1
|
Khan H, Girdharry NR, Massin SZ, Abu-Raisi M, Saposnik G, Mamdani M, Qadura M. Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature. Metabolites 2025; 15:224. [PMID: 40278353 PMCID: PMC12029480 DOI: 10.3390/metabo15040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Peripheral arterial disease (PAD) is a chronic atherosclerotic disease characterized by atheromatous plaque buildup within arteries of the lower limbs. It can lead to claudication, skin ulcerations, and, in severe cases, chronic limb-threatening ischemia, requiring amputation. There are several plasma protein biomarkers that have been suggested as prognostic markers for adverse events, including major adverse cardiovascular and limb events. However, the clinical benefit and ability to clinically adapt these biomarkers remains uncertain due to inconsistent findings possibly related to heterogenous study designs and differences in methodology. Objectives: This review aims to evaluate the current literature on the prognostic value of plasma protein biomarkers for PAD, their predictive ability for PAD-related adverse outcomes, and their potential roles in guiding PAD management. Methods: To address these challenges, we conducted a systematic review of MEDLINE, Embase, and Cochrane CENTRAL libraries of the current literature (2010-2024). Results: We found 55 studies that evaluated the prognostic value of 44 distinct plasma proteins across various pathophysiological processes. These included markers of immunity and inflammation, markers of metabolism, cardiac biomarkers, markers of kidney function, growth factors and hormones, markers of coagulation and platelet function, extracellular matrix and tissue remodeling proteins, and transport proteins. This review summarizes the existing evidence for prognostic protein plasma biomarkers for PAD and their association with adverse events related to PAD. Conclusions: With this review, we hope to provide a comprehensive list of the prognostic markers and their value as prognostic biomarkers to guide clinical decision making in these patients.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | | | - Sophia Z. Massin
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mohamed Abu-Raisi
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.)
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Muhammad Mamdani
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Vascular Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Abu Dhabi PO Box 112412, United Arab Emirates
| |
Collapse
|
2
|
Kotsoni A, Kozaki LV, Stylianou A, Gkretsi V. Interdependent roles for growth differentiation factor-15 (GDF15) and LIMS1 in regulating cell migration: Implications for colorectal cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119904. [PMID: 39837390 DOI: 10.1016/j.bbamcr.2025.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Colorectal cancer (CRC) ranks second in mortality worldwide while metastasis accounts for most CRC-related deaths. Thus, understanding cell migration, a crucial step in metastasis, is imperative for developing new therapies. Growth Differentiation Factor-15 (GDF15), a member of the Transforming Growth Factor β superfamily, is overexpressed in CRC and promotes metastasis with a so far unknown mechanism. LIMS1 is a cell-matrix adhesion prosurvival protein that is also overexpressed in CRC and localized at the tumor invasive front, while bioinformatics analysis shows that both genes exhibit the same expression pattern in metastatic CRC samples. In the present study, treatment of low-aggressiveness HT29 CRC cells with human recombinant GDF15 (hrGDF15) led to increased LIMS1 expression, increased mRNA level of RhoGTPases RAC1 and RHOA but not CDC42, and increased migration. Conversely, GDF15 or LIMS1-siRNA-mediated silencing in invasive HCT116 cells resulted in downregulation of LIMS1 and GDF15 respectively, decreased RAC1, and RHOA as well as reduced cell migration, which were fully restored by hrGDF15 treatment both in GDF15 and LIMS1-siRNA-treated cells. Our findings indicate that GDF15 and LIMS1 have an interdependent role in the migration process which renders them potent targets for the development of novel therapeutic strategies to inhibit metastatic spread.
Collapse
Affiliation(s)
- Andria Kotsoni
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Louiza Valentina Kozaki
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Andreas Stylianou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Mechanobiology and Applied Biophysics Group, BTCRC, European University Cyprus, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
3
|
Sheng J, Wang J, Ma T, He P. Relationship Between MIC-1, VEGF, and TGF-β1 and Clinicopathologic Stage and Lymph Node Metastasis in Gastric Cancer. Int J Gen Med 2025; 18:955-965. [PMID: 40007699 PMCID: PMC11853773 DOI: 10.2147/ijgm.s497572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Objective This research investigated the relationship between serum macrophage inhibitory cytokine-1 (MIC-1), vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1) levels and clinicopathologic features, lymph node metastasis (LNM), and prognosis of gastric cancer (GC) patients. Methods The GC group (GC patients, 198 cases)) and healthy group (healthy people, 100 cases) were established. The relationship between serum MIC-1, VEGF, TGF-β1, and clinical and pathological features in GC patients was analyzed. GC patients were divided into a metastasis group (77 patients) and a non-metastasis group (121 patients) based on whether they had LNM. The factors influencing LNM in GC patients were identified. The predictive value of serum MIC-1, VEGF, and TGF-β1 for LNM in GC patients and the relationship between serum MIC-1, VEGF, TGF-β1 levels and prognosis were analyzed. Results MIC-1, VEGF, and TGF-β1 were higher in GC. Serum MIC-1, VEGF, and TGF-β1 levels were higher in GC patients with tumor diameter ≥ 3 cm, T stage of T3 and T4, low/moderate differentiation, and LNM. Multivariate Logistic regression analysis showed that TNM stage, tumor differentiation, and serum MIC-1, VEGF, and TGF-β1 levels were risk factors for LNM in GC patients. The ROC results indicated that the combination of serum MIC-1, VEGF, and TGF-β1 had the highest AUC for predicting LNM in GV patients. The median survival time of patients with low serum MIC-1, VEGF, and TGF-β1 was higher than that of patients with high serum MIC-1, VEGF, and TGF-β1 (26.13 months vs 19.24 months, 27.06 months vs 20.18 months, and 24.20 months vs 20.08 months). Conclusion The changes of serum MIC-1, VEGF and TGF-β1 levels are related to the clinicopathological characteristics of GC patients, and the elevated levels of these indices are independent risk factors affecting LNM and prognosis of GC patients.
Collapse
Affiliation(s)
- Jianyun Sheng
- General Surgery Department, The First People’s Hospital of Pingdingshan, Pingdingshan, Henan Province, 467000, People’s Republic of China
| | - Jieshi Wang
- General Surgery Department, The First People’s Hospital of Pingdingshan, Pingdingshan, Henan Province, 467000, People’s Republic of China
| | - Tengda Ma
- General Surgery Department, The First People’s Hospital of Pingdingshan, Pingdingshan, Henan Province, 467000, People’s Republic of China
| | - Peina He
- Pingdingshan University, Pingdingshan, Henan Province, 467000, People’s Republic of China
| |
Collapse
|
4
|
Zhou H, Xiao J, Cheng Q, Wang W, Peng H, Lin X, Chen J, Wang X. Metformin inhibits migration and epithelial-to-mesenchymal transition in non-small cell lung cancer cells through AMPK-mediated GDF15 induction. Eur J Pharmacol 2024; 985:177127. [PMID: 39528101 DOI: 10.1016/j.ejphar.2024.177127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The growth differentiation factor 15 (GDF15) may serve as a biomarker of metformin, which mediates the bodyweight lowering effect of metformin. However, whether GDF15 also serves as a molecular target of metformin to inhibit carcinogenesis remains largely unknown. This study examined the role and molecular mechanisms of GDF15 in the anticancer effects of metformin in non-small cell lung cancer (NSCLC) cells, which has never been reported before. We found that metformin significantly inhibited the migration of NSCLC A549 and NCI-H460 cells and reduced the expression of epithelial-to-mesenchymal transition (EMT)-related molecules, including neuro-cadherin (N-cadherin), matrix metalloproteinase 2 (MMP2), and the zinc finger transcription factor Snail, but increased epithelial cadherin (E-cadherin) expression. Furthermore, metformin increased GDF15 and its upstream transcription factors activated transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) expressions and increased AMP-activated protein kinase (AMPK) phosphorylation in NSCLC cells. GDF15 siRNA partially reverses the inhibitory effect of metformin on NSCLC cell migration. Moreover, metformin-induced increases in GDF15, CHOP, and ATF4 expression and the inhibition of migration were partially reversed by treatment with Compound C, a specific AMPK inhibitor. Meanwhile, metformin significantly inhibited NCI-H460 xenograft tumor growth in nude mice, increased GDF15 expression, and regulated EMT- and migration-related protein expression in xenograft tumors. In conclusion, our results provide novel insights into revealing that GDF15 can serve as a potential molecular target of metformin owing to its anti-cancer effect in NSCLC, which is mediated by AMPK activation.
Collapse
Affiliation(s)
- Hongyu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jun Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Wen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| |
Collapse
|
5
|
Tanegashima K, Tanaka Y, Ito T, Oda Y, Nakahara T. TROP2 Expression and Therapeutic Implications in Cutaneous Squamous Cell Carcinoma: Insights From Immunohistochemical and Functional Analysis. Exp Dermatol 2024; 33:e15196. [PMID: 39422290 DOI: 10.1111/exd.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer, but treatments for advanced cases have limited efficacy. Trophoblast cell-surface antigen 2 (TROP2) is a cell-surface protein that is widely expressed in various tumours, where it exerts significant influence over critical processes such as tumour cell growth, apoptosis, migration, invasion and metastasis. Sacituzumab govitecan, an antibody-drug conjugate (ADC) targeting TROP2, is emerging as a promising strategy for anticancer therapy. In this study, we investigated TROP2 expression in cSCC tissues from 51 patients and evaluated its function in the A431 human SCC cell line. Immunohistochemical analysis revealed TROP2 expression on the plasma membrane of cSCC tissues and A431 cells. A431 cells showed sensitivity to sacituzumab govitecan with a significant concentration-dependent decrease in viable cell number. In addition, Knockdown of TROP2 resulted in decreased expression of cyclin D1 and BCL-2, along with reduced cell viability. Knockdown of TROP2 also resulted in decreased expression of vimentin, along with reduced migratory capacity. These findings suggest that TROP2 plays a crucial role in cSCC cell proliferation and migration, and highlight the potential of sacituzumab govitecan as a promising therapeutic option for cSCC.
Collapse
Affiliation(s)
- Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Shi G, Yue L, Tang Z, Wang Y, Hu X, Tong Y. Serum growth differentiation factor 15 as a biomarker for malnutrition in patients with acute exacerbation of chronic obstructive pulmonary disease. Front Nutr 2024; 11:1404063. [PMID: 39050134 PMCID: PMC11267996 DOI: 10.3389/fnut.2024.1404063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that often coexists with malnutrition during acute exacerbation (AECOPD) and significantly affects the prognosis. Previous studies have shown that growth differentiation factor 15 (GDF15) levels promote appetite suppression, weight loss, and muscle weakness, and are markedly high in peripheral blood following inflammatory stimulation. However, it is still unknown whether serum GDF15 levels can be used to predict malnutrition in patients with AECOPD. Methods A total of 142 patients admitted to the Department of Respiratory Medicine at Anshun People's Hospital between December 2022 and August 2023 were selected for this study. The participants were divided into two groups: malnutrition group (n = 44) and non-malnutrition group (n = 98) based on a body mass index (BMI) < 18.5 kg/m2, according to the Global Leadership Initiative on Malnutrition (GLIM) criteria. Serum GDF15 levels were measured using the enzyme-linked immunosorbent assay (ELISA) and compared between the two groups. Spearman correlation analysis was used to examine the association between serum GDF15 levels, baseline data, and clinical indicators. Binary logistic regression was used to identify the independent risk factors for AECOPD combined with malnutrition. The predictive value of serum GDF15, albumin (ALB), and a combination of these was evaluated to identify malnutrition in patients with AECOPD using a receiver operating characteristic (ROC) curve. Results Serum GDF15 levels in patients with malnutrition and AECOPD were significantly higher than those in patients without malnutrition, whereas the serum ALB levels were significantly lower than those in patients without malnutrition (p < 0.001). Moreover, serum GDF15 levels were negatively correlated with BMI (r = -0.562, p < 0.001), mid-arm circumference (r = -0.505, p < 0.001), calf circumference (r = -0.490, p < 0.001), total protein (r = -0.486, p < 0.001), ALB (r = -0.445, p < 0.001), and prognostic nutritional index (r = -0.276, p = 0.001), and positively correlated with C-reactive protein (r = 0.318, p < 0.001), COPD assessment test score (r = 0.286, p = 0.001), modified medical research council classification (r = 0.310, p < 0.001), and global initiative for chronic obstructive pulmonary disease grade (r = 0.177, p = 0.035). Furthermore, serum GDF15 levels were an independent risk factor for malnutrition in patients with AECOPD (OR = 1.010, 95% CI, 1.003∼1.016). The optimal cut-off value of serum GDF15 level was 1,092.885 pg/mL, with a sensitivity of 65.90% and a specificity of 89.80%, while the serum ALB level was 36.15 g/L, with a sensitivity of 86.40% and a specificity of 65.00%, as well as a combined sensitivity of 84.10% and a specificity of 73.90%. Serum GDF15 and serum ALB levels had a good predictive ability (AUC = 0.856, AUC = 0.887), and the ROC revealed a greater combined prediction value for the two (AUC = 0.935). Conclusion Serum GDF15 levels could be used as a potential biomarker in the prediction of malnutrition in patients with AECOPD, offering a guidance for future clinical evaluation of malnutrition.
Collapse
Affiliation(s)
- Guifen Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Longfei Yue
- Department of General Medicine, The Anshun People’s Hospital, Anshun, China
| | - Zhengying Tang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yingling Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiwei Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yufeng Tong
- Department of Respiratory and Critical Care Medicine, The Non-directly Affiliated Anshun Central Hospital, Guizhou Medical University, Anshun, China
| |
Collapse
|
7
|
Silva-Bermudez LS, Klüter H, Kzhyshkowska JG. Macrophages as a Source and Target of GDF-15. Int J Mol Sci 2024; 25:7313. [PMID: 39000420 PMCID: PMC11242731 DOI: 10.3390/ijms25137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a multifunctional cytokine that belongs to the transforming growth factor-beta (TGF-β) superfamily. GDF-15 is involved in immune tolerance and is elevated in several acute and chronic stress conditions, often correlating with disease severity and patient prognosis in cancer172 and metabolic and cardiovascular disorders. Despite these clinical associations, the molecular mechanisms orchestrating its effects remain to be elucidated. The effects of GDF-15 are pleiotropic but cell-specific and dependent on the microenvironment. While GDF-15 expression can be stimulated by inflammatory mediators, its predominant effects were reported as anti-inflammatory and pro-fibrotic. The role of GDF-15 in the macrophage system has been increasingly investigated in recent years. Macrophages produce high levels of GDF-15 during oxidative and lysosomal stress, which can lead to fibrogenesis and angiogenesis at the tissue level. At the same time, macrophages can respond to GDF-15 by switching their phenotype to a tolerogenic one. Several GDF-15-based therapies are under development, including GDF-15 analogs/mimetics and GDF-15-targeting monoclonal antibodies. In this review, we summarize the major physiological and pathological contexts in which GDF-15 interacts with macrophages. We also discuss the major challenges and future perspectives in the therapeutic translation of GDF-15.
Collapse
Affiliation(s)
- Lina Susana Silva-Bermudez
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Julia G. Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.S.S.-B.); (H.K.)
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Du YN, Zhao JW. GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications. J Hepatocell Carcinoma 2024; 11:1171-1183. [PMID: 38911292 PMCID: PMC11193986 DOI: 10.2147/jhc.s471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Yi-Ning Du
- Department of Medical Sciences, Li Ka-shing School of Medicine, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
9
|
Bu S, Royston L, Mabanga T, Berini CA, Tremblay C, Lebouché B, Cox J, Costiniuk CT, Durand M, Isnard S, Routy JP. Proteomics validate circulating GDF-15 as an independent biomarker for COVID-19 severity. Front Immunol 2024; 15:1377126. [PMID: 38686386 PMCID: PMC11057458 DOI: 10.3389/fimmu.2024.1377126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Growth differentiation factor 15 (GDF-15) was originally described as a stress-induced cytokine, and a biomarker of aging and cardiovascular diseases. We hypothesized that circulating GDF-15 would be associated with COVID-19 disease severity. Herein, we explored this hypothesis in a large cohort of COVID-19 patients. Methods Blood samples were collected from 926 COVID-19 adult patients and from 285 hospitalized controls from the Biobanque Québécoise de la COVID-19 (BQC19). COVID-19 severity was graded according to the WHO criteria. SOMAscan proteomics assay was performed on 50µL of plasma. ELISA were performed on 46 selected participants with left-over plasma to validate differences in plasma GDF-15 levels. Statistical analyses were conducted using GraphPad Prism 9.0 and SPSS. P values < 0.01 were considered significant. Results Proteomics showed that plasma GDF-15 levels were higher in COVID-19 patients compared to hospitalized controls. GDF-15 levels increased with COVID-19 severity. COVID-19 patients presenting with comorbidities including diabetes, cancer, chronic obstructive pulmonary disease (COPD) and cardiovascular disease had higher GDF-15 levels. ELISA revealed significant elevation of GDF-15 until 30 days after hospitalization. Plasma GDF-15 elevation was correlated with older age. Moreover, GDF-15 levels correlated with pro-inflammatory cytokine interleukin-6 (IL-6) and inflammation marker C-reactive protein (CRP) as well as soluble levels of its putative receptor CD48. No association was established between anti-SARS-CoV-2 IgG levels and plasma GDF-15 levels. Conclusions This study confirms GDF-15 as a biomarker for COVID-19 severity. Clinical evaluation of GDF-15 levels could assist identification of persons at high-risk of progressing to severe disease, thus improving patient care.
Collapse
Affiliation(s)
- Simeng Bu
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Léna Royston
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Tsoarello Mabanga
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Carolina A. Berini
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Bertrand Lebouché
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Joseph Cox
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Madeleine Durand
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Stephane Isnard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
10
|
Ling T, Zhang J, Ding F, Ma L. Role of growth differentiation factor 15 in cancer cachexia (Review). Oncol Lett 2023; 26:462. [PMID: 37780545 PMCID: PMC10534279 DOI: 10.3892/ol.2023.14049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-β family, is a stress-induced cytokine. Under normal circumstances, the expression of GDF15 is low in most tissues. It is highly expressed during tissue injury, inflammation, oxidative stress and cancer. GDF15 has been established as a biomarker in patients with cancer, and is associated with cancer cachexia (CC) and poor survival. CC is a multifactorial metabolic disorder characterized by severe muscle and adipose tissue atrophy, loss of appetite, anemia and bone loss. Cachexia leads to reductions in quality of life and tolerance to anticancer therapy, and results in a poor prognosis in cancer patients. Dysregulated GDF15 levels have been discovered in patients with CC and animal models, where they have been found to be involved in anorexia and weight loss. Although studies have suggested that GDF15 mediates anorexia and weight loss in CC through its neuroreceptor, glial cell-lineage neurotrophic factor family receptor α-like, the effects of GDF15 on CC and the potential regulatory mechanisms require further elucidation. In the present review, the characteristics of GDF15 and its roles and molecular mechanisms in CC are elaborated. The targeting of GDF15 as a potential therapeutic strategy for CC is also discussed.
Collapse
Affiliation(s)
- Tingting Ling
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Fuwan Ding
- Department of Endocrinology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Lanlan Ma
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
11
|
Wang Z, Wang S, Jia Z, Hu Y, Cao D, Yang M, Liu L, Gao L, Qiu S, Yan W, Li Y, Luo J, Geng Y, Zhang J, Li Z, Wang X, Li M, Shao R, Liu Y. YKL-40 derived from infiltrating macrophages cooperates with GDF15 to establish an immune suppressive microenvironment in gallbladder cancer. Cancer Lett 2023; 563:216184. [PMID: 37088328 DOI: 10.1016/j.canlet.2023.216184] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongyan Cao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Mingjie Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Weikang Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yiming Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jing Luo
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jingyun Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Zhizhen Li
- Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Shao
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China; Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key lab for gallbladder - related gastroenterological diseases, Xinhua hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| |
Collapse
|
12
|
Wu Y, Clark KC, Niranjan B, Chüeh AC, Horvath LG, Taylor RA, Daly RJ. Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts. Mol Oncol 2023; 17:469-486. [PMID: 36608258 PMCID: PMC9980303 DOI: 10.1002/1878-0261.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Reciprocal interactions between prostate cancer cells and carcinoma-associated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and co-cultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to mono-culture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL-17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-β superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell-fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Yunjian Wu
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Kimberley C. Clark
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Anderly C. Chüeh
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- University of SydneyNew South WalesAustralia
- Chris O'Brien LifehouseSydneyNew South WalesAustralia
| | - Renea A. Taylor
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
- Cancer Research Division, Peter MacCallum Cancer CentreThe University of MelbourneVictoriaAustralia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
13
|
Chelette B, Chidomere CL, Dantzer R. The GDF15-GFRAL axis mediates chemotherapy-induced fatigue in mice. Brain Behav Immun 2023; 108:45-54. [PMID: 36427806 PMCID: PMC9868083 DOI: 10.1016/j.bbi.2022.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer-related fatigue is defined as a distressing persistent subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and that interferes with usual functioning. This form of fatigue is highly prevalent during cancer treatment and in some patients, it can persist for years after treatment has ended. An understanding of the mechanisms that drive cancer-related fatigue is still lacking, which hampers the identification of effective treatment options. Various chemotherapeutic agents including cisplatin are known to induce mitochondrial dysfunction and this effect is known to mediate chemotherapy-induced peripheral neuropathy and cognitive dysfunction. Mitochondrial dysfunction results in the release of mitokines that act locally and at distance to promote metabolic and behavioral adjustments to this form of cellular stress. One of these mitokines, growth differentiation factor 15 (GDF15) and its receptor, glial cell line-derived neurotrophic factor family receptor α-like (GFRAL), have received special attention in oncology as activation of GFRAL mediates the anorexic response that is responsible for cancer anorexia. The present study was initiated to determine whether GDF15 and GFRAL are involved in cisplatin-induced fatigue. We first tested the ability of cisplatin to increase circulating GDF15 in mice before assessing whether GDF15 can induce behavioral fatigue measured by decreased wheel running in healthy mice and increase behavioral fatigue induced by cisplatin. Mice administered a long acting form of GDF15, mGDF15-fc, decreased their voluntary wheel running activity. When the same treatment was administered to mice receiving cisplatin, it increased the amplitude and duration of cisplatin-induced decrease in wheel running. To determine whether endogenous GDF15 mediates the behavioral fatigue induced by cisplatin, we then administered a neutralizing monoclonal antibody to GFRAL to mice injected with cisplatin. The GFRAL neutralizing antibody mostly prevented cisplatin-induced decrease in wheel running and accelerated recovery. Taken together these findings demonstrate for the first time the role of the GDF15/GFRAL axis in cisplatin-induced behaviors and indicate that this axis could be a promising therapeutic target for the treatment of cancer-related fatigue.
Collapse
Affiliation(s)
- Brandon Chelette
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chinenye L Chidomere
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
De Paepe B. The Cytokine Growth Differentiation Factor-15 and Skeletal Muscle Health: Portrait of an Emerging Widely Applicable Disease Biomarker. Int J Mol Sci 2022; 23:ijms232113180. [PMID: 36361969 PMCID: PMC9654287 DOI: 10.3390/ijms232113180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a stress-induced transforming growth factor-β superfamily cytokine with versatile functions in human health. Elevated GDF-15 blood levels associate with multiple pathological conditions, and are currently extensively explored for diagnosis, and as a means to monitor disease progression and evaluate therapeutic responses. This review analyzes GDF-15 in human conditions specifically focusing on its association with muscle manifestations of sarcopenia, mitochondrial myopathy, and autoimmune and viral myositis. The use of GDF-15 as a widely applicable health biomarker to monitor muscle disease is discussed, and its potential as a therapeutic target is explored.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Increased Density of Growth Differentiation Factor-15+ Immunoreactive M1/M2 Macrophages in Prostate Cancer of Different Gleason Scores Compared with Benign Prostate Hyperplasia. Cancers (Basel) 2022; 14:cancers14194591. [PMID: 36230513 PMCID: PMC9578283 DOI: 10.3390/cancers14194591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the second most diagnosed cancer and cause of death in men worldwide. The main challenge is to discover biomarkers for malignancy to guide the physician towards optimized diagnosis and therapy. There is recent evidence that growth differentiation factor-15 (GDF-15) is elevated in cancer patients. Therefore, we aimed to decipher GDF-15+ cell types and their density in biopsies of human PCa patients with Gleason score (GS)6–9 and benign prostate hyperplasia (BPH). Here we show that the density of GDF-15+ cells, mainly identified as interstitial macrophages (MΦ), was higher in GS6–9 than in BPH, and, thus, GDF-15 is intended to differentiate patients with high GS vs. BPH, as well as GS6 vs. GS7 (or even with higher malignancy). Some GDF-15+ MΦ showed a transepithelial migration into the glandular lumen and, thus, might be used for measurement in urine/semen. Taken together, GDF-15 is proposed as a novel tool to diagnose PCa vs. BPH or malignancy (GS6 vs. higher GS) and as a potential target for anti-tumor therapy. GDF-15 in seminal plasma and/or urine could be utilized as a non-invasive biomarker of PCa as compared to BPH. Abstract Although growth differentiation factor-15 (GDF-15) is highly expressed in PCa, its role in the development and progression of PCa is unclear. The present study aims to determine the density of GDF-15+ cells and immune cells (M1-/M2 macrophages [MΦ], lymphocytes) in PCa of different Gleason scores (GS) compared to BPH. Immunohistochemistry and double immunofluorescence were performed on paraffin-embedded human PCa and BPH biopsies with antibodies directed against GDF-15, CD68 (M1 MΦ), CD163 (M2 MΦ), CD4, CD8, CD19 (T /B lymphocytes), or PD-L1. PGP9.5 served as a marker for innervation and neuroendocrine cells. GDF-15+ cell density was higher in all GS than in BPH. CD68+ MΦ density in GS9 and CD163+ MΦ exceeded that in BPH. GDF-15+ cell density correlated significantly positively with CD68+ or CD163+ MΦ density in extratumoral areas. Double immunoreactive GDF-15+/CD68+ cells were found as transepithelial migrating MΦ. Stromal CD68+ MΦ lacked GDF-15+. The area of PGP9.5+ innervation was higher in GS9 than in BPH. PGP9.5+ cells, occasionally copositive for GDF-15+, also occurred in the glandular epithelium. In GS6, but not in BPH, GDF-15+, PD-L1+, and CD68+ cells were found in epithelium within luminal excrescences. The degree of extra-/intra-tumoral GDF-15 increases in M1/M2Φ is proposed to be useful to stratify progredient malignancy of PCa. GDF-15 is a potential target for anti-tumor therapy.
Collapse
|
16
|
Wang Y, Chen J, Chen C, Peng H, Lin X, Zhao Q, Chen S, Wang X. Growth differentiation factor-15 overexpression promotes cell proliferation and predicts poor prognosis in cerebral lower-grade gliomas correlated with hypoxia and glycolysis signature. Life Sci 2022; 302:120645. [PMID: 35588865 DOI: 10.1016/j.lfs.2022.120645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
AIMS Growth differentiation factor-15 (GDF15) plays complex and controversial roles in cancer. In this study, the prognostic value and the exact biological function of GDF15 in cerebral lower-grade gliomas (LGGs) and its potential molecular targets were examined. MAIN METHODS Wilcoxon signed-rank test and logistic regression were applied to analyze associations between GDF15 expression and clinical characteristics using the Cancer Genome Atlas (TCGA) database. Overall survival was analyzed using Kaplan-Meier and Cox analyses. Gene set enrichment analysis (GSEA) and the hypoxia risk model was conducted to identify the potential molecular mechanisms underlying the effects of GDF15 on LGGs tumorigenesis. The biological function of GDF15 was examined using gain- and loss-of-function experiments, and a recombinant hGDF15 protein in LGG SW1783 cells in vitro. KEY FINDINGS We found that higher GDF15 expression is associated with poor clinical features in LGG patients, and an independent risk factor for overall survival among LGG patients. GSEA results showed that the poor prognostic role of GDF15 in LGGs is related to hypoxia and glycolysis signatures, which was further validated using the hypoxia risk model. Furthermore, GDF15 overexpression facilitated cell proliferation, while GDF15 siRNA inhibits cell proliferation in LGG SW1783 cells. In addition, GDF15 was upregulated upon CoCl2 treatment which induces hypoxia, correlating with the upregulation of the expressions of HIF-1α and glycolysis-related key genes in SW1783 cells. SIGNIFICANCE GDF15 may promote LGG tumorigenesis that is associated with the hypoxia and glycolysis pathways, and thus could serve as a promising molecular target for LGG prevention and therapy.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
17
|
Hou CP, Tsui KH, Chen ST, Chang KS, Sung HC, Hsu SY, Lin YH, Feng TH, Juang HH. The Upregulation of Caffeic Acid Phenethyl Ester on Growth Differentiation Factor 15 Inhibits Transforming Growth Factor β/Smad Signaling in Bladder Carcinoma Cells. Biomedicines 2022; 10:biomedicines10071625. [PMID: 35884930 PMCID: PMC9312961 DOI: 10.3390/biomedicines10071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is known as a TGFβ-like cytokine acting on the TGFβ receptor to modulate target genes. GDF15 is regarded as a tumor suppressor gene in the human bladder and the caffeic acid phenethyl ester (CAPE) induces GDF15 expression to inhibit the tumor growth in vitro and in vivo. However, the interactions among GDF15, CAPE, and TGFβ/Smads signaling in the human bladder carcinoma cells remain unexplored. Results revealed that TGFβ downregulated the expression of GDF15 via the activation of Smad 2/3 and Smad 1/5. Induction of GDF15 on its downstream genes, NDRG1 and maspin, is dependent on the TGFβ/Smad pathways. Moreover, TGFβ blocked the CAPE-inducing expressions of GDF15, maspin, and NDRG1. Pretreatment of TGF receptor kinase inhibitor not only blocked the activation of TGFβ but also attenuated the activation of GDF15 on the expressions of maspin and NDRG1. The CAPE treatment attenuated the activation of TGFβ on cell proliferation and invasion. Our findings indicate that TGFβ downregulated the expressions of GDF15, maspin, and NDRG1 via TGFβ/Smad signaling. Whereas, CAPE acts as an antagonist on TGFβ/Smad signaling to block the effect of TGFβ on the GDF15 expression and cell proliferation and invasion in bladder carcinoma cells.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan;
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City 235041, Taiwan;
- TMU Research Center of Urology and Kindey, Department of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Kang-Shuo Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (S.-T.C.); (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
18
|
Chen M, Ding N, Mok Y, Mathews L, Hoogeveen RC, Ballantyne CM, Chen LY, Coresh J, Matsushita K. Growth Differentiation Factor 15 and the Subsequent Risk of Atrial Fibrillation: The Atherosclerosis Risk in Communities Study. Clin Chem 2022; 68:1084-1093. [PMID: 35762561 DOI: 10.1093/clinchem/hvac096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF-15) is a stress-responsive biomarker associated with several types of cardiovascular diseases. However, conflicting results have been reported regarding its association with incident atrial fibrillation (AF) in the general population. METHODS In 10 234 White and Black Atherosclerosis Risk in Communities (ARIC) Study participants (mean age 60 years, 20.5% Blacks) free of AF at baseline (1993 to 1995), we quantified the association of GDF-15 with incident AF using Cox regression models. GDF-15 concentration was measured by an aptamer-based proteomic method. AF was defined as AF diagnosis by electrocardiogram at subsequent ARIC visits or AF diagnosis in hospitalization records or death certificates. Harrell's c-statistic and categorical net reclassification improvement were computed for risk discrimination and reclassification. RESULTS There were 2217 cases of incident AF over a median follow-up of 20.6 years (incidence rate 12.3 cases/1000 person-years). After adjusting for potential confounders, GDF-15 was independently associated with incident AF, with a hazard ratio (HR) of 1.42 (95% CI, 1.24-1.62) for the top vs bottom quartile. The result remained consistent (HR 1.23 [95% CI, 1.07-1.41]) even after further adjusting for 2 cardiac biomarkers, cardiac troponin T and natriuretic peptide. The results were largely consistent across demographic subgroups. The addition of GDF-15 modestly improved the c-statistic by 0.003 (95% CI, 0.001-0.006) beyond known risk factors of AF. CONCLUSIONS In this community-based biracial cohort, higher concentrations of GDF-15 were independently associated with incident AF, supporting its potential value as a clinical marker of AF risk.
Collapse
Affiliation(s)
- Mengkun Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Ning Ding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Yejin Mok
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Lena Mathews
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Ron C Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Lin Yee Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.,Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| |
Collapse
|
19
|
The Diagnostic Value of Serum GDF15 and hs-CTnT in Elderly Patients with Acute Myocardial Infarction. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9281636. [PMID: 35634077 PMCID: PMC9142328 DOI: 10.1155/2022/9281636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Objective To analyze the diagnostic value of serum growth differentiation factor 15 (GDFl5) and high-sensitivity troponin T (hs-cTnT) in elderly acute myocardial infarction (AMI). Methods A retrospective analysis of 165 patients with acute chest pain admitted to the Department of Cardiology in our hospital from January to December 2020, Among them, 76 AMI patients (AMI group), 89 non-AMI patients (non-AMI group), and 80 healthy people were selected as the control group during the same period. Compare the three groups of serum GDF15, hs-CTnT levels, and left ventricular ejection fraction (LVEF) parallel correlation analysis, and draw the receiver operating curve (ROC) of serum GDF15 and hs-CTnT levels to diagnose AMI. Results The serum GDF15 and hs-CTnT levels of the AMI group were significantly higher than those of the non-AMI group and the control group, and the difference was statistically significant (p < 0.01). The LVEF was significantly lower than the non-AMI group and the control group, whose difference was statistically significant (p < 0.01). Among them, the indicators of the non-AMI group were both higher and lower than the control group, and the difference was statistically significant (p < 0.01). Serum GDF15 and hs-CTnT levels of AMI patients increased with the increase of NYHA grade, among which grade IV group was significantly higher than grade I∼II group and grade III group (P < 0.01), and grade III group was significantly higher than grade I∼II Group (p < 0.01). Pearson correlation analysis showed that GDF15 and hs-CTnT levels of AMI patients were significantly negatively correlated with LVEF (r = −0.584, −0.612, − < 0.01). The ROC curve showed that GDF15 had a high specificity (93.75%) and hs-CTnT has a high sensitivity (90.67%). The area under the curve for diagnosing AMI is > 0.7 (0.895, 0.948). The sensitivity of the combined detection and the specificity are higher than that of individual detection. Conclusion Serum GDF15 and hs-CTnT are highly expressed in elderly patients with AMI. The combined detection of the two can improve the efficiency of AMI diagnosis. GDF15 can be used as a new biomarker for AMI diagnosis and disease monitoring.
Collapse
|
20
|
Dorgau B, Georgiou M, Chaudhary A, Moya-Molina M, Collin J, Queen R, Hilgen G, Davey T, Hewitt P, Schmitt M, Kustermann S, Pognan F, Steel DH, Sernagor E, Armstrong L, Lako M. Human Retinal Organoids Provide a Suitable Tool for Toxicological Investigations: A Comprehensive Validation Using Drugs and Compounds Affecting the Retina. Stem Cells Transl Med 2022; 11:159-177. [PMID: 35298655 PMCID: PMC8929478 DOI: 10.1093/stcltm/szab010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Retinal drug toxicity screening is essential for the development of safe treatment strategies for a large number of diseases. To this end, retinal organoids derived from human pluripotent stem cells (hPSCs) provide a suitable screening platform due to their similarity to the human retina and the ease of generation in large-scale formats. In this study, two hPSC cell lines were differentiated to retinal organoids, which comprised all key retinal cell types in multiple nuclear and synaptic layers. Single-cell RNA-Seq of retinal organoids indicated the maintenance of retinal ganglion cells and development of bipolar cells: both cell types segregated into several subtypes. Ketorolac, digoxin, thioridazine, sildenafil, ethanol, and methanol were selected as key compounds to screen on retinal organoids because of their well-known retinal toxicity profile described in the literature. Exposure of the hPSC-derived retinal organoids to digoxin, thioridazine, and sildenafil resulted in photoreceptor cell death, while digoxin and thioridazine additionally affected all other cell types, including Müller glia cells. All drug treatments caused activation of astrocytes, indicated by dendrites sprouting into neuroepithelium. The ability to respond to light was preserved in organoids although the number of responsive retinal ganglion cells decreased after drug exposure. These data indicate similar drug effects in organoids to those reported in in vivo models and/or in humans, thus providing the first robust experimental evidence of their suitability for toxicological studies.
Collapse
Affiliation(s)
- Birthe Dorgau
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Newcells Biotech, Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Maria Georgiou
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Alexander Chaudhary
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Marina Moya-Molina
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Newcells Biotech, Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Joseph Collin
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Rachel Queen
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Gerrit Hilgen
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Northumbria University, Applied Sciences, Faculty of Health and Life Science, Newcastle upon Tyne, UK
| | - Tracey Davey
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Stefan Kustermann
- Pharmaceutical Sciences, F. Hoffmann-La Roche, Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | | | - David H Steel
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Evelyne Sernagor
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Lyle Armstrong
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Newcells Biotech, Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Roy DC, Wang TF, Mallick R, Carrier M, Mollanji E, Liu P, Zhang L, Hawken S, Wells PS. GDF-15, hs-TnT and NT proBNP for Predicting Risk of Venous Thromboembolism in Ambulatory Cancer Patients Receiving Chemotherapy. Thromb Haemost 2022; 122:1169-1176. [PMID: 35263789 DOI: 10.1055/a-1792-7720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Growth Differentiation Factor-15 (GDF-15), high-sensitivity cardiac Troponin T (hs-TnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) are associated with increased risk of venous thromboembolism (VTE) in non-cancer patients. However, the performance of these biomarkers in cancer patients is unknown. Our objective was to assess performance of these biomarkers in predicting VTE in cancer patients at intermediate to high risk for VTE (Khorana Score≥2). We used 1-month plasma samples from AVERT trial patients to determine if GDF-15, NT-proBNP and hs-TnT levels are associated with VTE incidence between one- and 7-months from the start of chemotherapy. The minimal Euclidean distance of the Receiver Operating Characteristic curve was used to derive optimal cut-offs for GDF-15 and NT-proBNP given there was no evidence of a commonly used cut-off. Logistic and Fine and Gray competing risk regression analysis were used to calculate odds ratios (OR) and subdistribution hazard ratios (SHR), respectively, while adjusting for age, sex, anticoagulation and antiplatelet therapy. We tested in two groups: all patients (n=476, Model 1) and all patients with non-primary brain cancers (n=454, Model 2). In Model 1 and 2, GDF-15 ≥2290.9pg/mL had adjusted ORs for VTE of 1.65 (95%CI: 0.89-3.08), and 2.28 (95%CI: 1.28-4.09), respectively. hs-TnT ≥14.0pg/mL was associated with higher odds of VTE in Model 1 and 2 [adjusted ORs: 2.26 (95%CI: 1.40-3.65), 2.03 (95%CI: 1.07-3.84), respectively]. For NT-proBNP, levels ≥183.5pg/mL was not associated with VTE. Similar results were observed in the Fine and Gray analysis. Our results indicate that increased GDF-15 and hs-TnT levels predicted increased VTE risk.
Collapse
Affiliation(s)
- Danielle Carole Roy
- Medicine, University of Ottawa School of Epidemiology and Public Health, Ottawa, Canada
| | - Tzu-Fei Wang
- Department of Medicine, Division of Hematology, University of Ottawa, Ottawa, Canada
| | - Ranjeeta Mallick
- University of Ottawa School of Epidemiology and Public Health, Ottawa, Canada.,OHRI, Ottawa, Canada
| | - Marc Carrier
- Department of Medicine. University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Peter Liu
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Liyong Zhang
- Ottawa Health Research Institute, Ottawa, Canada
| | - Steven Hawken
- Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa School of Epidemiology and Public Health, Ottawa, Canada
| | - Philip S Wells
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
22
|
Ozawa H, Imazeki H, Ogiwara Y, Kawakubo H, Fukuda K, Kitagawa Y, Kudo-Saito C. Targeting AURKA in treatment of peritoneal tumor dissemination in gastrointestinal cancer. Transl Oncol 2021; 16:101307. [PMID: 34902741 PMCID: PMC8681022 DOI: 10.1016/j.tranon.2021.101307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 01/16/2023] Open
Abstract
Intraperitoneal (i.p.) tumor dissemination and the consequent malignant ascites remain unpredictable and incurable in patients with gastrointestinal (GI) cancer, and practical advances in diagnosis and treatment are urgently needed in the clinical settings. Here, we explored tumor biological and immunological mechanisms underlying the i.p. tumor progression for establishing more effective treatments. We established mouse tumor ascites models that murine and human colorectal cancer cells were both i.p. and subcutaneously (s.c.) implanted in mice, and analyzed peritoneal exudate cells (PECs) obtained from the mice. We then evaluated anti-tumor efficacy of agents targeting the identified molecular mechanisms using the ascites models. Furthermore, we validated the clinical relevancy of the findings using peritoneal lavage fluids obtained from gastric cancer patients. I.p. tumor cells were giant with large nuclei, and highly express AURKA, but less phosphorylated TP53, as compared to s.c. tumor cells, suggesting polyploidy-like cells. The i.p. tumors impaired phagocytic activity and the consequent T-cell stimulatory activity of CD11b+Gr1+PD1+ myeloid cells by GDF15 that is regulated by AURKA, leading to treatment resistance. Blocking AURKA with MLN8237 or siRNAs, however, abrogated the adverse events, and induced potent anti-tumor immunity in the ascites models. This treatment synergized with anti-PD1 therapy. The CD11b+PD1+ TAMs are also markedly expanded in the PECs of gastric cancer patients. These suggest AURKA is a determinant of treatment resistance of the i.p. tumors. Targeting the AURKA-GDF15 axis could be a promising strategy for improving clinical outcome in the treatment of GI cancer.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
23
|
Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2021; 64:71-83. [PMID: 34836750 DOI: 10.1016/j.cytogfr.2021.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.
Collapse
|
24
|
Hou CP, Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Yang PS, Chen CL, Feng TH, Juang HH. Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed J 2021; 45:763-775. [PMID: 34662721 DOI: 10.1016/j.bj.2021.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, has beneficial effects on cancer prevention. Growth differentiation factor 15 (GDF15) is an antitumor gene of bladder cancer. Therefore, this study investigated the anti-cancer effect of CAPE on bladder carcinoma cells and related mechanisms. METHODS The expressions of GDF15, N-myc downstream-regulated gene 1 (NDRG1), and maspin, and the activations of ERK, JNK, p38, and AMPKα1/2 in human bladder cells after gene transfection or knockdown were determined by immunoblot, RT-qPCR, and reporter assays. The assays of 5-ethynyl-2'-deoxyuridine (EdU), CyQUANT cell proliferation, and Matrigel invasion, and the xenograft animal study were used to assess the cell proliferation, invasion, and tumorigenesis. RESULTS GDF15 expression in epithelial cells was negatively correlated with neoplasia in vitro. Also, GDF15 exhibits in bladder fibroblasts and smooth muscle cells. CAPE-induced expressions of NDRG1 and maspin decreased cell proliferation and invasion of bladder carcinoma cells in a GDF15-dependent manner in vitro. The xenograft animal study suggesting CAPE attenuated tumor growth in vivo. CAPE increased phosphorylation of ERK, JNK, p38, and AMPKα1/2 to modulate the GDF15 expressions. Pretreatments with ERK, JNK, or p38 inhibitors partially inhibited the CAPE effects on the inductions of GDF15, NDRG1, or maspin. Knockdown of AMPKα1/2 attenuated the CAPE-induced GDF15 expression and cell proliferation in bladder carcinoma cells. CONCLUSIONS Our findings indicate that CAPE is a promising agent for anti-tumor growth in human bladder carcinoma cells via the upregulation of GDF15.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medicine; TMU Research Center of Urology and Kindey, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Pan Y, Chua N, Lim K, Ho CL. Engineering of Human Lactoferrin for Improved Anticancer Activity. ACS Pharmacol Transl Sci 2021; 4:1476-1482. [PMID: 34661069 DOI: 10.1021/acsptsci.1c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Protease-digested lactoferrin fragments often exhibit improved therapeutic properties. However, there are limited studies investigating the anticancer properties of these fragments. The fragment with improved anticancer activities is an attractive alternative to chemotherapeutic drugs-presenting severe side effects. Herein, we report the isolation and characterization of recombinant engineered-lactoferrin (rtHLF4), exhibiting up to 100-fold improved anticancer activity compared to the full-length lactoferrin (flHLF). Further, rtHLF4 exerts its anticancer effect in a shorter duration. Through transcriptomic analysis of various cancer biomarkers, rtHLF4 was found to upregulate various pro-apoptotic markers and downregulate signaling proteins involved in angiogenesis and metastasis. We further determined that rtHLF4 showed no hemolytic activity at high concentrations. We believe that this anticancer protein can be further developed as a cancer treatment.
Collapse
Affiliation(s)
- Yu Pan
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Niying Chua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Jurong West, Singapore
| | - Kaisheng Lim
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
26
|
Carlsen L, Schorl C, Huntington K, Hernandez-Borrero L, Jhaveri A, Zhang S, Zhou L, El-Deiry WS. Pan-drug and drug-specific mechanisms of 5-FU, irinotecan (CPT-11), oxaliplatin, and cisplatin identified by comparison of transcriptomic and cytokine responses of colorectal cancer cells. Oncotarget 2021; 12:2006-2021. [PMID: 34611476 PMCID: PMC8487728 DOI: 10.18632/oncotarget.28075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) caused over 900,000 deaths worldwide in 2020. A majority of late-stage CRC patients are treated with 5-fluorouracil (5-FU) combined with either irinotecan (CPT-11), oxaliplatin, or both. Despite their widespread use, the mechanisms of efficacy and toxicity of these drugs remain incompletely understood. While previous work has investigated cellular responses to these agents individually, we directly compare the transcriptomic and cytokine profiles of HCT116 wild-type and p53-/- colorectal cancer cells treated with these drugs and report pan-drug, drug-specific, drug class-specific, p53-independent, and p53-dependent signatures. We observed downregulation of histone genes by 5-FU (that significantly correlates with improved survival in CRC patients) and upregulation of FOS and ATF3 by oxaliplatin (which may contribute to peripheral neuropathy). BTG2 was identified as a top gene upregulated by all four drugs, suggesting its critical role in the cellular response to chemotherapy in CRC. Soluble TRAILR2 (death receptor 5; DR5) is a decoy receptor for TRAIL, an apoptosis-inducing cytokine. TRAILR2 was down-regulated by oxaliplatin and 5-FU, was not affected by CPT-11, and was increased by cisplatin. There was an increase in IL-8 by oxaliplatin and increase in ferritin by cisplatin which may contribute to cancer cell survival. Novel drug-specific mechanisms of efficacy or toxicity identified in these signatures may be targeted with combination therapies or development of new targeted therapies. Together, the findings here contribute to our understanding of the molecular bases of efficacy and toxicity of chemotherapeutic agents often used for treatment of GI cancer such as CRC.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Christoph Schorl
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Genomics Core Facility, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Kelsey Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Liz Hernandez-Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aakash Jhaveri
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
27
|
Guo D, Guo C, Fang L, Sang T, Wang Y, Wu K, Guo C, Wang Y, Pan H, Chen R, Wang X. Qizhen capsule inhibits colorectal cancer by inducing NAG-1/GDF15 expression that mediated via MAPK/ERK activation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113964. [PMID: 33640439 DOI: 10.1016/j.jep.2021.113964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qizhen capsule (QZC) is a traditional Chinese medicine (TCM) preparation that has been widely used in clinical practice and exerts promising therapeutic effects against breast, lung, and gastric cancers. However, studies have not reported whether QZC inhibits colorectal cancer (CRC) development and progression. Meanwhile, the underlying molecular mechanisms of its anticancer activity have not been studied. AIM OF THE STUDY To investigate the anticancer effects of QZC on CRC and the possible underlying molecular mechanisms of QZC in vitro and in vivo. MATERIALS AND METHODS The MTT assay and flow cytometry were used to determine the viability and apoptosis of HCT116 and HT-29 cancer cells. A xenograft nude mouse model was used to study the antitumor effects of QZC in vivo. Western blotting was performed to determine the expression of key proteins responsible for the molecular mechanisms elicited by QZC. Immunofluorescence staining was performed to detect the expression of nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 or growth differentiation factor-15 (NAG-1/GDF15). Small interfering RNAs (siRNAs) were used to silence NAG-1/GDF15 in cells. RESULTS In this study, QZC significantly reduced the viability of HCT116 and HT-29 cells and induced apoptosis in dose- and time-dependent manners, but displayed much less toxicity toward normal cells. QZC-induced apoptosis in HCT116 cells was accompanied by the deregulation of the expression of the Bcl-2, Bax, PARP, caspase-3, and caspase-9 proteins. Furthermore, QZC induced NAG-1/GDF15 expression in HCT116 cells, while silencing of NAG-1/GDF15 attenuated QZC-induced apoptosis and cell death. Next, QZC increased the phosphorylation of mTOR, AMPK, p38, and MAPK/ERK in HCT116 cells. We then demonstrated that QZC-induced apoptosis and NAG-1/GDF15 upregulation were mediated by MAPK/ERK activation. Moreover, QZC significantly inhibited HCT116 xenograft tumor growth in nude mice, which was accompanied by NAG/GDF15 upregulation and MAPK/ERK activation. QZC also prevented 5-FU-induced weight loss or cachexia in tumor-bearing mice. The expression of Ki67 and PCNA was suppressed, while cleaved caspase-3 level and TUNEL staining were increased in the tumor sections from QZC-treated mice compared to the control. CONCLUSION QZC is a novel anticancer agent for CRC that targets NAG-1/GDF15 via the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Dandan Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengjie Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Liu Fang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Tingting Sang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Yujie Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Kaikai Wu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Cuiling Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Ying Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Haitao Pan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Rong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Xingya Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
28
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
29
|
Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, Baghbanzadeh A, Zand R, Baradaran B, Zarei M. GDF-15: Diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol 2021; 236:5564-5581. [PMID: 33580506 DOI: 10.1002/jcp.30289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumor and has a remarkably weak prognosis. According to the aggressive form of GBM, understanding the accurate molecular mechanism associated with GBM pathogenesis is essential. Growth differentiation factor 15 (GDF-15) belongs to transforming growth factor-β superfamily with important roles to control biological processes. It affects cancer growth and progression, drug resistance, and metastasis. It also can promote stemness in many cancers, and also can stress reactions control, bone generation, hematopoietic growth, adipose tissue performance, and body growth, and contributes to cardiovascular disorders. The role GDF-15 to develop and progress cancer is complicated and remains unclear. GDF-15 possesses tumor suppressor properties, as well as an oncogenic effect. GDF-15 antitumorigenic and protumorigenic impacts on tumor development are linked to the cancer type and stage. However, the GDF-15 signaling and mechanism have not yet been completely identified because of no recognized cognate receptor.
Collapse
Affiliation(s)
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Zand
- Department of Neurology, Geisinger Health System, Danville, Pennsylvania, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Rahaman S, Li X, Yu J, Wong KC. CancerEMC: frontline non-invasive cancer screening from circulating protein biomarkers and mutations in cell-free DNA. Bioinformatics 2021; 37:3319-3327. [PMID: 33515231 DOI: 10.1093/bioinformatics/btab044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The early detection of cancer through accessible blood tests can foster early patient interventions. Although there are developments in cancer detection from cell-free DNA (cfDNA), its accuracy remains speculative. Given its central importance with broad impacts, we aspire to address the challenge. METHODS A bagging Ensemble Meta Classifier (CancerEMC) is proposed for early cancer detection based on circulating protein biomarkers and mutations in cfDNA from the blood. CancerEMC is generally designed for both binary cancer detection and multi-class cancer type localization. It can address the class imbalance problem in multi-analyte blood test data based on robust oversampling and adaptive synthesis techniques. RESULTS Based on the clinical blood test data, we observe that the proposed CancerEMC has outperformed other algorithms and state-of-the-arts studies (including CancerSEEK published in Science, 2018) for cancer detection. The results reveal that our proposed method (i.e., CancerEMC) can achieve the best performance result for both binary cancer classification with 99.1748% accuracy (AUC = 0.999) and localized multiple cancer detection with 74.1214% accuracy (AUC = 0.938). For addressing the data imbalance issue with oversampling techniques, the accuracy can be increased to 91.4966% (AUC = 0.992), where the state-of-the-art method can only be estimated at 69.64% (AUC = 0.921). Similar results can also be observed on independent and isolated testing data. AVAILABILITY https://github.com/saifurcubd/Cancer-Detection.
Collapse
Affiliation(s)
- Saifur Rahaman
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Xiangtao Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Diseases and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| |
Collapse
|
31
|
Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Chen Y, Routy JP. GDF-15 as a Weight Watcher for Diabetic and Non-Diabetic People Treated With Metformin. Front Endocrinol (Lausanne) 2020; 11:581839. [PMID: 33312159 PMCID: PMC7708317 DOI: 10.3389/fendo.2020.581839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Weight gain and obesity are global health concerns contributing to morbidity with increased risks of cardiovascular disease, diabetes, liver steatohepatitis and cancer. Pharmacological therapies or bariatric surgery are often required for those who fail to adhere to diet and lifestyle modifications. Metformin, a widely used antidiabetic agent, seems to have a health benefit beyond its anti-hyperglycemic properties, with few side effects. Emerging evidence shows weight loss to be associated with metformin in both diabetic and non-diabetic individuals. Recently, the growth differentiation factor 15 (GDF-15), a member of the transforming growth factor beta superfamily, has been identified as a key mediator of metformin-induced weight loss. Metformin increases the secretion of GDF-15, which binds exclusively to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL). This gut-brain cytokine works as a prominent player in reducing food intake and body weight in health and disease, like anorexia nervosa and cancer. Herein, we critically review advances in the understanding of the weight-reducing effects of metformin via the GDF-15 pathway.
Collapse
Affiliation(s)
- Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|