1
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
2
|
Hopper SD, Lambers H, Silveira FAO, Fiedler PL. OCBIL theory examined: reassessing evolution, ecology and conservation in the world’s ancient, climatically buffered and infertile landscapes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
OCBIL theory was introduced as a contribution towards understanding the evolution, ecology and conservation of the biological and cultural diversity of old, climatically buffered, infertile landscapes (OCBILs), especially in the Southern Hemisphere. The theory addresses some of the most intransigent environmental and cultural trends of our time – the ongoing decline of biodiversity and cultural diversity of First Nations. Here we reflect on OCBILs, the origins of the theory, and its principal hypotheses in biological, anthropological and conservation applications. The discovery that threatened plant species are concentrated in the Southwest Australian Floristic Region (SWAFR) on infertile, phosphorous-impoverished uplands within 500 km of the coast formed the foundational framework for OCBIL theory and led to the development of testable hypotheses that a growing literature is addressing. Currently, OCBILs are recognized in 15 Global Biodiversity Hotspots and eight other regions. The SWAFR, Greater Cape Floristic Region of South Africa and South America’s campos rupestres (montane grasslands) are those regions that have most comprehensively been investigated in the context of OCBIL theory. We summarize 12 evolutionary, ecological and cultural hypotheses and ten conservation-management hypotheses being investigated as recent contributions to the OCBIL literature.
Collapse
Affiliation(s)
- Stephen D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture & Environment, The University of Western Australia, Albany, WA, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA, Australia
| | - Fernando A O Silveira
- Departmento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Peggy L Fiedler
- Natural Reserve System, University of California, Office of the President, Oakland, CA, USA
| |
Collapse
|
3
|
Hopper SD. Out of the OCBILs: new hypotheses for the evolution, ecology and conservation of the eucalypts. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
OCBIL theory is a multi-hypothesis formulation aimed towards an understanding of the evolution, ecology and conservation of biological and cultural diversity on old, climatically buffered, infertile landscapes (OCBILs). OCBILs have been in existence contemporaneously with rainforest since Gondwanan times. Such landscapes are common in areas of eucalypt species richness embraced by Australia’s two Global Biodiversity Hotspots, the Southwest Australian Floristic Region and the Forests of East Australia. Here, I summarize evidence pertaining to the eucalypts in the context of a recent reformulation of OCBIL theory into 12 evolutionary, ecological and cultural hypotheses and ten conservation management hypotheses. A compelling argument emerges for a new interpretation of the eucalypts evolving out of the OCBILs, rather than out of the rainforests as traditionally interpreted. This calls for a significant reinterpretation of best conservation management of the eucalypts. For example, traditional ideas on application of fire in eucalypt communities regarded as well adapted to this disturbance need to give way to a more nuanced and cautious view. This review of eucalypts seen as evolving out of the OCBILs helps in understanding the group from several new perspectives. Interpretation of other sedentary plant and animal groups as out of the OCBILs is commended for further study.
Collapse
Affiliation(s)
- Stephen D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture & Environment, The University of Western Australia, Albany, WA, Australia
| |
Collapse
|
4
|
Robins TP, Binks RM, Byrne M, Hopper SD. Landscape and taxon age are associated with differing patterns of hybridization in two Eucalyptus (Myrtaceae) subgenera. ANNALS OF BOTANY 2021; 127:49-62. [PMID: 32914170 PMCID: PMC7750730 DOI: 10.1093/aob/mcaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is an important evolutionary process that can have a significant impact on natural plant populations. Eucalyptus species are well known for weak reproductive barriers and extensive hybridization within subgenera, but there is little knowledge of whether patterns of hybridization differ among subgenera. Here, we examine eucalypts of Western Australia's Stirling Range to investigate how patterns of hybridization are associated with landscape and taxon age between the two largest Eucalyptus subgenera: Eucalyptus and Symphyomyrtus. In doing so, we tested a hypothesis of OCBIL (old, climatically buffered, infertile landscape) theory that predicts reduced hybridization on older landscapes. METHODS Single nucleotide polymorphism markers were applied to confirm the hybrid status, parentage and genetic structure of five suspected hybrid combinations for subg. Eucalyptus and three combinations for subg. Symphyomyrtus. KEY RESULTS Evidence of hybridization was found in all combinations, and parental taxa were identified for most combinations. The older parental taxa assessed within subg. Eucalyptus, which are widespread on old landscapes, were identified as well-defined genetic entities and all hybrids were exclusively F1 hybrids. In addition, many combinations showed evidence of clonality, suggesting that the large number of hybrids recorded from some combinations is the result of long-term clonal spread following a few hybridization events rather than frequent hybridization. In contrast, the species in subg. Symphyomyrtus, which typically occur on younger landscapes and are more recently evolved, showed less distinction among parental taxa, and where hybridization was detected, there were high levels of introgression. CONCLUSIONS Reduced hybridization in subg. Eucalyptus relative to extensive hybridization in subg. Symphyomyrtus affirmed the hypothesis of reduced hybridization on OCBILs and demonstrate that clade divergence times, landscape age and clonality are important drivers of differing patterns of speciation and hybridization in Eucalyptus.
Collapse
Affiliation(s)
- T P Robins
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
| | - R M Binks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - S D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, The University of Western Australia, Albany, WA, Australia
| |
Collapse
|
5
|
Millar MA, Byrne M. Variable clonality and genetic structure among disjunct populations of Banksia mimica. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01288-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Hewitt A. Genetic and environmental factors in the trade-off between sexual and asexual reproduction of a rare clonal angiosperm. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alison Hewitt
- School of Science and Health; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
7
|
Bezemer N, Krauss SL, Roberts DG, Hopper SD. Conservation of old individual trees and small populations is integral to maintain species' genetic diversity of a historically fragmented woody perennial. Mol Ecol 2019; 28:3339-3357. [DOI: 10.1111/mec.15164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Nicole Bezemer
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Siegfried L. Krauss
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Biological Sciences The University of Western Australia Crawley WA Australia
| | - David G. Roberts
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Stephen D. Hopper
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
| |
Collapse
|
8
|
Monks L, Barrett S, Beecham B, Byrne M, Chant A, Coates D, Cochrane JA, Crawford A, Dillon R, Yates C. Recovery of threatened plant species and their habitats in the biodiversity hotspot of the Southwest Australian Floristic Region. PLANT DIVERSITY 2019; 41:59-74. [PMID: 31193161 PMCID: PMC6520493 DOI: 10.1016/j.pld.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 05/22/2023]
Abstract
The Southwest Australian Floristic Region (SWAFR) is a global biodiversity hotspot with high plant diversity and endemism and a broad range of threatening processes. An outcome of this is a high proportion of rare and threatened plant species. Ongoing discovery and taxonomic description of new species, many of which are rare, increases the challenges for recovery of threatened species and prioritisation of conservation actions. Current conservation of this diverse flora is based on integrated and scientific evidence-based management. Here we present an overview of current approaches to the conservation of threatened flora in the SWAFR with a focus on active management through recovery and restoration that is integrated with targeted research. Key threats include disease, fragmentation, invasive weeds, altered fire regimes, grazing, altered hydro-ecology and climate change. We highlight the integrated approach to management of threats and recovery of species with four case studies of threatened flora recovery projects that illustrate the breadth of interventions ranging from In situ management to conservation reintroductions and restoration of threatened species habitats. Our review and case studies emphasise that despite the scale of the challenge, a scientific understanding of threats and their impacts enables effective conservation actions to arrest decline and enhance recovery of threatened species and habitats.
Collapse
Affiliation(s)
- Leonie Monks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
- Corresponding author.
| | - Sarah Barrett
- Parks and Wildlife Service, Department of Biodiversity, Conservation and Attractions. 120 Albany Highway, Albany, Western Australia, 6330, Australia
| | - Brett Beecham
- Parks and Wildlife Service, Department of Biodiversity, Conservation and Attractions. P.O. Box 100, Narrogin, Western Australia, 6312, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
| | - Alanna Chant
- Parks and Wildlife Service, Department of Biodiversity, Conservation and Attractions. P.O. Box 72, Geraldton, Western Australia, 6531, Australia
| | - David Coates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
| | - J. Anne Cochrane
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
| | - Andrew Crawford
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
| | - Rebecca Dillon
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
| | - Colin Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983, Australia
| |
Collapse
|
9
|
Phylogenomics shows lignotuber state is taxonomically informative in closely related eucalypts. Mol Phylogenet Evol 2019; 135:236-248. [PMID: 30914394 DOI: 10.1016/j.ympev.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022]
Abstract
Plant taxa can be broadly divided based on the mechanisms enabling persistence through whole-crown disturbances, specifically whether individuals resprout, populations reseed, or both or neither of these mechanisms are employed. At scales from species through to communities, the balance of disturbance-response types has major ramifications for ecological function and biodiversity conservation. In some lineages, morphologically identical populations except for differences in a disturbance-response trait (e.g. ± lignotuber) occur, offering the opportunity to apply genetic analyses to test whether trait state is representative of broader genetic distinctiveness, or alternatively, variation in response to local environmental conditions. In eucalypts, a globally-significant plant group, we apply dense taxon sampling and high-density, genome-wide markers to test monophyly and genetic divergence among pairs of essentially morphologically-identical taxa excepting lignotuber state. Taxa differing in lignotuber state formed discrete phylogenetic lineages. Obligate-seeders were monophyletic and strongly differentiated from each other and lignotuber-resprouters, but this was not the case for all lignotuber-resprouter taxa. One lignotuber state transition within our sample clade was supported, implying convergence of some non-lignotuber morphology characters. Greater evolutionary rate associated with the obligate-seeder disturbance-response strategy offers a plausible explanation for these genetic patterns. Lignotuber state is an important taxonomic character in eucalypts, with transitions in lignotuber state having contributed to the evolution of the exceptional diversity of eucalypts in south-western Australia. Differences in lignotuber state have evolved directionally with respect to environmental conditions.
Collapse
|
10
|
Byrne M, Krauss SL, Millar MA, Elliott CP, Coates DJ, Yates C, Binks RM, Nevill P, Nistelberger H, Wardell-Johnson G, Robinson T, Butcher R, Barrett M, Gibson N. Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs. Biol Rev Camb Philos Soc 2018; 94:753-772. [PMID: 30479069 DOI: 10.1111/brv.12477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023]
Abstract
The high species endemism characteristic of many of the world's terrestrial island systems provides a model for studying evolutionary patterns and processes, yet there has been no synthesis of studies to provide a systematic evaluation of terrestrial island systems in this context. The banded iron formations (BIFs) of south-western Australia are ancient terrestrial island formations occurring within a mosaic of alluvial clay soils, sandplains and occasional granite outcropping, across an old, gently undulating, highly weathered, plateau. Notably, these BIFs display exceptionally high beta plant diversity. Here, we address the determinants and consequences of genetic diversity for BIF-associated plant species through a comprehensive review of all studies on species distribution modelling, phylogenetics, phylogeography, population genetics, life-history traits and ecology. The taxa studied are predominantly narrowly endemic to individual or a few BIF ranges, but some have more regional distributions occurring both on and off BIFs. We compared genetic data for these BIF-endemic species to other localised species globally to assess whether the unique history and ancestry of BIF landscapes has driven distinct genetic responses in plants restricted to this habitat. We also assessed the influence of life-history parameters on patterns of genetic diversity. We found that BIF-endemic species display similar patterns of genetic diversity and structure to other species with localised distributions. Despite often highly restricted distributions, large effective population size or clonal reproduction appears to provide these BIF-endemic species with ecological and evolutionary resilience to environmental stochasticity. We conclude that persistence and stochasticity are key determinants of genetic diversity and its spatial structure within BIF-associated plant species, and that these are key evolutionary processes that should be considered in understanding the biogeography of inselbergs worldwide.
Collapse
Affiliation(s)
- Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Siegfried L Krauss
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, Perth, WA, 6005, Australia
| | - Melissa A Millar
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia
| | - Carole P Elliott
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, Perth, WA, 6005, Australia
| | - David J Coates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia
| | - Colin Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia
| | - Rachel M Binks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Heidi Nistelberger
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Grant Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Todd Robinson
- School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ryonen Butcher
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia
| | - Matthew Barrett
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, Perth, WA, 6005, Australia
| | - Neil Gibson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
11
|
Roberts DG, Forrest CN, Denham AJ, Ayre DJ. Clonality disguises the vulnerability of a threatened arid zone Acacia. Ecol Evol 2017; 7:9451-9460. [PMID: 29187981 PMCID: PMC5696425 DOI: 10.1002/ece3.3246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Long-lived, widespread plant species are expected to be genetically diverse, reflecting the interaction between large population sizes, overlapping generations, and gene flow. Such species are thought to be resilient to disturbance, but may carry an extinction debt due to reproductive failure. Genetic studies of Australian arid zone plant species suggest an unusually high frequency of asexuality, polyploidy, or both. A preliminary AFLP genetic study implied that the naturally fragmented arid zone tree, Acacia carneorum, is almost entirely dependent on asexual reproduction through suckering, and stands may have lacked genetic diversity and interconnection even prior to the onset of European pastoralism. Here we surveyed microsatellite genetic variation in 20 stands to test for variation in life histories and further assessed the conservation status of the species by comparing genetic diversity within protected stands in National Parks and disturbed range lands. Using herbarium records, we estimate that 219 stands are extant, all of which occur in the arid zone, west of the Darling River in southeastern Australia. With two exceptions, all surveyed stands comprised only one multilocus genet and at least eight were putatively polyploid. Although some stands comprise thousands of stems, our findings imply that the species as a whole may represent ~240 distinct genetic individuals, many of which are polyploid, and most are separated by >10 km of unsuitable habitat. With only 34% of stands (and therefore genets) occurring within conservation reserves, A. carneorum may be at much greater risk of extinction than inferred from on-ground census data. Land managers should prioritize on-ground preservation of the genotypes within existing reserves, protecting both vegetative suckers and seedlings from herbivory. Importantly, three stands are known to set viable seed and should be used to generate genetically diverse germ-plasm for ex situ conservation, population augmentation, or translocation.
Collapse
Affiliation(s)
- David G Roberts
- School of Biological Sciences and Centre for Sustainable Ecosystem Services University of Wollongong Wollongong NSW Australia.,Present address: Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
| | - Cairo N Forrest
- School of Biological Sciences and Centre for Sustainable Ecosystem Services University of Wollongong Wollongong NSW Australia
| | - Andrew J Denham
- School of Biological Sciences and Centre for Sustainable Ecosystem Services University of Wollongong Wollongong NSW Australia.,New South Wales Office of Environment and Heritage Hurstville NSW Australia
| | - David J Ayre
- School of Biological Sciences and Centre for Sustainable Ecosystem Services University of Wollongong Wollongong NSW Australia
| |
Collapse
|
12
|
Assessing genetic structure in a rare clonal eucalypt as a basis for augmentation and introduction translocations. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0781-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|