1
|
Sliger R, Graham J, Hoenke K, Kimball ME, Sterling KA, Peoples BK. Integrating fish swimming abilities into rapid road crossing barrier assessment: Case studies in the southeastern United States. PLoS One 2024; 19:e0298911. [PMID: 38416762 PMCID: PMC10901344 DOI: 10.1371/journal.pone.0298911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
Many aquatic networks are fragmented by road crossing structures; remediating these barriers to allow fish passage is critical to restoring connectivity. Maximizing connectivity requires effective barrier identification and prioritization, but many barrier prioritization efforts do not consider swimming capabilities of target species. Given the many potential barriers within watersheds, inventory efforts integrating species-specific swimming speeds into rapid assessment protocols may allow for more accurate barrier removal prioritization. In this study, we demonstrate an approach for integrating fish swimming speeds into rapid barrier assessment and illustrate its utility via two case studies. We measured critical swimming speeds (Ucrit) of two stream-resident fish species with very different swimming modes: Yoknapatawpha Darter (Etheostoma faulkneri), an at-risk species whose current distribution is restricted to highly degraded habitat, and Bluehead Chub (Nocomis leptocephalus), an important host species for the federally endangered Carolina Heelsplitter mussel (Lasmigona decorata). We assessed potential barriers for Yoknapatawpha Darters in the Mississippi-Yocona River watershed, and Bluehead Chubs in the Stevens Creek watershed, South Carolina, USA. We integrated Ucrit into the Southeast Aquatic Resources Partnership (SARP) barrier assessment protocol by estimating the proportion of individuals per species swimming at least as fast as the current through the assessed structures. Integrating Ucrit estimates into the SARP protocol considerably increased barrier severity estimates and rankings only for Yoknapatawpha Darters in the Yocona River watershed. These results indicate the importance of including species-specific swimming abilities in rapid barrier assessments and the importance of species-watershed contexts in estimating where swimming speed information might be most important. Our method has broad application for those working to identify barriers more realistically to improve species-specific fish passage. This work represents a next step in improving rapid barrier assessments and could be improved by investigating how results change with different measurements of swimming abilities and structure characteristics.
Collapse
Affiliation(s)
- Ridge Sliger
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, United States of America
| | - Jessica Graham
- St. Andrew and St. Joseph Bays Estuary Program, Florida State University, Panama City, FL, United States of America
- Southeast Aquatic Resources Partnership, Washington, DC, United States of America
| | - Kathleen Hoenke
- Southeast Aquatic Resources Partnership, Washington, DC, United States of America
| | - Matthew E Kimball
- Baruch Marine Field Laboratory, University of South Carolina, Georgetown, SC, United States of America
| | - Kenneth A Sterling
- USDA Forest Service, Okanogan-Wenatchee National Forest, Naches Ranger District, Naches, WA, United States of America
| | - Brandon K Peoples
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
2
|
Jose A, Sukumaran S, Roul SK, Azeez PA, Kizhakudan SJ, Raj N, Nisha K, Gopalakrishnan A. Genetic analyses reveal panmixia in Indian waters and population subdivision across Indian Ocean and Indo-Malay Archipelago for Decapterus russelli. Sci Rep 2023; 13:22860. [PMID: 38129501 PMCID: PMC10739887 DOI: 10.1038/s41598-023-49805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The Indian Scad, Decapterus russelli is an important pelagic carangid widely distributed throughout the Indian Ocean and the Indo-West Pacific. Despite being widely distributed in the Indian Ocean, the information regarding genetic structuring and diversity has been lacking compared to its Indo Malay Archipelago counterparts. The present study was conducted to investigate the genetic stock structure of D. russelli based on mitochondrial (Cyt b) and nuclear (DrAldoB1) markers along Indian waters. The results indicated the presence of a single panmictic stock across the Indian Ocean region. High haplotype diversity associated with low nucleotide diversity suggested a population bottleneck followed by rapid population growth. Phylogenetic analysis revealed the absence of geographical clustering of lineages with the most common haplotype distributed globally. The pelagic life style, migratory capabilities, and larval dispersal may be the contributing factors to the observed spatial homogeneity of D. russelli. However, significant genetic differentiation was observed between the populations from Indian Ocean and Indo-Malay Archipelago. Hierarchical molecular variance analysis (AMOVA), pairwise FST comparisons and SAMOVA showed existence of two distinct genetic stocks of D. russelli in the Indian Ocean and IMA. The observed interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the Indo-Malay Archipelago and the Indian Ocean regions suggest the influence of historic isolation, ocean surface currents and biotic and abiotic features of the ocean. Also, there was a significant relationship between genetic distance and geographical distance between population pairs in a manner consistent with isolation-by-distance. These resulted in the evolution of a phylogeographic break for this species between these regions. The findings of these results suggest that D. russelli from the Indian Ocean shall be managed in its entire area of distribution as a single stock. Further, the Indian Ocean and Indo-Malayan stocks can be managed separately.
Collapse
Affiliation(s)
- Anjaly Jose
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India.
- Mangalore University, Mangalagangotri, Mangalore, Karnataka, 574199, India.
| | - Sandhya Sukumaran
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| | - Subal Kumar Roul
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| | - P Abdul Azeez
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| | - Shoba Joe Kizhakudan
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| | - Neenu Raj
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| | - K Nisha
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India
| |
Collapse
|
3
|
Chen SY, Huang CC, Cheng YT, Wang CC, Li CY, Lai IL, Hung KH. Effect of geographic isolation on genetic variation and population structure of Euphrasia nankotaizanensis, a threatened endemic alpine herb in Taiwan. Heliyon 2023; 9:e14228. [PMID: 36938387 PMCID: PMC10018478 DOI: 10.1016/j.heliyon.2023.e14228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Euphrasia nankotaizanensis (Orobanchaceae) is a rare alpine herb that is endemic to Taiwan. Only four small populations remain in Xue, Nanhu, and Cilai Mountains of Taiwan. The distribution of alpine herbs is severely threatened by climate change, which influences genetic variation and population structure. In this study, we investigated the effects of the natural isolation of alpine habitats on the genetic diversity and geographic structure of populations of E. nankotaizanensis using chloroplast (cp) and nuclear DNA (nrDNA) markers. We found lower levels of genetic diversity in E. nankotaizanensis than in other alpine plants and little to no genetic variation within populations, which could be mainly attributed to the small population size and genetic drift. Only one nrDNA haplotype was present in each population. The lack of monophyly of the four populations in cpDNA probably resulted from lineage sorting or occasional long-distance seed dispersal. Phylogeographic analysis suggested that Nanhu Mountain was probably a refugium over the glacial maxima, agreeing with the potential refugia in central Taiwan. The STRUCTURE and AMOVA analyses revealed significant genetic differentiation in nrDNA among the mountains, which resulted from geographical isolation among these mountains. Estimates of the effective population size (Ne) and demography reflected lower Ne values and a recent population decline, probably implying a greater extinction risk for E. nankotaizanensis. We observed genetic depletion and considerable genetic differentiation among mountain populations, which should be considered in future conservation efforts for this species. In addition, this study provides important insights into the long-term potential of alpine herbs in Taiwan, which are useful for a better prediction of their responses to future climate change.
Collapse
Affiliation(s)
- Syuan-Yu Chen
- Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chi-Chun Huang
- Taiwan Endemic Species Research Institute, Nantou, Taiwan
| | - Yu-Tzu Cheng
- Department of Forestry, Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chih-Chiang Wang
- Department of Forestry, Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chiuan-Yu Li
- Taiwan Endemic Species Research Institute, Nantou, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pingtung, Taiwan
- Biodiversity Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pingtung, Taiwan
- Biodiversity Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Corresponding author. Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
4
|
Hubbell JP, Schaefer JF, Kreiser BR. The influence of habitat characteristics on the occupancy and dispersal of two headwater fishes in a dendritic network. Ecosphere 2023. [DOI: 10.1002/ecs2.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Joshua P. Hubbell
- Department of Biological Sciences Hattiesburg University of Southern Mississippi Hattiesburg Mississippi USA
| | - Jacob F. Schaefer
- Department of Biological Sciences Hattiesburg University of Southern Mississippi Hattiesburg Mississippi USA
| | - Brian R. Kreiser
- Department of Biological Sciences Hattiesburg University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
5
|
Phylogeography and population genetics of a headwater-stream adapted crayfish, Cambarus pristinus (Decapoda: Cambaridae), from the Cumberland Plateau in Tennessee. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Taylor LU, Benavides E, Simmons JW, Near TJ. Genomic and phenotypic divergence informs translocation strategies for an endangered freshwater fish. Mol Ecol 2021; 30:3394-3407. [PMID: 33960044 DOI: 10.1111/mec.15947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/28/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Translocation, the movement of organisms for conservation purposes, can result in unintended introgression if genetic material flows between populations in new ways. The Bluemask Darter Etheostoma akatulo is a federally endangered species of freshwater fish inhabiting the Caney Fork River system and three of its tributaries (Collins River, Rocky River, and Cane Creek) in Tennessee. The current conservation strategy for Bluemask Darters involves translocating the progeny of broodstock from the Collins River (in the west) to the Calfkiller River (in the east) where the species had been extirpated. In this study, we use ddRAD sequence data from across the extant range to assess this translocation strategy in light of population structure, phylogeny, and demography. We also include museum specimen data to assess morphological variation among extant and extirpated populations. Our analyses reveal substantial genetic and phenotypic disparities between a western population in the Collins River and an eastern population encompassing the Rocky River, Cane Creek, and upper Caney Fork, the two of which shared common ancestry more than 100,000 years ago. Furthermore, morphological analyses classify 12 of 13 Calfkiller River specimens with phenotypes consistent with the eastern population. These results suggest that current translocations perturb the evolutionary boundaries between two delimited populations. Instead, we suggest that repopulating the Calfkiller River using juveniles from the Rocky River could balance conflicting signatures of demography, diversity, and divergence. Beyond conservation, the microgeographic structure of Bluemask Darter populations adds another puzzle to the phylogeography of the hyperdiverse freshwater fishes in eastern North America.
Collapse
Affiliation(s)
- Liam U Taylor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Yale Peabody Museum of Natural History, New Haven, CT, USA
| |
Collapse
|
7
|
Sterling KA, Warren ML. Description of a new species of cryptic snubnose darter (Percidae: Etheostomatinae) endemic to north-central Mississippi. PeerJ 2020; 8:e9807. [PMID: 32944422 PMCID: PMC7469936 DOI: 10.7717/peerj.9807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022] Open
Abstract
Many subclades within the large North American freshwater fish genus Etheostoma (Percidae) show brilliant male nuptial coloration during the spring spawning season. Traditionally, perceived differences in color were often used to diagnose closely related species. More recently, perceived differences in male nuptial color have prompted further investigation of potential biodiversity using genetic tools. However, cryptic diversity among Etheostoma darters renders male nuptial color as unreliable for detecting and describing diversity, which is foundational for research and conservation efforts of this group of stream fishes. Etheostoma raneyi (Yazoo Darter) is an imperiled, range-limited fish endemic to north-central Mississippi. Existing genetic evidence indicates cryptic diversity between disjunctly distributed E. raneyi from the Little Tallahatchie and Yocona river watersheds despite no obvious differences in male color between the two drainages. Analysis of morphological truss and geometric measurements and meristic and male color characters yielded quantitative differences in E. raneyi from the two drainages consistent with genetic evidence. Morphological divergence is best explained by differences in stream gradients between the two drainages. Etheostoma faulkneri, the Yoknapatawpha Darter, is described as a species under the unified species concept. The discovery of cryptic diversity within E. raneyi would likely not have occurred without genetic tools. Cryptic diversity among Etheostoma darters and other stream fishes is common, but an overreliance on traditional methods of species delimitation (e.g., identification of a readily observable physical character to diagnose a species) impedes a full accounting of the diversity in freshwater fishes in the southeastern United States.
Collapse
Affiliation(s)
- Ken A Sterling
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, Oxford, MS, United States of America
| | - Melvin L Warren
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, Oxford, MS, United States of America
| |
Collapse
|
8
|
Sterling KA, Nielsen SV, Brown AJ, Warren ML, Noonan BP. Cryptic diversity among Yazoo Darters (Percidae: Etheostoma raneyi) in disjunct watersheds of northern Mississippi. PeerJ 2020; 8:e9014. [PMID: 32411520 PMCID: PMC7204820 DOI: 10.7717/peerj.9014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
The Yazoo Darter, Etheostoma raneyi (Percidae), is an imperiled freshwater fish species endemic to tributaries of the Yocona and Little Tallahatchie rivers of the upper Yazoo River basin, in northern Mississippi, USA. The two populations are allopatric, isolated by unsuitable lowland habitat between the two river drainages. Relevant literature suggests that populations in the Yocona River represent an undescribed species, but a lack of data prevents a thorough evaluation of possible diversity throughout the range of the species. Our goals were to estimate phylogenetic relationships of the Yazoo Darter across its distribution and identify cryptic diversity for conservation management purposes. Maximum likelihood (ML) phylogenetic analyses of the mitochondrial cytochrome b (cytb) gene returned two reciprocally monophyletic clades representing the two river drainages with high support. Bayesian analysis of cytb was consistent with the ML analysis but with low support for the Yocona River clade. Analyses of the nuclear S7 gene yielded unresolved relationships among individuals in the Little Tallahatchie River drainage with mostly low support, but returned a monophyletic clade for individuals from the Yocona River drainage with high support. No haplotypes were shared between the drainages for either gene. Additional cryptic diversity within the two drainages was not indicated. Estimated divergence between Yazoo Darters in the two drainages occurred during the Pleistocene (<1 million years ago) and was likely linked to repeated spatial shifts in suitable habitat and changes in watershed configurations during glacial cycles. Individuals from the Yocona River drainage had lower genetic diversity consistent with the literature. Our results indicate that Yazoo Darters in the Yocona River drainage are genetically distinct and that there is support for recognizing Yazoo Darter populations in the Yocona River drainage as a new species under the unified species concept.
Collapse
Affiliation(s)
- Ken A Sterling
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, Oxford, MS, United States of America
| | - Stuart V Nielsen
- Division of Herpetology, Florida Museum of Natural History, Gainesville, FL, United States of America
| | - Andrew J Brown
- Louisiana Purchase Gardens and Zoo, Monroe, LA, United States of America
| | - Melvin L Warren
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, Oxford, MS, United States of America
| | - Brice P Noonan
- Department of Biology, University of Mississippi, University, MS, United States of America
| |
Collapse
|
9
|
Washburn BA, Cashner MF, Blanton RE. Small fish, large river: Surprisingly minimal genetic structure in a dispersal-limited, habitat specialist fish. Ecol Evol 2020; 10:2253-2268. [PMID: 32128153 PMCID: PMC7042738 DOI: 10.1002/ece3.6064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic connectivity is expected to be lower in species with limited dispersal ability and a high degree of habitat specialization (intrinsic factors). Also, gene flow is predicted to be limited by habitat conditions such as physical barriers and geographic distance (extrinsic factors). We investigated the effects of distance, intervening pools, and rapids on gene flow in a species, the Tuxedo Darter (Etheostoma lemniscatum), a habitat specialist that is presumed to be dispersal-limited. We predicted that the interplay between these intrinsic and extrinsic factors would limit dispersal and lead to genetic structure even at the small spatial scale of the species range (a 38.6 km river reach). The simple linear distribution of E. lemniscatum allowed for an ideal test of how these factors acted on gene flow and allowed us to test expectations (e.g., isolation-by-distance) of linearly distributed species. Using 20 microsatellites from 163 individuals collected from 18 habitat patches, we observed low levels of genetic structure that were related to geographic distance and rapids, though these factors were not barriers to gene flow. Pools separating habitat patches did not contribute to any observed genetic structure. Overall, E. lemniscatum maintains gene flow across its range and is comprised of a single population. Due to the linear distribution of the species, a stepping-stone model of dispersal best explains the maintenance of gene flow across its small range. In general, our observation of higher-than-expected connectivity likely stems from an adaptation to disperse due to temporally unstable and patchy habitat.
Collapse
Affiliation(s)
- Brooke A. Washburn
- Department of BiologyCenter of Excellence for Field BiologyAustin Peay State UniversityClarksvilleTNUSA
- Present address:
Department of Biological SciencesUniversity of DenverDenverCOUSA
| | - Mollie F. Cashner
- Department of BiologyCenter of Excellence for Field BiologyAustin Peay State UniversityClarksvilleTNUSA
| | - Rebecca E. Blanton
- Department of BiologyCenter of Excellence for Field BiologyAustin Peay State UniversityClarksvilleTNUSA
| |
Collapse
|
10
|
Ruble CL, Sterling KA, Warren ML. Captive Propagation and Early Life History of the Yazoo Darter (Etheostoma raneyi). SOUTHEAST NAT 2019. [DOI: 10.1656/058.018.0402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Crystal L. Ruble
- Conservation Fisheries, Inc., 3424 Division Street, Knoxville, TN 37919
| | - Ken A. Sterling
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, 1000 Front Street, Oxford, MS 38655
| | - Melvin L. Warren
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, 1000 Front Street, Oxford, MS 38655
| |
Collapse
|
11
|
Tóth EG, Tremblay F, Housset JM, Bergeron Y, Carcaillet C. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol Biol 2019; 19:190. [PMID: 31623551 PMCID: PMC6798344 DOI: 10.1186/s12862-019-1510-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background Genetic processes shape the modern-day distribution of genetic variation within and between populations and can provide important insights into the underlying mechanisms of evolution. The resulting genetic variation is often unequally partitioned within species’ distribution range and especially large differences can manifest at the range limit, where population fragmentation and isolation play a crucial role in species survival. Despite several molecular studies investigating the genetic diversity and differentiation of European Alpine mountain forests, the climatic and demographic constrains which influence the genetic processes are often unknown. Here, we apply non-coding microsatellite markers to evaluate the sporadic peripheral and continuous populations of cembra pine (Pinus cembra L.), a long-lived conifer species that inhabits the subalpine treeline ecotone in the western Alps to investigate how the genetic processes contribute to the modern-day spatial distribution. Moreover, we corroborate our findings with paleoecological records, micro and macro-remains, to infer the species’ possible glacial refugia and expansion scenarios. Results Four genetically distinct groups were identified, with Bayesian and FST based approaches, across the range of the species, situated in the northern, inner and south-western Alps. We found that genetic differentiation is substantially higher in marginal populations than at the center of the range, and marginal stands are characterized by geographic and genetic isolation due to spatial segregation and restricted gene flow. Moreover, multiple matrix regression approaches revealed effects of climatic heterogeneity in species’ spatial genetic pattern. Also, population stability tests indicated that all populations had experienced a severe historical bottleneck, no heterozygosity excess was detected, suggesting that more recently population sizes have remained relatively stable. Conclusions Our study demonstrated that cembra pine might have survived in multiple glacial refugia and subsequently recolonized the Alps by different routes. Modern-day marginal populations, at the edge of the species’ range, could maintain stable sizes over long periods without inbreeding depression and preserve high amounts of genetic variation. Moreover, our analyses indicate that climatic variability has played a major role in shaping differentiation, in addition to past historical events such as migration and demographic changes.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada. .,National Agricultural Research and Innovation Center (NARIC), Forest Research Institute (FRI), Várkerület u. 30/A, Sárvár, 9600, Hungary.
| | - Francine Tremblay
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Johann M Housset
- Centre for Forest Research (CEF), University of Québec in Montréal (UQAM), C.P. 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences & Lettres University (PSL), Paris, France.,Alcina, 10 rue des Amaryllis, 34070, Montpellier, France
| | - Yves Bergeron
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada.,Centre for Forest Research (CEF), University of Québec in Montréal (UQAM), C.P. 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Christopher Carcaillet
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences & Lettres University (PSL), Paris, France.,Laboratory for Ecology of Natural and Anthropised Hydrosystems (UMR 5023 CNRS UCBL ENTPE), Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
12
|
Blanton RE, Cashner MF, Thomas MR, Brandt SL, Floyd MA. Increased habitat fragmentation leads to isolation among and low genetic diversity within populations of the imperiled Kentucky Arrow Darter (Etheostoma sagitta spilotum). CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Abstract
Headwaters, the sources of all stream networks, provide habitats that are unique from other freshwater environments and are used by a specialised subset of aquatic species. The features of headwaters that provide special habitats include predator-free or competitor-free spaces; specific resources (particularly detrital based); and moderate variations in flows, temperature and discharge. Headwaters provide key habitats for all or some life stages for a large number of species across just about all freshwater phyla and divisions. Some features of headwaters, including isolation and small population sizes, have allowed for the evolutionary radiation of many groups of organisms within and beyond those habitats. As small and easily engineered physical spaces, headwaters are easily degraded by streambank development, ditching and even burial. Headwater streams are among the most sensitive of freshwater ecosystems due to their intimate linkage with their catchments and how easily they are impacted. As a unique ecosystem with many specialist species, headwater streams deserve better stewardship.
Collapse
|
14
|
Euclide P, Marsden JE. Role of drainage and barriers in the genetic structuring of a tessellated darter population. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Dam trout: Genetic variability in Oncorhynchus mykiss above and below barriers in three Columbia River systems prior to restoring migrational access. PLoS One 2018; 13:e0197571. [PMID: 29851979 PMCID: PMC5979028 DOI: 10.1371/journal.pone.0197571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/06/2018] [Indexed: 12/03/2022] Open
Abstract
Restoration of access to lost habitat for threatened and endangered fishes above currently impassable dams represents a major undertaking. Biological monitoring is critical to understand the dynamics and success of anadromous recolonization as, in the case of Oncorhynchus mykiss, anadromous steelhead populations are reconnected with their conspecific resident rainbow trout counterparts. We evaluate three river systems in the Lower Columbia River basin: the White Salmon, Sandy, and Lewis rivers that are in the process of removing and/or providing passage around existing human-made barriers in O. mykiss riverine habitat. In these instances, now isolated resident rainbow trout populations will be exposed to competition and/or genetic introgression with steelhead and vice versa. Our genetic analyses of 2,158 fish using 13 DNA microsatellite (mSAT) loci indicated that within each basin anadromous O. mykiss were genetically distinct from and significantly more diverse than their resident above-dam trout counterparts. Above long-standing natural impassable barriers, each of these watersheds also harbors unique rainbow trout gene pools with reduced levels of genetic diversity. Despite frequent releases of non-native steelhead and rainbow trout in each river, hatchery releases do not appear to have had a significant genetic effect on the population structure of O. mykiss in any of these watersheds. Simulation results suggest there is a high likelihood of identifying anadromous x resident individuals in the Lewis and White Salmon rivers, and slightly less so in the Sandy River. These genetic data are a prerequisite for informed monitoring, managing, and conserving the different life history forms during upstream recolonization when sympatry of life history forms of O. mykiss is restored.
Collapse
|
16
|
Tay YC, Ng DJJ, Loo JB, Huang D, Cai Y, Yeo DCJ, Meier R. Roads to isolation: Similar genomic history patterns in two species of freshwater crabs with contrasting environmental tolerances and range sizes. Ecol Evol 2018; 8:4657-4668. [PMID: 29760905 PMCID: PMC5938456 DOI: 10.1002/ece3.4017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 11/07/2022] Open
Abstract
Freshwater species often show high levels of endemism and risk of extinction owing to their limited dispersal abilities. This is exemplified by the stenotopic freshwater crab, Johora singaporensis which is one of the world's 100 most threatened species, and currently inhabits less than 0.01 km2 of five low order hill streams within the highly urbanized island city‐state of Singapore. We compared populations of J. singaporensis with that of the non‐threatened, widespread, abundant, and eurytopic freshwater crab, Parathelphusa maculata, and found surprisingly high congruence between their population genomic histories. Based on 2,617 and 2,470 genome‐wide SNPs mined via the double‐digest restriction‐associated DNA sequencing method for ~90 individuals of J. singaporensis and P. maculata, respectively, the populations are strongly isolated (FST = 0.146–0.371), have low genetic diversity for both species (also for COI), and show signatures of recent genetic bottlenecks. The most genetically isolated populations for both species are separated from other populations by one of the oldest roads in Singapore. These results suggest that anthropogenic developments may have impacted stream‐dependent species in a uniform manner, regardless of ubiquity, habitat preference, or dispersal modes of the species. While signs of inbreeding were not detected for the critically endangered species, the genetic distinctiveness and low diversity of the populations call for genetic rescue and connecting corridors between the remaining fragments of the natural habitat.
Collapse
Affiliation(s)
- Ywee Chieh Tay
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore
| | - Daniel Jia Jun Ng
- National Biodiversity Centre National Parks Board Singapore City Singapore
| | - Jun Bin Loo
- School of Chemical and Life Sciences Singapore Polytechnic Singapore City Singapore
| | - Danwei Huang
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore
| | - Yixiong Cai
- National Biodiversity Centre National Parks Board Singapore City Singapore
| | - Darren Chong Jinn Yeo
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Rudolf Meier
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore.,Lee Kong Chian Natural History Museum National University of Singapore Singapore City Singapore
| |
Collapse
|
17
|
Schmidt BV, Schaefer JF. Comparative genetic isolation patterns for multiple headwater fishes in three geographic regions. JOURNAL OF FISH BIOLOGY 2018; 92:1090-1109. [PMID: 29479689 DOI: 10.1111/jfb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Headwater-resident fishes may be prone to a high rate of isolation and a pronounced hierarchical genetic structure due to a combination of niche preference and dendritic effects of river networks. Genetic isolation patterns were compared using microsatellites in six headwater fishes, Fundulus olivaceus, Semotilus atromaculatus, Erimyzon claviformis, Etheostoma artesiae, Etheostoma whipplei and Etheostoma parvipinne, in three geographic regions that included drainages of small, medium and large sizes in the southern United States. All species showed hierarchical nesting of genetic populations and there were clear and mostly consistent differences between species and regions that were identified through summary statistics derived from two independent analyses. For species comparisons, a high isolation grouping (increased number of isolated genetic clusters or sites within regions) and a low-isolation grouping (decreased number of clusters or sites) were identified. Species group placement was related to niche breadth along the river continuum and presumed abundance and variability of preferred microhabitats, with increased headwater specialization among species being associated with placement in the high-isolation grouping. There was a weakly significant positive effect of drainage size on the number of isolated clusters or sites across all species. Regional patterns were shared in two species, with the region containing the smallest drainages having lower rates of isolation in both datasets. This study shows the effects of regional and species characteristics on genetic isolation for headwater species, which are especially prone to isolation due to spatial, dendritic effects of river networks.
Collapse
Affiliation(s)
- B V Schmidt
- The University of Southern Mississippi, 118 College Dr, Box # 5018, Hattiesburg, Mississippi 39406, U.S.A
| | - J F Schaefer
- The University of Southern Mississippi, 118 College Dr, Box # 5018, Hattiesburg, Mississippi 39406, U.S.A
| |
Collapse
|
18
|
Jaisuk C, Senanan W. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand. PeerJ 2018; 6:e4487. [PMID: 29568710 PMCID: PMC5845392 DOI: 10.7717/peerj.4487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid, in eight tributary streams in the upper Nan River drainage basin (n = 30–100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated (P < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global FST = 0.022, P < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized FST (P < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.
Collapse
Affiliation(s)
- Chaowalee Jaisuk
- Department of Aquatic Science, Faculty of Science, Burapha University, Chon Buri, Thailand.,Department of Animal Science and Fisheries, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Nan Campus, Nan, Thailand
| | - Wansuk Senanan
- Department of Aquatic Science, Faculty of Science, Burapha University, Chon Buri, Thailand
| |
Collapse
|
19
|
Liu HY, Xiong F, Duan XB, Tian HW, Liu SP, Chen DQ. Low population differentiation revealed in the highly threatened elongate loach (Leptobotia elongata, Bleeker), a species endemic to the fragmented upper reaches of the Yangtze River. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Genetic diversity and divergence in the fountain darter (Etheostoma fonticola): implications for conservation of an endangered species. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0869-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Athrey G, Lance RF, Leberg PL. Using Genealogical Mapping and Genetic Neighborhood Sizes to Quantify Dispersal Distances in the Neotropical Passerine, the Black-Capped Vireo. PLoS One 2015; 10:e0140115. [PMID: 26461257 PMCID: PMC4603878 DOI: 10.1371/journal.pone.0140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/22/2015] [Indexed: 11/25/2022] Open
Abstract
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species.
Collapse
Affiliation(s)
- Giridhar Athrey
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, Texas, United States of America
- Faculty of Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, LA, United States of America
- * E-mail:
| | - Richard F. Lance
- Environmental Laboratory, USACE, Vicksburg, MS, United States of America
| | - Paul L. Leberg
- Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, LA, United States of America
| |
Collapse
|
22
|
Silva JVD, Hallerman EM, Orfão LH, Hilsdorf AWS. Genetic structuring of Salminus hilarii Valenciennes, 1850 (Teleostei: Characiformes) in the rio Paraná basin as revealed by microsatellite and mitochondrial DNA markers. NEOTROPICAL ICHTHYOLOGY 2015. [DOI: 10.1590/1982-0224-20150015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic variation of Salminus hilarii was assessed by screening microsatellite loci and mitochondrial D-loop DNA across four sampling in the upper rio Paraná basin of Brazil. Genetic diversity - measured as mean expected heterozygosity (0.904) and mean number of alleles across populations (13.7) - was reasonably high. Differentiation of microsatellite allele frequencies among populations was shown to be low but significant by AMOVA Φ ST (0.0192), and high by D EST (0.185). D-loop variation was high, with haplotypic diversity of 0.950 and nucleotide diversity of 0.011. Mitochondrial DNA-based estimates for population differentiation were high, with an overall Φ ST of 0.173. The results of tests of nuclear and mitochondrial variation yielded no unequivocal inference of historical demographic bottleneck or expansion. Genetic differentiation observed among S. hilarii populations in the rio Grande may be caused by a combination of historical differentiation and recent gene-flow disruption caused by the dams followed by reproduction of isolated spawning assemblages in mid-sized tributaries of the respective reservoirs. We present spatially more intensive sampling of S. hilarii populations across the rio Paraná basin in order to more effectively distinguish between historical and contemporary differentiation.
Collapse
|
23
|
Egge JJD, Nicholson PW, Stark AW. Morphological and molecular variation in the least madtom Noturus hildebrandi (Siluriformes: Ictaluridae), a Mississippi Embayment endemic: evidence for a cryptic lineage in the Hatchie River. JOURNAL OF FISH BIOLOGY 2015; 86:493-526. [PMID: 25619312 DOI: 10.1111/jfb.12574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Sheared principal component analysis of 40 morphometric characteristics measured for 146 individuals and relative frequencies of pigmentation patterns scored for 980 individuals of the least madtom Noturus hildebrandi, a diminutive catfish endemic to eastern lowland drainages of the Mississippi Embayment region of North America, suggested a clinal pattern of morphological variation extending across the range from north to south. DNA sequence data representing 90 individuals from the mitochondrial gene cytochrome b (cytb) analysed using Bayesian phylogenetic methods recovered four major haplotype clades, suggestive of a high degree of isolation by drainage. Individual gene trees of cytb and four additional nuclear loci as well as trees based on concatenated datasets of these genes consistently recovered a cryptic lineage of individuals from the Hatchie River drainage that is morphologically indistinguishable from surrounding populations. Gene-tree analyses failed to recover a monophyletic N. hildebrandi with respect to Noturus baileyi. A coalescence-based species tree analysis, however, did recover N. hildebrandi monophyly with high support, suggesting that relationships reflected in individual gene trees and concatenated datasets are in part artefacts of incomplete lineage sorting or an ancient introgressive event. Results are consistent with the hypothesis of an ancient connection between the Hatchie and Tennessee River systems. Current subspecific designations are of limited utility as they reflect morphological variation and are not entirely consistent with phylogeny. Discrepancies between the pattern of variation observed in the morphological and molecular data may be explained by recent local adaptation to individual stream conditions that masks deeper evolutionary divergences.
Collapse
Affiliation(s)
- J J D Egge
- Department of Biology, Pacific Lutheran University, Tacoma, WA 98447, U.S.A
| | - P W Nicholson
- Department of Biology, Pacific Lutheran University, Tacoma, WA 98447, U.S.A
| | - A W Stark
- Department of Biology, Pacific Lutheran University, Tacoma, WA 98447, U.S.A
| |
Collapse
|
24
|
Winans GA, Gayeski N, Timmins-Schiffman E. All dam-affected trout populations are not alike: fine scale geographic variability in resident rainbow trout in Icicle Creek, WA, USA. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Davis DJ, Wieman AC, Berendzen PB. The influence of historical and contemporary landscape variables on the spatial genetic structure of the rainbow darter (Etheostoma caeruleum) in tributaries of the upper Mississippi River. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0649-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
|
27
|
Fitzpatrick SW, Crockett H, Funk WC. Water availability strongly impacts population genetic patterns of an imperiled Great Plains endemic fish. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0577-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Range-wide comparisons of northern leatherside chub populations reveal historical and contemporary patterns of genetic variation. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0576-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Sousa-Santos C, Gante HF, Robalo J, Proença Cunha P, Martins A, Arruda M, Alves MJ, Almada V. Evolutionary history and population genetics of a cyprinid fish (Iberochondrostoma olisiponensis) endangered by introgression from a more abundant relative. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0568-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Sterling KA, Warren ML, Gayle Henderson L. Conservation Assessment of the Yazoo Darter (Etheostoma raneyi). SOUTHEAST NAT 2013. [DOI: 10.1656/058.012.0429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Population structure and conservation genetic assessment of the endangered Pugnose Shiner, Notropis anogenus. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0542-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Unger SD, Rhodes OE, Sutton TM, Williams RN. Population genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) across multiple spatial scales. PLoS One 2013; 8:e74180. [PMID: 24204565 PMCID: PMC3800131 DOI: 10.1371/journal.pone.0074180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/28/2013] [Indexed: 02/07/2023] Open
Abstract
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94-98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.
Collapse
Affiliation(s)
- Shem D. Unger
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States of America
- * E-mail:
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States of America
| | - Trent M. Sutton
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Rod N. Williams
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
33
|
Wilson GA, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003; 163:1177-1191. [PMID: 12663554 DOI: 10.1111/fwb.12079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
A new Bayesian method that uses individual multilocus genotypes to estimate rates of recent immigration (over the last several generations) among populations is presented. The method also estimates the posterior probability distributions of individual immigrant ancestries, population allele frequencies, population inbreeding coefficients, and other parameters of potential interest. The method is implemented in a computer program that relies on Markov chain Monte Carlo techniques to carry out the estimation of posterior probabilities. The program can be used with allozyme, microsatellite, RFLP, SNP, and other kinds of genotype data. We relax several assumptions of early methods for detecting recent immigrants, using genotype data; most significantly, we allow genotype frequencies to deviate from Hardy-Weinberg equilibrium proportions within populations. The program is demonstrated by applying it to two recently published microsatellite data sets for populations of the plant species Centaurea corymbosa and the gray wolf species Canis lupus. A computer simulation study suggests that the program can provide highly accurate estimates of migration rates and individual migrant ancestries, given sufficient genetic differentiation among populations and sufficient numbers of marker loci.
Collapse
Affiliation(s)
- Gregory A Wilson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|