMT and metastasis-associated genes in these cells. The EMT and metastasis-associated proteins PAI-1 and IL-8 were specifically downregulated in co-cultures with PI3Kβ mutant platelets. PI3Kβ mutant platelets are impaired in their ability to stimulate YAP and Smad2 signaling in tumor cells, two pathways regulating PAI-1 expression. Finally, we show that mice expressing mutant PI3Kβ show reduced spontaneous metastasis, and platelets isolated from these mice are less able to stimulate experimental metastasis in WT mice. Taken together, these data support a role for platelet PI3Kβ in promoting breast cancer metastasis and highlight platelet PI3Kβ as a potential therapeutic target. Significance We demonstrate that platelet PI3Kβ regulates metastasis, broadening the potential use of PI3Kβ-selective inhibitors as novel agents to treat metastasis.
Collapse
|
10
|
Yang W, Wang L, Fan L, Li W, Zhao Y, Shang L, Jiang M. Photothermal Responsive Microcarriers Encapsulated With Cangrelor and 5-Fu for Colorectal Cancer Treatment. SMALL METHODS 2024; 8:e2301002. [PMID: 38127997 DOI: 10.1002/smtd.202301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment. The microcarriers loaded with Cangrelor, 5-FU and MXene (G-M@F/C+NIR) show sustained delivery of antiplatelet drug Cangrelor, thus inhibiting the activity of platelets, interactions of platelet-tumor cell, as well as the tumor cells invasion and epithelial-mesenchymal transition (EMT). In addition, the sustained delivery of chemotherapeutics 5-FU and the photothermal effect provided by MXene enable the microcarriers to inhibit tumor cells proliferation and migration. In vivo studies validate that the G-M@F/C+NIR microcarriers significantly inhibites tumor growth, decreased the expression of Ki-67 in tumor cells and vascular endothelial growth factor (VEGF) in the tumor microenvironment, while increased the expression of E-cadherin. It is believe that by means of the proposed photothermal responsive microcarriers, the synergistic strategy of platelet inhibition, chemotherapy, and photothermal therapy can find practical applications in cancer treatment.
Collapse
Affiliation(s)
- Wei Yang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Li Wang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lu Fan
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhao Li
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuanjin Zhao
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Co-laboratory of Medical Epigenetics and Metabolism Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghua Jiang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
11
|
Wang X, Bai L, Kong L, Guo Z. Advances in circulating tumor cells for early detection, prognosis and metastasis reduction in lung cancer. Front Oncol 2024; 14:1411731. [PMID: 38974237 PMCID: PMC11224453 DOI: 10.3389/fonc.2024.1411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Globally, lung cancer stands as the leading type of cancer in terms of incidence and is the major source of mortality attributed to cancer. We have outlined the molecular biomarkers for lung cancer that are available clinically. Circulating tumor cells (CTCs) spread from the original location, circulate in the bloodstream, extravasate, and metastasize, forming secondary tumors by invading and establishing a favorable environment. CTC analysis is considered a common liquid biopsy method for lung cancer. We have enumerated both in vivo and ex vivo techniques for CTC separation and enrichment, examined the advantages and limitations of these methods, and also discussed the detection of CTCs in other bodily fluids. We have evaluated the value of CTCs, as well as CTCs in conjunction with other biomarkers, for their utility in the early detection and prognostic assessment of patients with lung cancer. CTCs engage with diverse cells of the metastatic process, interfering with the interaction between CTCs and various cells in metastasis, potentially halting metastasis and enhancing patient prognosis.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Pathology and Pathophysiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Lu Bai
- Department of Pathology and Pathophysiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Linghui Kong
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Zhijuan Guo
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
12
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
13
|
Lu E, Zhao B, Yuan C, Liang Y, Wang X, Yang G. Novel cancer-fighting role of ticagrelor inhibits GTSE1-induced EMT by regulating PI3K/Akt/NF-κB signaling pathway in malignant glioma. Heliyon 2024; 10:e30833. [PMID: 38774096 PMCID: PMC11107102 DOI: 10.1016/j.heliyon.2024.e30833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Background Glioma is the most common malignant brain tumor of the central nervous system. Despite of the improvement of therapeutic strategy, the prognosis of malignant glioma patients underwent by STUPP strategy is still unexpected. Previous studies have suggested that ticagrelor exerted chemotherapeutic effects by inhibition of epithelial-mesenchymal transition (EMT) in various diseases including tumors. However, whether ticagrelor can exhibit the antitumor efficiency in glioma by affecting the EMT process is still unclear. In this study, we investigated the cancer-fighting role of ticagrelor and demonstrated its chemotherapeutic mechanism in glioma. Materials and methods The MTT assay was performed to detect the cytotoxicity of ticagrelor in glioma cells. We evaluated the expression of Ki67 in glioma cells by immunofluorescence assay after ticagrelor treatment. We conducted wound healing assay and transwell assay to determine the effects of ticagrelor on the migration and invasion of glioma cells. RNA-seq analysis was conducted to examine potential target genes and alternative signaling pathways for ticagrelor treatment. The expression levels of key EMT -related proteins were examined by Western blot experiment. Results Ticagrelor inhibited the proliferation, migration and invasion of glioma cells with a favorable toxicity profile in vitro. Ticagrelor downregulated the expression of GTSE1 in glioma cells. RNA-seq analysis explored that GTSE1 acted as the potential target gene for ticagrelor treatment. Upregulation of GTSE1 antagonized the inhibitory effect of ticagrelor on the invasion of glioma and EMT progression by regulation of PI3K/Akt/NF-κB signaling pathway. And ticagrelor also exhibited the similar chemotherapeutic effect of glioma in vivo. Conclusions Ticagrelor as a potential chemotherapeutic option induced the inhibition of the GTSE1-induced EMT progression by regulation of PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| |
Collapse
|
14
|
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Lee EJ, Lee SM, Oh JH, Kim HY, Saeed WK, Kim HS, Jun DW. Ticagrelor, but Not Clopidogrel, Attenuates Hepatic Steatosis in a Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:920. [PMID: 38612954 PMCID: PMC11013111 DOI: 10.3390/nu16070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Previous studies have suggested that platelets are associated with inflammation and steatosis and may play an important role in liver health. Therefore, we evaluated whether antiplatelet agents can improve metabolic disorder-related fatty liver disease (MASLD). METHODS The mice used in the study were fed a high-fat-diet (HFD) and were stratified through liver biopsy at 18 weeks. A total of 22 mice with NAFLD activity scores (NAS) ≥ 4 were randomly divided into three groups (HFD-only, clopidogrel (CLO; 35 mg/kg/day), ticagrelor (TIC; 40 mg/kg/day) group). And then, they were fed a feed mixed with the respective drug for 15 weeks. Blood and tissue samples were collected and used in the study. RESULTS The TIC group showed a significantly lower degree of NAS and steatosis than the HFD group (p = 0.0047), but no effect on the CLO group was observed. Hepatic lipogenesis markers' (SREBP1c, FAS, SCD1, and DGAT2) expression and endoplasmic reticulum (ER) stress markers (CHOP, Xbp1, and GRP78) only reduced significantly in the TIC treatment group. Inflammation genes (MCP1 and TNF-α) also decreased significantly in the TIC group, but not in the CLO group. Nile red staining intensity and hepatic lipogenesis markers were reduced significantly in HepG2 cells following TIC treatment. CONCLUSION Ticagrelor attenuated NAS and hepatic steatosis in a MASLD mice model by attenuating lipogenesis and inflammation, but not in the CLO group.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
| | - Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
| | - Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Hye Young Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Austria Fachhochschule—Institute of Applied Sciences and Technology, Mang 22621, Pakistan;
| | - Hyun Sung Kim
- Department of Pathology, Hanyang University School of Medicine, Seoul 04763, Republic of Korea;
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Han X, Song X, Xiao Z, Zhu G, Gao R, Ni B, Li J. Study on the mechanism of MDSC-platelets and their role in the breast cancer microenvironment. Front Cell Dev Biol 2024; 12:1310442. [PMID: 38404689 PMCID: PMC10884319 DOI: 10.3389/fcell.2024.1310442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key immunosuppressive cells in the tumor microenvironment (TME) that play critical roles in promoting tumor growth and metastasis. Tumor-associated platelets (TAPs) help cancer cells evade the immune system and promote metastasis. In this paper, we describe the interaction between MDSCs and TAPs, including their generation, secretion, activation, and recruitment, as well as the effects of MDSCs and platelets on the generation and changes in the immune, metabolic, and angiogenic breast cancer (BC) microenvironments. In addition, we summarize preclinical and clinical studies, traditional Chinese medicine (TCM) therapeutic approaches, and new technologies related to targeting and preventing MDSCs from interacting with TAPs to modulate the BC TME, discuss the potential mechanisms, and provide perspectives for future development. The therapeutic strategies discussed in this review may have implications in promoting the normalization of the BC TME, reducing primary tumor growth and distant lung metastasis, and improving the efficiency of anti-tumor therapy, thereby improving the overall survival (OS) and progression-free survival (PFS) of patients. However, despite the significant advances in understanding these mechanisms and therapeutic strategies, the complexity and heterogeneity of MDSCs and side effects of antiplatelet agents remain challenging. This requires further investigation in future prospective cohort studies.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Hematology-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Xiao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Zhang P, Li B, Wang Z, Li J, Wang F, Kong J, Zhou Z, Huang Y, Li L. Durable Attenuation of Tumor pH-Platelet Linkage Reinstates Bioorthogonal Targeting of Residual Tumors Post-Debulking. ACS NANO 2024; 18:4520-4538. [PMID: 38270077 DOI: 10.1021/acsnano.3c11536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
There are circumstances where tumors can only be partially resected. Therefore, multimodality therapy targeting post-operative residuals is important. Here, we show that bioorthogonal click chemistry enables targeted delivery to heterogeneous tumors, but its utility against tumor post-debulking is ineffective due to platelet cloaks that shield tumor cells from bioorthogonal pairing. We further discover tumor-infiltrating platelet levels respond to local pH changes. Elucidating this pH-platelet linkage, we design an injectable hydrogel for resection cavity implantation that simultaneously azido-tags tumor cells and inhibit their catalysis to acidify surrounding milieu. Unlike transient buffering, tumor acidification blockade sustains pH normalization, leading to durable platelet reduction. This reinstates bioorthogonal targeting of dibenzyl cyclooctyne-modified nanoparticles, thereby enhancing photodynamic ablation of residuals while amplifying systemic antitumor immunity. Concurrently, platelet/pH normalization interrupts metastasis cascade from invasion to circulation to colonization. Overall, attenuating tumor pH-platelet linkage unlocks bioorthogonal chemistry as a potential option for adjuvant therapy after tumor debulking.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ziyan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fengju Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zhu J, Wang R, Yang C, Shao X, Zhang Y, Hou J, Gao Y, Ou A, Chen M, Huang Y. Blocking tumor-platelet crosstalk to prevent tumor metastasis via reprograming glycolysis using biomimetic membrane-hybridized liposomes. J Control Release 2024; 366:328-341. [PMID: 38168561 DOI: 10.1016/j.jconrel.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Activated platelets promote tumor progression and metastasis through active interactions with cancer cells, especially in promoting epithelial-mesenchymal transition (EMT) of tumor cells and shedding tumor cells into the blood. Blocking platelet-tumor cell interactions can be a potential strategy to inhibit tumor metastasis. Platelet activation requires energy produced from aerobic glycolysis. Based on this, we propose a platelet suppression strategy by reprogramming glucose metabolism of platelets, which has an advantage over conventional antiplatelet treatment that has a risk of serious hemorrhage. We develop a biomimetic delivery system using platelet membrane-hybridized liposomes (PM-Lipo) for codelivery of quercetin and shikonin to simultaneously inhibit lactate transporter MCT-4 and a glycolytic enzyme PKM2 for achieving metabolic reprogramming of platelets and suppressing platelet activation. Notably, PM-Lipo can also inhibit glycolysis in cancer cells, which actually takes "two-birds-one-stone" action. Consequently, the platelet-tumor cell interactions are inhibited. Moreover, PM-Lipo can bind with circulating tumor cells and reduce their seeding in the premetastatic microenvironment. The in vivo studies further demonstrated that PM-Lipo can effectively suppress primary tumor growth and reduce lung metastasis without affecting inherited functions of platelets. Reprogramming glycolysis of platelets can remodel the tumor immune microenvironment, including suppression of Treg and stimulation of CTLs.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang 330006, China
| | - Chenxiao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang 330006, China
| | - Xinyue Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiazhen Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| |
Collapse
|
19
|
Chen Y, Zhou J, Liu Z, Wu T, Li S, Zhang Y, Yin X, Yang G, Zhang G. Tumor cell-induced platelet aggregation accelerates hematogenous metastasis of malignant melanoma by triggering macrophage recruitment. J Exp Clin Cancer Res 2023; 42:277. [PMID: 37872588 PMCID: PMC10591353 DOI: 10.1186/s13046-023-02856-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Tumor cell-induced platelet aggregation (TCIPA) is not only a recognized mechanism for paraneoplastic thrombocytosis but also a potential breakthrough alternative for a low response to immune checkpoint inhibitors (ICIs) in hematogenous metastasis of malignant melanoma (MM). However, there is no TCIPA-specific model for further investigation of the relationship among TCIPA, the tumor immune microenvironment (TIME), and metastasis. METHODS We developed a TCIPA metastatic melanoma model with advanced hematogenous metastasis and enhanced TCIPA characteristics. We also investigated the pathway for TCIPA in the TIME. RESULTS We found that TCIPA triggers the recruitment of tumor-associated macrophages (TAMs) to lung metastases by secreting B16 cell-educated platelet-derived chemokines such as CCL2, SDF-1, and IL-1β. Larger quantities of TAMs in the TCIPA model were polarized to the M2 type by B16 cell reprocessing, and their surface programmed cell death 1 ligand 1 (PD-L1) expression was upregulated, ultimately assisting B16 cells in escaping host immunity and accelerating MM hematogenous metastasis. CONCLUSIONS TCIPA accelerates MM lung metastasis via tumor-educated platelets (TEPs), triggering TAM recruitment, promoting TAM polarization (M2), and remodeling the suppressive TIME in lung metastases.
Collapse
Affiliation(s)
- Yuyi Chen
- Department of Oncology, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jie Zhou
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zishen Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tongtong Wu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shumeng Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yutong Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaohui Yin
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guowang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Ganlin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Jantsch MH, Doleski PH, Viana AR, da Silva JLG, Passos DF, Cabral FL, Manzoni AG, Ebone RDS, Soares ABU, de Andrade CM, Schetinger MRC, Leal DBR. Effects of clopidogrel bisulfate on B16-F10 cells and tumor development in a murine model of melanoma. Biochem Cell Biol 2023; 101:443-455. [PMID: 37163764 DOI: 10.1139/bcb-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Metastatic melanoma is a very aggressive skin cancer. Platelets are constituents of the tumor microenvironment and, when activated, contribute to cancer progression, especially metastasis and inflammation. P2Y12 is an adenosine diphosphate receptor that triggers platelet activation. Inhibition of P2Y12 by clopidogrel bisulfate (CB) decreases platelet activation, which is also controlled by the extracellular concentration and the metabolism of purines by purinergic enzymes. We evaluated the effects of CB on the viability and proliferation of cultured B16-F10 cells. We also used a metastatic melanoma model with C57BL-6 mice to evaluate cancer development and purine metabolism modulation in platelets. B16-F10 cells were administered intraperitoneally to the mice. Two days later, the animals underwent a 12-day treatment with CB (30 mg/kg by gavage). We have found that CB reduced cell viability and proliferation in B16-F10 culture in 72 h at concentrations above 30 µm. In vivo, CB decreased tumor nodule counts and lactate dehydrogenase levels and increased platelet purine metabolism. Our results showed that CB has significant effects on melanoma progression.
Collapse
Affiliation(s)
- Matheus Henrique Jantsch
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Instituto Federal Farroupilha, Campus Santo Ângelo, Santo Ângelo, RS, Brazil
| | - Pedro Henrique Doleski
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Altevir Rossato Viana
- Programa de Pós-graduação em Nanociências; Laboratório de Biociências. Universidade Franciscana, Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra Guedes Manzoni
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renan da Silva Ebone
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Cínthia Melazzo de Andrade
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
21
|
Wang L, Zhang K, Feng J, Wang D, Liu J. The Progress of Platelets in Breast Cancer. Cancer Manag Res 2023; 15:811-821. [PMID: 37589033 PMCID: PMC10426457 DOI: 10.2147/cmar.s418574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Breast cancer is the most common female cancer and the sixth leading cause of death, seriously affecting the quality of life of women. Platelets, one of the fragments derived from megakaryocytes, are being increasingly investigated by tumor researchers because of their anticoagulant function. According to relevant studies, platelets, as the key source of circulating angiogenesis-related factors, can regulate tumor angiogenesis and vascular integrity, and they can also affect the tumor microenvironment, thereby facilitating the proliferation and differentiation of tumor cells. By covering or transferring normal MHC I molecules to tumor cells, platelets can protect tumor cells from being killed by the immune system and facilitate tumor cell metastasis. However, details on the mechanisms involved have remained elusive. This paper reviews and analyzes studies of the role of platelets in tumorigenesis, tumor cell proliferation, tumor metastasis, and cancer treatment to provide readers with a better understanding of the relevant studies.
Collapse
Affiliation(s)
- Luchang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Laboratory, Chengdu Second People’s Hospital, Chengdu, 610017, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
22
|
Elgohary S, El Tayebi HM. Inflammasomes in breast cancer: the ignition spark of progression and resistance? Expert Rev Mol Med 2023; 25:e22. [PMID: 37337426 DOI: 10.1017/erm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Inflammation and immune evasion are major key players in breast cancer (BC) progression. Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the paradigm shift in BC treatments, patients still suffer from resistance, recurrence and serious immune-related adverse events. These obstacles require unravelling of the hidden molecular contributors for such therapy failure hence yielding therapeutics that are at least as efficient yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses danger signals (danger-associated molecular patterns) from damagedRdying cells or pathogen-associated molecular patterns found in microbes, leading to secretion of the active pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been shown throughout numerous studies that inflammasome pathway enhanced invasion, metastasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregulated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour volume and lessened angiogenesis in BC. This review sheds the light on the molecular pathways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights novel strategies in treatment and prevention of BC.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
23
|
Aloizou AM, Palaiodimou L, Aloizou D, Dardiotis E, Gold R, Tsivgoulis G, Krogias C. Acute reperfusion treatment and secondary prevention of cancer-related stroke: comprehensive overview and proposal of clinical algorithm. Ther Adv Neurol Disord 2023; 16:17562864231180717. [PMID: 37342814 PMCID: PMC10278431 DOI: 10.1177/17562864231180717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer-related stroke (CRS), referring to ischemic stroke occurring in cancer patients without other clear etiology, represents a clinical challenge, as it is associated with unfavorable clinical outcomes including high rates of recurrence and mortality. There are scarce international recommendations and limited consensus statements on CRS management. For this comprehensive overview, the available studies/reviews/meta-analyses on the use of acute reperfusion and secondary prevention treatments for cancer patients with ischemic stroke, focusing on antithrombotic agents, were collected and summarized. A practical management algorithm was designed per the available data. In short, acute reperfusion in the form of intravenous thrombolysis and mechanical thrombectomy appears to be safe in CRS and can be considered for eligible patients, though the functional outcomes are often poor, and mostly defined by the preexisting condition. Many patients carry indications for anticoagulation, in which case vitamin K antagonists are not preferred, while low-molecular weight heparins remain the treatment of choice; direct oral anticoagulants can be alternatively considered but are contraindicated for gastrointestinal malignancies. For patients without clear anticoagulation indications, no net benefit for anticoagulation compared to aspirin has been shown. Other targeted treatment options should be evaluated in an individualized approach, alongside the appropriate management of conventional cerebrovascular risk factors. Oncological treatment should be swiftly initiated/continued. In conclusion, acute CRS remains a clinical challenge, with many patients suffering recurrent stroke, despite preventive measures. More randomized-controlled clinical trials are urgently needed to pinpoint the most effective management options for this subset of stroke patients.
Collapse
Affiliation(s)
| | - Lina Palaiodimou
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Aloizou
- Department of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christos Krogias
- Department of Neurology, Evangelisches Krankenhaus Herne, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Yoshimoto M, Kagawa S, Kajioka H, Taniguchi A, Kuroda S, Kikuchi S, Kakiuchi Y, Yagi T, Nogi S, Teraishi F, Shigeyasu K, Yoshida R, Umeda Y, Noma K, Tazawa H, Fujiwara T. Dual antiplatelet therapy inhibits neutrophil extracellular traps to reduce liver micrometastases of intrahepatic cholangiocarcinoma. Cancer Lett 2023:216260. [PMID: 37295551 DOI: 10.1016/j.canlet.2023.216260] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
The involvement of neutrophil extracellular traps (NETs) in cancer metastasis is being clarified, but the relationship between intrahepatic cholangiocarcinoma (iCCA) and NETs remains unclear. The presence of NETs was verified by multiple fluorescence staining in clinically resected specimens of iCCA. Human neutrophils were co-cultured with iCCA cells to observe NET induction and changes in cellular characteristics. Binding of platelets to iCCA cells and its mechanism were also examined, and their effects on NETs were analyzed in vitro and in in vivo mouse models. NETs were present in the tumor periphery of resected iCCAs. NETs promoted the motility and migration ability of iCCA cells in vitro. Although iCCA cells alone had a weak NET-inducing ability, the binding of platelets to iCCA cells via P-selectin promoted NET induction. Based on these results, antiplatelet drugs were applied to these cocultures in vitro and inhibited the binding of platelets to iCCA cells and the induction of NETs. Fluorescently labeled iCCA cells were injected into the spleen of mice, resulting in the formation of liver micrometastases coexisting with platelets and NETs. These mice were treated with dual antiplatelet therapy (DAPT) consisting of aspirin and ticagrelor, which dramatically reduced micrometastases. These results suggest that potent antiplatelet therapy prevents micrometastases of iCCA cells by inhibiting platelet activation and NET production, and it may contribute to a novel therapeutic strategy.
Collapse
Affiliation(s)
- Masashi Yoshimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan.
| | - Hiroki Kajioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuki Taniguchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Tomohiko Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shohei Nogi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Entsie P, Kang Y, Amoafo EB, Schöneberg T, Liverani E. The Signaling Pathway of the ADP Receptor P2Y 12 in the Immune System: Recent Discoveries and New Challenges. Int J Mol Sci 2023; 24:6709. [PMID: 37047682 PMCID: PMC10095349 DOI: 10.3390/ijms24076709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.
Collapse
Affiliation(s)
- Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
26
|
Abstract
In addition to the key role in hemostasis and thrombosis, platelets have also been wildly acknowledged as immune regulatory cells and involving in the pathogenesis of inflammation-related diseases. Since purine receptor P2Y12 plays a crucial role in platelet activation, P2Y12 antagonists such as clopidogrel, prasugrel, and ticagrelor have been widely used in cardiovascular diseases worldwide in recent decades due to their potent antiplatelet and antithrombotic effects. Meanwhile, the role of P2Y12 in inflammatory diseases has also been extensively studied. Relatively, there are few studies on the regulation of P2Y12. This review first summarizes the various roles of P2Y12 in the process of platelet activation, as well as downstream effects and signaling pathways; then introduces the effects of P2Y12 in inflammatory diseases such as sepsis, atherosclerosis, cancer, autoimmune diseases, and asthma; and finally reviews the current researches on P2Y12 regulation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China
| | | | - Xia Cao
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
27
|
Hu JL, Zhang WJ. The role and pharmacological properties of P2Y12 receptor in cancer and cancer pain. Biomed Pharmacother 2023; 157:113927. [PMID: 36462316 DOI: 10.1016/j.biopha.2022.113927] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) was cloned in platelets and found to play a key role in maintaining platelet function in hemostasis and thrombosis, and these effects could be mediated by the P2Y12R. However, it has recently been found that P2Y12R-mediated the progression of tumor through interactions between platelets and tumor and stromal cells, as well as through products secreted by platelets. During tumor progression, tumor cells or other cells in the tumor microenvironment (such as immune cells) can secrete large amounts of ATP into the extracellular matrix, and extracellular ATP can be hydrolyzed into ADP. ADP is a P2Y12R activator and plays an important regulatory role in the proliferation and metastasis of tumor cells. P2Y12R is involved in platelet-cancer cell crosstalk and become a potential target for anticancer therapy. Moreover, tumor progression can induce pain, which seriously affects the quality of life of patients. P2Y12R is expressed in microglia and mediates the activities of microglial and participates in the occurrence of cancer pain. Conversely, inhibiting P2Y12R activation and down-regulating its expression has the effect of inhibiting tumor progression and pain. Therefore, P2Y12R can be a common therapeutic target for both. In this article, we explored the potential link between P2Y12R and cancer, discussed the intrinsic link of P2Y12R in cancer pain and the pharmacological properties of P2Y12R antagonists in the treatment of both.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
28
|
Bian X, Yin S, Yang S, Jiang X, Wang J, Zhang M, Zhang L. Roles of platelets in tumor invasion and metastasis: A review. Heliyon 2022; 8:e12072. [PMID: 36506354 PMCID: PMC9730139 DOI: 10.1016/j.heliyon.2022.e12072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The invasion and metastasis of malignant tumors are major causes of death. The most common metastases of cancer are lymphatic metastasis and hematogenous metastasis. Hematogenous metastasis often leads to rapid tumor dissemination. The mechanism of hematogenous metastasis of malignant tumors is very complex. Some experts have found that platelets play an important role in promoting tumor hematogenous metastasis. Platelets may be involved in many processes, such as promoting tumor cell survival, helping tumor cells escape immune surveillance, helping tumors attach to endothelial cells and penetrating capillaries for distant metastasis. However, recent studies have shown that platelets can also inhibit tumor metastasis. At present, the function of platelets in tumor progression has been widely studied, and they not only promote tumor cell metastasis, but also have an inhibitory effect. Therefore, in-depth and summary research of the molecular mechanism of platelets in tumor cell metastasis is of great significance for the screening and treatment of cancer patients. The following is a brief review of the role of platelets in the process of malignant tumor metastasis.
Collapse
Affiliation(s)
- Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Wang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, Inner Mongolia, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
29
|
Blockade of Platelet CysLT1R Receptor with Zafirlukast Counteracts Platelet Protumoral Action and Prevents Breast Cancer Metastasis to Bone and Lung. Int J Mol Sci 2022; 23:ijms232012221. [PMID: 36293074 PMCID: PMC9603002 DOI: 10.3390/ijms232012221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Metastases are the main cause of death in cancer patients, and platelets are largely known for their contribution in cancer progression. However, targeting platelets is highly challenging given their paramount function in hemostasis. Using a high-throughput screening and platelet-induced breast tumor cell survival (PITCS) assay as endpoint, we identified the widely used anti-asthmatic drugs and cysteinyl leukotriene receptor 1 (CysLT1R) antagonists, zafirlukast and montelukast, as new specific blockers of platelet protumoral action. Here, we show that human MDA-B02 breast cancer cells produce CysLT through mechanisms involving microsomal glutathione-S-transferase 1/2/3 (MGST1/2/3) and that can modulate cancer cell–platelet interactions via platelet–CysLT1R. CysLT1R blockade with zafirlukast decreased platelet aggregation and adhesion on cancer cells and inhibited PITCS, migration, and invasion in vitro. Zafirlukast significantly reduced, by 90%, MDA-B02 cell dissemination to bone in nude mice and reduced by 88% 4T1 spontaneous lung metastasis formation without affecting primary tumor growth. Combined treatment of zafirlukast plus paclitaxel totally inhibited metastasis of 4T1 cells to the lungs. Altogether, our results reveal a novel pathway mediating the crosstalk between cancer cells and platelets and indicate that platelet CysLT1R represents a novel therapeutic target to prevent metastasis without affecting hemostasis.
Collapse
|
30
|
Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F, De Giorgi U. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Front Oncol 2022; 12:882896. [PMID: 36003772 PMCID: PMC9393759 DOI: 10.3389/fonc.2022.882896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adaptive and innate immune cells play a crucial role as regulators of cancer development. Inflammatory cells in blood flow seem to be involved in pro-tumor activities and contribute to breast cancer progression. Circulating lymphocyte ratios such as the platelet-lymphocytes ratio (PLR), the monocyte-lymphocyte ratio (MLR) and the neutrophil-lymphocyte ratio (NLR) are new reproducible, routinely feasible and cheap biomarkers of immune response. These indexes have been correlated to prognosis in many solid tumors and there is growing evidence on their clinical applicability as independent prognostic markers also for breast cancer. In this review we give an overview of the possible value of lymphocytic indexes in advanced breast cancer prognosis and prediction of outcome. Furthermore, targeting the immune system appear to be a promising therapeutic strategy for breast cancer, especially macrophage-targeted therapies. Herein we present an overview of the ongoing clinical trials testing systemic inflammatory cells as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Caterina Gianni,
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
31
|
Morris K, Schnoor B, Papa AL. Platelet cancer cell interplay as a new therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188770. [DOI: 10.1016/j.bbcan.2022.188770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
32
|
Wang S, Yin N, Li Y, Xiang T, Jiang W, Zhao X, Liu W, Zhang Z, Shi J, Zhang K, Guo X, Si P, Liu J. Copper-based metal-organic framework impedes triple-negative breast cancer metastasis via local estrogen deprivation and platelets blockade. J Nanobiotechnology 2022; 20:313. [PMID: 35794596 PMCID: PMC9258064 DOI: 10.1186/s12951-022-01520-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
Metastasis is one of the main causes of failure in the treatment of triple-negative breast cancer (TNBC). Abnormally estrogen level and activated platelets are the key driving forces for TNBC metastasis. Herein, an "ion/gas" bioactive nanogenerator (termed as IGBN), comprising a copper-based MOF and loaded cisplatin-arginine (Pt-Arg) prodrug is developed for metastasis-promoting tumor microenvironment reprogramming and TNBC therapy. The copper-based MOF not only serves as a drug carrier, but also specifically produces Cu2+ in tumors, which catalytic oxidizing estrogen to reduce estrogen levels in situ. Meanwhile, the rationally designed Pt-Arg prodrug reduced into cisplatin to significantly promote the generation of H2O2 in the tumor, then permitting self-augmented cascade NO gas generation by oxidizing Arg through a H2O2 self-supplied way, thus blocking platelet activation in tumor. We clarified that IGBN inhibited TNBC metastasis through local estrogen deprivation and platelets blockade, affording 88.4% inhibition of pulmonary metastasis in a 4T1 mammary adenocarcinoma model. Notably, the locally copper ion interference, NO gas therapy and cisplatin chemotherapy together resulted in an enhanced therapeutic efficacy in primary tumor ablation without significant toxicity. This "ion/gas" bioactive nanogenerator offers a robust and safe strategy for TNBC therapy.
Collapse
Affiliation(s)
- Sijie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjuan Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Xiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenxiao Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingming Guo
- College of Bioengineering, Chongqing University, Chongqing, People's Republic of China.
| | - Pilei Si
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, 450003, Henan, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
33
|
In Early Breast Cancer, the Ratios of Neutrophils, Platelets and Monocytes to Lymphocytes Significantly Correlate with the Presence of Subsets of Circulating Tumor Cells but Not with Disseminated Tumor Cells. Cancers (Basel) 2022; 14:cancers14143299. [PMID: 35884360 PMCID: PMC9320225 DOI: 10.3390/cancers14143299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are potential precursors of metastasis and while travelling through the peripheral blood, they crosstalk with different blood cells before a few of them manage to settle down as disseminated tumor cells (DTCs). Little is known about the correlation of blood cells with CTCs/DTCs in early breast cancer (BC). We retrospectively recorded clinical data, results for CTCs, DTCs and blood cell counts from 171 early staged diagnosed BC patients and demonstrated that the presence of epithelial CTCs was related to reduced lymphocyte and monocyte counts, to elevated neutrophil to lymphocyte and platelet to lymphocyte ratios while CTCs in epithelial mesenchymal transition associated with a reduced monocyte to lymphocyte ratio. No significant correlations were found for DTCs, however, DTC-positive patients, harboring a lower platelet to lymphocyte ratio, had a significant shorter overall survival. We confirm that pro-inflammatory markers in blood are closely related to the presence of CTC subtypes, the precursors of metastasis. Abstract Circulating tumor cells (CTCs) crosstalk with different blood cells before a few of them settle down as disseminated tumor cells (DTCs). We evaluated the correlation between CTC subtypes, DTCs and the neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and monocyte to lymphocyte ratio (MLR) for better prognostication of 171 early staged diagnosed breast cancer (BC) patients. —Clinical data and blood values before treatment were retrospectively recorded, representing the 75% percentile, resulting in 3.13 for NLR, 222.3 for PLR and 0.39 for MLR, respectively. DTCs were analyzed by immunocytochemistry using the pan-cytokeratin antibodyA45-B/B3. CTCs were determined applying the AdnaTests BreastCancerDetect and EMT (Epithelial Mesenchymal Transition) Detect. —Reduced lymphocyte (p = 0.007) and monocyte counts (p = 0.012), an elevated NLR (p = 0.003) and PLR (p = 0.001) significantly correlated with the presence of epithelial CTCs while a reduced MLR was related to EMT-CTCs (p = 0.045). PLR (p = 0.029) and MLR (p = 0.041) significantly related to lymph node involvement and monocyte counts significantly correlated with OS (p = 0.034). No correlations were found for NLR, PLR and MLR with DTCs, however, DTC-positive patients, harboring a lower PLR, had a significant shorter OS (p = 0.043). —Pro-inflammatory markers are closely related to different CTC subsets. This knowledge might improve risk prognostication of these patients.
Collapse
|
34
|
Targeting glycoprotein VI to disrupt platelet-mediated tumor cell extravasation. Pharmacol Res 2022; 182:106301. [PMID: 35710063 DOI: 10.1016/j.phrs.2022.106301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Activated platelets coat circulating tumor cells, protecting them from shear stress in the blood stream and promoting their evasion from immune surveillance. Platelets promote tumor cell dissemination to distant organs by releasing transforming growth factor-β1 (TGF-β1) into the tumor microenvironment, which induces phenotypic changes to the epithelial-mesenchymal transition. This process facilitates tumor cell transendothelial extravasation and formation of early metastatic niches. Development of antiplatelet agents that interrupt the platelet-tumor cell axis but do not interfere with physiological hemostatic mechanisms is critical. The glycoprotein VI (GPVI), a member of the immunoreceptor family that is co-expressed with the fragment crystallizable (Fc) receptor γ-chain, is exclusively expressed in platelets and megakaryocytes, and blocking the receptor or genetic deficiency has minimal impact on bleeding. Tumor cell-expressed galectin-3, which contains a collagen-like peptide domain, binds to platelet GPVI-dimers, and the receptor-ligand activates platelets to form a protective heteroaggregate coat around tumor cells. This review highlights the potential of targeting the GPVI/FcR γ-chain complex to inhibit platelet activation by galectin-3 expressing tumor cells, disrupting the platelet-tumor cell amplification loop while maintaining the function of platelets in hemostasis.
Collapse
|
35
|
Wang X, Zhao S, Wang Z, Gao T. Platelets involved tumor cell EMT during circulation: communications and interventions. Cell Commun Signal 2022; 20:82. [PMID: 35659308 PMCID: PMC9166407 DOI: 10.1186/s12964-022-00887-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/24/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractDistant spreading of metastatic tumor cells is still the leading cause of tumor death. Metastatic spreading is a complex process, in which epithelial-mesenchymal transition (EMT) is the primary and key event to promote it. Presently, extensive reviews have given insights on the occurrence of EMT at the primary tumor site that depends on invasive properties of tumor cells and the tumor-associated microenvironment. However, essential roles of circulation environment involved in tumor cell EMT is not well summarized. As a main constituent of the blood, platelet is increasingly found to work as an important activator to induce EMT. Therefore, this review aims to emphasize the novel role of platelet in EMT through signal communications between platelets and circulation tumor cells, and illustrate potent interventions aiming at their communications. It may give a complementary view of EMT in addition to the tissue microenvironment, help for better understand the hematogenous metastasis, and also illustrate theoretical and practical basis for the targeted inhibition.
Collapse
|
36
|
Overexpression of multiple epidermal growth factor like domains 11 rescues anoikis survival through tumor cells-platelet interaction in triple negative breast Cancer cells. Life Sci 2022; 299:120541. [DOI: 10.1016/j.lfs.2022.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
|
37
|
Janho dit Hreich S, Benzaquen J, Hofman P, Vouret-Craviari V. The Purinergic Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14081926. [PMID: 35454832 PMCID: PMC9025794 DOI: 10.3390/cancers14081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the most common cancer worldwide. Despite recent therapeutic advances, including targeted therapies and immune checkpoint inhibitors, the disease progresses in almost all advanced lung cancers and in up to 50% of early-stage cancers. The purpose of this review is to discuss whether purinergic checkpoints (CD39, CD73, P2RX7, and ADORs), which shape the immune response in the tumor microenvironment, may represent novel therapeutic targets to combat progression of non-small cell lung cancer by enhancing the antitumor immune response.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Jonathan Benzaquen
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Paul Hofman
- CHU Nice, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France;
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM, Team 4), Université Côte d’Azur, 06100 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d’Azur, 06000 Nice, France
| | - Valérie Vouret-Craviari
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
- Correspondence: ; Tel.: +33-492-031-223
| |
Collapse
|
38
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
39
|
Hwang BO, Park SY, Cho ES, Zhang X, Lee SK, Ahn HJ, Chun KS, Chung WY, Song NY. Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Front Immunol 2022; 12:807600. [PMID: 34987523 PMCID: PMC8721674 DOI: 10.3389/fimmu.2021.807600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.
Collapse
Affiliation(s)
- Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eunae Sandra Cho
- BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Pathology, Yanbian University Hospital, Yanji City, China
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hyung-Joon Ahn
- Department of Orofacial Pain and Oral Medicine, Dental Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Won-Yoon Chung
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 Four Project, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
40
|
Palacios-Acedo AL, Mezouar S, Mège D, Crescence L, Dubois C, Panicot-Dubois L. P2RY12-Inhibitors Reduce Cancer-Associated Thrombosis and Tumor Growth in Pancreatic Cancers. Front Oncol 2021; 11:704945. [PMID: 34589424 PMCID: PMC8475274 DOI: 10.3389/fonc.2021.704945] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Platelet function can be modified by cancer cells to support tumor growth, causing alterations in the delicate hemostatic equilibrium. Cancer-cell and platelet interactions are one of the main pillars of Trousseau’s syndrome: a paraneoplastic syndrome with recurring and migrating episodes of thrombophlebitis. Altogether, this leads to a four-fold risk of thrombotic events in cancer patients, which in turn, portend a poor prognosis. We previously demonstrated that anti-P2RY12 drugs inhibit cancer-associated-thrombosis and formation of tumor metastasis in pancreatic cancer models. Here, we aimed to (1) compare the effects of aspirin and clopidogrel on pancreatic cancer prevention, (2) characterize the effects of clopidogrel (platelet P2RY12 inhibitor) on cancer-associated thrombosis and cancer growth in vivo, (3) determine the effect of P2RY12 across different digestive-tract cancers in vitro, and (4) analyze the expression pattern of P2RY12 in two different cancer types affecting the digestive system. Clopidogrel treatment resulted in better survival rates with smaller primary tumors and less metastasis than aspirin treatment. Clopidogrel was also more effective than aspirin at dissolving spontaneous endogenous thrombi in our orthotopic advanced cancer mouse model. P2RY12 expression gives pancreatic adenocarcinomas proliferative advantages. In conclusion, we propose the hypothesis that clopidogrel should be further studied to target and prevent Trousseau’s syndrome; as well as diminish cancer growth and spread. However, more studies are required to determine the implicated pathways and effects of these drugs on cancer development.
Collapse
Affiliation(s)
- Ana Luisa Palacios-Acedo
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Diane Mège
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France.,Department of Digestive Surgery, Timone University Hospital, Marseille, France
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Christophe Dubois
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| |
Collapse
|
41
|
Reyna-Jeldes M, Díaz-Muñoz M, Madariaga JA, Coddou C, Vázquez-Cuevas FG. Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 2021; 17:345-370. [PMID: 33982134 PMCID: PMC8410929 DOI: 10.1007/s11302-021-09785-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.
Collapse
Affiliation(s)
- M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - J A Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile.
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México.
| |
Collapse
|
42
|
Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3351-3368. [PMID: 34430372 PMCID: PMC8350108 DOI: 10.21037/tlcr-21-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Objective The objectives of this review are to discuss: the definition, clinical and biologic features of oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in oligometastatic NSCLC. Background A substantial proportion of patients diagnosed with lung cancer present with metastatic disease, and a large portion of patients who present with localized disease later develop metastases. Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic disease, where there may be a role for curative localized therapy approach by treating the primary tumor and all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients with lung cancer, the identification of patients who might benefit from this approach is yet to be well characterized. Methods After a systematic review of the literature, a PubMed search was performed using the English language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to oligometastatic NSCLC were reviewed and included in the discussion of this paper. Conclusions Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic NSCLC accurately using a combination of clinical and biologic features and treating them with localized consolidative approach appropriately results in improvement of outcome. Further understanding of the molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for future studies.
Collapse
Affiliation(s)
- Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
43
|
Varotsos Vrynas A, Perea Paizal J, Bakal C, Au SH. Arresting metastasis within the microcirculation. Clin Exp Metastasis 2021; 38:337-342. [PMID: 34241735 PMCID: PMC8318963 DOI: 10.1007/s10585-021-10109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022]
Abstract
The behaviour of circulating tumour cells in the microcirculation remains poorly understood. Growing evidence suggests that biomechanical adaptations and interactions with blood components, i.e. immune cells and platelets within capillary beds, may add more complexity to CTCs journey towards metastasis. Revisiting how these mediators impact the ability of circulating tumour cells to survive and metastasise, will be vital to understand the role of microcirculation and advance our knowledge on metastasis.
Collapse
Affiliation(s)
| | - Julia Perea Paizal
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Sam H Au
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
44
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
45
|
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, Kratz E, Kamińska J. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunol Immunother 2021; 70:1497-1510. [PMID: 33146401 PMCID: PMC8139882 DOI: 10.1007/s00262-020-02758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs (tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor associated platelets-TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic cells, and even enhance apoptosis. Undoubtedly, TAPs' role seems to be more complex when compared to tumor associated neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
46
|
Miao S, Zhang Q, Chang W, Wang J. New Insights Into Platelet-enriched miRNAs: Production, Functions, Roles in Tumors, and Potential Targets for Tumor Diagnosis and Treatment. Mol Cancer Ther 2021; 20:1359-1366. [PMID: 34045229 DOI: 10.1158/1535-7163.mct-21-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
In view of the increasing number of malignant tumors worldwide and their high mortality, efforts are being made to find effective biomarkers for early detection and effective treatment measures of cancer. In recent years, the roles of platelets in tumors have attracted considerable attention. Although platelets do not have nuclei, they are rich in miRNAs, which are important molecules in platelet regulation of tumors. Platelet miRNA expression in tumor patients is abnormal and tumor-specific. Platelet miRNAs have higher accuracy and specificity than conventional tumor detection markers and circulating miRNAs in tumor diagnosis. Platelets enriched miRNAs are involved in the regulation of tumor proliferation, metastasis, tumor-related immunity, tumor-related thrombosis, and antitumor therapy. To understand the role of platelet miRNAs in tumors, this article reviews the biological functions of miRNAs in platelets and summarizes the regulatory roles of platelet miRNAs in tumors and the potential roles of platelet miRNAs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
47
|
Wang J, Zhou P, Han Y, Zhang H. Platelet transfusion for cancer secondary thrombocytopenia: Platelet and cancer cell interaction. Transl Oncol 2021; 14:101022. [PMID: 33545547 PMCID: PMC7868729 DOI: 10.1016/j.tranon.2021.101022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
Chemoradiotherapy and autoimmune disorder often lead to secondary thrombocytopenia in cancer patients, and thus, platelet transfusion is needed to stop or prevent bleeding. However, the effect of platelet transfusion remains controversial for the lack of agreement on transfusion strategies. Before being transfused, platelets are stored in blood banks, and their activation is usually stimulated. Increasing evidence shows activated platelets may promote metastasis and the proliferation of cancer cells, while cancer cells also induce platelet activation. Such a vicious cycle of interaction between activated platelets and cancer cells is harmful for the prognosis of cancer patients, which results in an increased tumor recurrence rate and decreased five-year survival rate. Therefore, it is important to explore platelet transfusion strategies, summarize mechanisms of interaction between platelets and tumor cells, and carefully evaluate the pros and cons of platelet transfusion for better treatment and prognosis for patients with cancer with secondary thrombocytopenia.
Collapse
Affiliation(s)
- Juan Wang
- Class 2016 Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Pan Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
48
|
Lee SB, Ji HD, Lee IK, Kim KS, Lee J, Lee SW, Jeon YH. Visualization of platelet recruitment to tumor lesions using highly sensitive and stable radioiodine studded gold nanoprobes. J Mater Chem B 2021; 9:2931-2936. [PMID: 33885648 DOI: 10.1039/d0tb02265a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vivo imaging of platelets will provide a better understanding of their critical roles in arterial cardiovascular disease, hemostasis, inflammation, and cancer. Here, we demonstrate the feasibility of using radioiodine studded gold nanoprobes (RIS-GNPs) as a platelet tracker for nuclear medicine imaging in tumor-bearing mice using positron emission tomography and computed tomography (PET/CT). Platelet labeling with RIS-GNPs did not alter the platelet functions, such as cellular proliferation and aggregation. PET/CT imaging clearly revealed the migration of platelets into tumor sites at 1 to 5 h post-transfer of RIS-GNP-labeled platelets, which was consistent with the biodistribution data. Our findings suggest that the imaging approach using RIS-GNPs makes it feasible to visualize the biological behavior of platelets in living organisms with cancer.
Collapse
Affiliation(s)
- Sang Bong Lee
- Vaccine Commercialization Center, Gyeongbuk Institute for Bio industry, 88 Saneopdanji-gil, pungsan-eup, Andong-si, Gyeongbuk, 33618, South Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Schmied L, Höglund P, Meinke S. Platelet-Mediated Protection of Cancer Cells From Immune Surveillance - Possible Implications for Cancer Immunotherapy. Front Immunol 2021; 12:640578. [PMID: 33777033 PMCID: PMC7988080 DOI: 10.3389/fimmu.2021.640578] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
The growing insights in the complex interactions between metastatic cancer-cells and platelets have revealed that platelet tumor cell interactions in the blood stream are an important factor supporting tumor metastasis. An increased coagulability of platelets facilitates the vascular evasion and establishment of solid tumor metastasis. Furthermore, platelets can support an immunosuppressive tumor microenvironment or shield tumor cells directly from engagement of cytotoxic lymphocytes as e.g., natural killer (NK) cells. Platelets are both in the tumor microenvironment and systemically the quantitatively most important source of TGF-β, which is a key cytokine for immunosuppression in the tumor microenvironment. If similar platelet-tumor interactions are of physiological relevance in hematological malignancies remains less well-studied. This might be important, as T- and NK cell mediated graft vs. leukemia effects (GvL) are well-documented and malignant hematological cells have a high exposure to platelets compared to solid tumors. As NK cell-based immunotherapies gain increasing attention as a therapeutic option for patients suffering from hematological and other malignancies, we review the known interactions between platelets and NK cells in the solid tumor setting and discuss how these could also apply to hematological cancers. We furthermore explore the possible implications for NK cell therapy in patients with solid tumors and patients who depend on frequent platelet transfusions. As platelets have a protective and supportive effect on cancer cells, the impact of platelet transfusion on immunotherapy and the combination of immunotherapy with platelet inhibitors needs to be evaluated.
Collapse
Affiliation(s)
- Laurent Schmied
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stephan Meinke
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
50
|
Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal 2021; 17:179-200. [PMID: 33576905 PMCID: PMC7879595 DOI: 10.1007/s11302-020-09760-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the most frequent cause of death among women, representing a global public health problem. Here, we aimed to discuss the correlation between the purinergic system and BC, recognizing therapeutic targets. For this, we analyzed the interaction of extracellular nucleotides and nucleosides with the purinergic receptors P1 and P2, as well as the influence of ectonucleotidase enzymes (CD39 and CD73) on tumor progression. A comprehensive bibliographic search was carried out. The relevant articles for this review were found in the PubMed, Scielo, Lilacs, and ScienceDirect databases. It was observed that among the P1 receptors, the A1, A2A, and A2B receptors are involved in the proliferation and invasion of BC, while the A3 receptor is related to the inhibition of tumor growth. Among the P2 receptors, the P2X7 has a dual function. When activated for a short time, it promotes metastasis, but when activated for long periods, it is related to BC cell death. P2Y2 and P2Y6 receptors are related to BC proliferation and invasiveness. Also, the high expression of CD39 and CD73 in BC is strongly related to a worse prognosis. The receptors and ectonucleotidases involved with BC become possible therapeutic targets. Several purinergic pathways have been found to be involved in BC cell survival and progression. In this review, in addition to analyzing the pathways involved, we reviewed the therapeutic interventions already studied for BC related to the purinergic system, as well as to other possible therapeutic targets.
Collapse
|