1
|
Flores‐Rentería L, Rymer PD, Ramadoss N, Riegler M. Major biogeographic barriers in eastern Australia have shaped the population structure of widely distributed Eucalyptus moluccana and its putative subspecies. Ecol Evol 2021; 11:14828-14842. [PMID: 34765144 PMCID: PMC8571587 DOI: 10.1002/ece3.8169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
We have investigated the impact of recognized biogeographic barriers on genetic differentiation of grey box (Eucalyptus moluccana), a common and widespread tree species of the family Myrtaceae in eastern Australian woodlands, and its previously proposed four subspecies moluccana, pedicellata, queenslandica, and crassifolia. A range of phylogeographic analyses were conducted to examine the population genetic differentiation and subspecies genetic structure in E. moluccana in relation to biogeographic barriers. Slow evolving markers uncovering long term processes (chloroplast DNA) were used to generate a haplotype network and infer phylogeographic barriers. Additionally, fast evolving, hypervariable markers (microsatellites) were used to estimate demographic processes and genetic structure among five geographic regions (29 populations) across the entire distribution of E. moluccana. Morphological features of seedlings, such as leaf and stem traits, were assessed to evaluate population clusters and test differentiation of the putative subspecies. Haplotype network analysis revealed twenty chloroplast haplotypes with a main haplotype in a central position shared by individuals belonging to the regions containing the four putative subspecies. Microsatellite analysis detected the genetic structure between Queensland (QLD) and New South Wales (NSW) populations, consistent with the McPherson Range barrier, an east-west spur of the Great Dividing Range. The substructure was detected within QLD and NSW in line with other barriers in eastern Australia. The morphological analyses supported differentiation between QLD and NSW populations, with no difference within QLD, yet some differentiation within NSW populations. Our molecular and morphological analyses provide evidence that several geographic barriers in eastern Australia, including the Burdekin Gap and the McPherson Range have contributed to the genetic structure of E. moluccana. Genetic differentiation among E. moluccana populations supports the recognition of some but not all the four previously proposed subspecies, with crassifolia being the most differentiated.
Collapse
Affiliation(s)
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | | | - Markus Riegler
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| |
Collapse
|
2
|
Mostert-O'Neill MM, Reynolds SM, Acosta JJ, Lee DJ, Borevitz JO, Myburg AA. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis. Mol Ecol 2020; 30:625-638. [PMID: 32881106 DOI: 10.1111/mec.15615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022]
Abstract
The genetic consequences of adaptation to changing environments can be deciphered using population genomics, which may help predict species' responses to global climate change. Towards this, we used genome-wide SNP marker analysis to determine population structure and patterns of genetic differentiation in terms of neutral and adaptive genetic variation in the natural range of Eucalyptus grandis, a widely cultivated subtropical and temperate species, serving as genomic reference for the genus. We analysed introgression patterns at subchromosomal resolution using a modified ancestry mapping approach and identified provenances with extensive interspecific introgression in response to increased aridity. Furthermore, we describe potentially adaptive genetic variation as explained by environment-associated SNP markers, which also led to the discovery of what is likely a large structural variant. Finally, we show that genes linked to these markers are enriched for biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Marja Mirjam Mostert-O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sharon Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Juan Jose Acosta
- Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - David John Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Justin O Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT, Australia
| | - Alexander Andrew Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
von Takach Dukai B, Jack C, Borevitz J, Lindenmayer DB, Banks SC. Pervasive admixture between eucalypt species has consequences for conservation and assisted migration. Evol Appl 2019; 12:845-860. [PMID: 30976314 PMCID: PMC6439489 DOI: 10.1111/eva.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Conservation management often uses information on genetic population structure to assess the importance of local provenancing for ecological restoration and reintroduction programs. For species that do not exhibit complete reproductive isolation, the estimation of population genetic parameters may be influenced by the extent of admixture. Therefore, to avoid perverse outcomes for conservation, genetically informed management strategies must determine whether hybridization between species is relevant, and the extent to which observed population genetic patterns are shaped by interspecific versus intraspecific gene flow. We used genotyping by sequencing to identify over 2,400 informative single nucleotide polymorphisms across 18 populations of Eucalyptus regnans F. Muell., a foundation tree species of montane forests in south-eastern Australia. We used these data to determine the extent of hybridization with another species, Eucalyptus obliqua L'Hér., and investigate how admixture influences genetic diversity parameters, by estimating metrics of genetic diversity and examining population genetic structure in datasets with and without admixed individuals. We found hybrid individuals at all sites and two highly introgressed populations. Hybrid individuals were not distributed evenly across environmental gradients, with logistic regression identifying hybrids as being associated with temperature. Removal of hybrids resulted in increases in genetic differentiation (F ST), expected heterozygosity, observed heterozygosity and the inbreeding coefficient, and different patterns of isolation by distance. After removal of hybrids and introgressed populations, mountain ash showed very little population genetic structure, with a small effect of isolation by distance, and very low global F ST(0.03). Our study shows that, in plants, decisions around provenancing of individuals for restoration depend on knowledge of whether hybridization is influencing population genetic structure. For species in which most genetic variation is held within populations, there may be little benefit in planning conservation strategies around environmental adaptation of seed sources. The possibility for adaptive introgression may also be relevant when species regularly hybridize.
Collapse
Affiliation(s)
- Brenton von Takach Dukai
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Cameron Jack
- ANU Bioinformatics Consultancy, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Justin Borevitz
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Centre of Excellence in Plant Energy BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - David B. Lindenmayer
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthwest TerritoriesAustralia
| |
Collapse
|
4
|
Simpson L, Clements MA, Crayn DM, Nargar K. Evolution in Australia’s mesic biome under past and future climates: Insights from a phylogenetic study of the Australian Rock Orchids (Dendrobium speciosum complex, Orchidaceae). Mol Phylogenet Evol 2018; 118:32-46. [DOI: 10.1016/j.ympev.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
5
|
Flores-Rentería L, Rymer PD, Riegler M. Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts. Mol Phylogenet Evol 2017; 108:70-87. [DOI: 10.1016/j.ympev.2017.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/26/2022]
|
6
|
Song Z, Zhang M, Li F, Weng Q, Zhou C, Li M, Li J, Huang H, Mo X, Gan S. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis (Myrtaceae) using microsatellites. Sci Rep 2016; 6:34941. [PMID: 27748400 PMCID: PMC5066178 DOI: 10.1038/srep34941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Identification of loci or genes under natural selection is important for both understanding the genetic basis of local adaptation and practical applications, and genome scans provide a powerful means for such identification purposes. In this study, genome-wide simple sequence repeats markers (SSRs) were used to scan for molecular footprints of divergent selection in Eucalyptus grandis, a hardwood species occurring widely in costal areas from 32° S to 16° S in Australia. High population diversity levels and weak population structure were detected with putatively neutral genomic SSRs. Using three FST outlier detection methods, a total of 58 outlying SSRs were collectively identified as loci under divergent selection against three non-correlated climatic variables, namely, mean annual temperature, isothermality and annual precipitation. Using a spatial analysis method, nine significant associations were revealed between FST outlier allele frequencies and climatic variables, involving seven alleles from five SSR loci. Of the five significant SSRs, two (EUCeSSR1044 and Embra394) contained alleles of putative genes with known functional importance for response to climatic factors. Our study presents critical information on the population diversity and structure of the important woody species E. grandis and provides insight into the adaptive responses of perennial trees to climatic variations.
Collapse
Affiliation(s)
- Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
- Baoshan University, Yuanzheng Road, Baoshan 678000, China
| | - Miaomiao Zhang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou 510642, China
| | - Fagen Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
| | - Chanpin Zhou
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
| | - Jie Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou 510642, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou 510520, China
| |
Collapse
|
7
|
Nicotra AB, Chong C, Bragg JG, Ong CR, Aitken NC, Chuah A, Lepschi B, Borevitz JO. Population and phylogenomic decomposition via genotyping-by-sequencing in Australian Pelargonium. Mol Ecol 2016; 25:2000-14. [PMID: 26864117 DOI: 10.1111/mec.13584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/05/2023]
Abstract
Species delimitation has seen a paradigm shift as increasing accessibility of genomic-scale data enables separation of lineages with convergent morphological traits and the merging of recently diverged ecotypes that have distinguishing characteristics. We inferred the process of lineage formation among Australian species in the widespread and highly variable genus Pelargonium by combining phylogenomic and population genomic analyses along with breeding system studies and character analysis. Phylogenomic analysis and population genetic clustering supported seven of the eight currently described species but provided little evidence for differences in genetic structure within the most widely distributed group that containing P. australe. In contrast, morphometric analysis detected three deep lineages within Australian Pelargonium; with P. australe consisting of five previously unrecognized entities occupying separate geographic ranges. The genomic approach enabled elucidation of parallel evolution in some traits formerly used to delineate species, as well as identification of ecotypic morphological differentiation within recognized species. Highly variable morphology and trait convergence each contribute to the discordance between phylogenomic relationships and morphological taxonomy. Data suggest that genetic divergence among species within the Australian Pelargonium may result from allopatric speciation while morphological differentiation within and among species may be more strongly driven by environmental differences.
Collapse
Affiliation(s)
- Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Caroline Chong
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Jason G Bragg
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Chong Ren Ong
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Nicola C Aitken
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Aaron Chuah
- Genome Discovery Unit, Australian National University, Canberra, ACT, 0200, Australia
| | - Brendan Lepschi
- Australian National Herbarium, Centre for Australian National Biodiversity Research, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia.,Centre of Excellence in Plant Energy Biology, Australian National University, ACT, 2601, Australia
| |
Collapse
|
8
|
Bryant LM, Krosch MN. Lines in the land: a review of evidence for eastern Australia's major biogeographical barriers to closed forest taxa. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12821] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Litticia M. Bryant
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4000 Australia
| | - Matt N. Krosch
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4000 Australia
| |
Collapse
|
9
|
Tng DYP, Janos DP, Jordan GJ, Weber E, Bowman DMJS. Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil. FRONTIERS IN PLANT SCIENCE 2014; 5:527. [PMID: 25339968 PMCID: PMC4186288 DOI: 10.3389/fpls.2014.00527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/17/2014] [Indexed: 05/27/2023]
Abstract
Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an "ashbed effect").
Collapse
Affiliation(s)
- David Y. P. Tng
- School of Plant Science, University of TasmaniaHobart, TAS, Australia
- Australian Tropical Herbarium, James Cook UniversityCairns, QLD, Australia
| | - David P. Janos
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Gregory J. Jordan
- School of Plant Science, University of TasmaniaHobart, TAS, Australia
| | - Ellen Weber
- Wet Tropics Management AuthorityCairns, QLD, Australia
| | | |
Collapse
|
10
|
Zhihao S, Mingli Z. A range wide geographic pattern of genetic diversity and population structure of Hexinia polydichotoma (Asteraceae) in Tarim Basin and adjacent areas. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Tng DYP, Williamson GJ, Jordan GJ, Bowman DMJS. Giant eucalypts - globally unique fire-adapted rain-forest trees? THE NEW PHYTOLOGIST 2012; 196:1001-1014. [PMID: 23121314 DOI: 10.1111/j.1469-8137.2012.04359.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/29/2012] [Indexed: 05/04/2023]
Abstract
Tree species exceeding 70 m in height are rare globally. Giant gymnosperms are concentrated near the Pacific coast of the USA, while the tallest angiosperms are eucalypts (Eucalyptus spp.) in southern and eastern Australia. Giant eucalypts co-occur with rain-forest trees in eastern Australia, creating unique vegetation communities comprising fire-dependent trees above fire-intolerant rain-forest. However, giant eucalypts can also tower over shrubby understoreys (e.g. in Western Australia). The local abundance of giant eucalypts is controlled by interactions between fire activity and landscape setting. Giant eucalypts have features that increase flammability (e.g. oil-rich foliage and open crowns) relative to other rain-forest trees but it is debatable if these features are adaptations. Probable drivers of eucalypt gigantism are intense intra-specific competition following severe fires, and inter-specific competition among adult trees. However, we suggest that this was made possible by a general capacity of eucalypts for 'hyper-emergence'. We argue that, because giant eucalypts occur in rain-forest climates and share traits with rain-forest pioneers, they should be regarded as long-lived rain-forest pioneers, albeit with a particular dependence on fire for regeneration. These unique ecosystems are of high conservation value, following substantial clearing and logging over 150 yr. Contents Summary 1001 I. Introduction 1001 II. Giant eucalypts in a global context 1002 III. Giant eucalypts - taxonomy and distribution 1004 IV. Growth of giant eucalypts 1006 V. Fire and regeneration of giant eucalypts 1008 VI. Are giant eucalypts different from other rain-forest trees? 1009 VII. Conclusions 1010 Acknowledgements 1011 References 1011.
Collapse
Affiliation(s)
- D Y P Tng
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - G J Williamson
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - G J Jordan
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - D M J S Bowman
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
12
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
13
|
Chapple DG, Hoskin CJ, Chapple SNJ, Thompson MB. Phylogeographic divergence in the widespread delicate skink (Lampropholis delicata) corresponds to dry habitat barriers in eastern Australia. BMC Evol Biol 2011; 11:191. [PMID: 21726459 PMCID: PMC3141439 DOI: 10.1186/1471-2148-11-191] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mesic habitats of eastern Australia harbour a highly diverse fauna. We examined the impact of climatic oscillations and recognised biogeographic barriers on the evolutionary history of the delicate skink (Lampropholis delicata), a species that occurs in moist habitats throughout eastern Australia. The delicate skink is a common and widespread species whose distribution spans 26° of latitude and nine major biogeographic barriers in eastern Australia. Sequence data were obtained from four mitochondrial genes (ND2, ND4, 12SrRNA, 16SrRNA) for 238 individuals from 120 populations across the entire native distribution of the species. The evolutionary history and diversification of the delicate skink was investigated using a range of phylogenetic (Maximum Likelihood, Bayesian) and phylogeographic analyses (genetic diversity, ΦST, AMOVA, Tajima's D, Fu's F statistic). RESULTS Nine geographically structured, genetically divergent clades were identified within the delicate skink. The main clades diverged during the late Miocene-Pliocene, coinciding with the decline and fragmentation of rainforest and other wet forest habitats in eastern Australia. Most of the phylogeographic breaks within the delicate skink were concordant with dry habitat or high elevation barriers, including several recognised biogeographic barriers in eastern Australia (Burdekin Gap, St Lawrence Gap, McPherson Range, Hunter Valley, southern New South Wales). Genetically divergent populations were also located in high elevation topographic isolates inland from the main range of L. delicata (Kroombit Tops, Blackdown Tablelands, Coolah Tops). The species colonised South Australia from southern New South Wales via an inland route, possibly along the Murray River system. There is evidence for recent expansion of the species range across eastern Victoria and into Tasmania, via the Bassian Isthmus, during the late Pleistocene. CONCLUSIONS The delicate skink is a single widespread, but genetically variable, species. This study provides the first detailed phylogeographic investigation of a widespread species whose distribution spans virtually all of the major biogeographic barriers in eastern Australia.
Collapse
Affiliation(s)
- David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
14
|
Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 2011; 59:206-24. [PMID: 21310251 DOI: 10.1016/j.ympev.2011.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of genome-wide genotyping with DArT markers to differentiate species, to identify interspecific hybrids and to resolve biogeographic disjunctions within species. The population genetic studies resolved geographically partitioned clusters in E. camaldulensis, E. cladocalyx, E. globulus and E. urophylla that were congruent with previous molecular studies. A phylogenetic study of 94 eucalypt species provided results that were largely congruent with traditional taxonomy and ITS-based phylogenies, but provided more resolution within major clades than had been obtained previously. Ascertainment bias (the bias introduced in a phylogeny from using markers developed in a small sample of the taxa that are being studied) was not detected. DArT offers an unprecedented level of resolution for population genetic, phylogenetic and evolutionary studies across the full range of Eucalyptus species.
Collapse
Affiliation(s)
- Dorothy A Steane
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Molecular and morphological assessment of Australia’s most endangered snake, Hoplocephalus bungaroides, reveals two evolutionarily significant units for conservation. CONSERV GENET 2009. [DOI: 10.1007/s10592-009-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Grattapaglia D, Kirst M. Eucalyptus applied genomics: from gene sequences to breeding tools. THE NEW PHYTOLOGIST 2008; 179:911-929. [PMID: 18537893 DOI: 10.1111/j.1469-8137.2008.02503.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Eucalyptus is the most widely planted hardwood crop in the tropical and subtropical world because of its superior growth, broad adaptability and multipurpose wood properties. Plantation forestry of Eucalyptus supplies high-quality woody biomass for several industrial applications while reducing the pressure on tropical forests and associated biodiversity. This review links current eucalypt breeding practices with existing and emerging genomic tools. A brief discussion provides a background to modern eucalypt breeding together with some current applications of molecular markers in support of operational breeding. Quantitative trait locus (QTL) mapping and genetical genomics are reviewed and an in-depth perspective is provided on the power of association genetics to dissect quantitative variation in this highly diverse organism. Finally, some challenges and opportunities to integrate genomic information into directional selective breeding are discussed in light of the upcoming draft of the Eucalyptus grandis genome. Given the extraordinary genetic variation that exists in the genus Eucalyptus, the ingenuity of most breeders, and the powerful genomic tools that have become available, the prospects of applied genomics in Eucalyptus forest production are encouraging.
Collapse
Affiliation(s)
- Dario Grattapaglia
- Plant Genetics Laboratory, Embrapa - Genetic Resources and Biotechnology, Parque Estação Biológica, Brasília 70770-970 DF, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília - SGAN 916 módulo B, Brasília 70790-160 DF, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, Graduate Program in Plant Molecular and Cellular Biology, and University of Florida Genetics Institute, University of Florida, PO Box 110410, Gainesville, FL 32611, USA
| |
Collapse
|