1
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
2
|
Rutherford S, Rossetto M, Bragg JG, Wan JSH. Where to draw the boundaries? Using landscape genomics to disentangle the scribbly gum species complex. AMERICAN JOURNAL OF BOTANY 2023; 110:e16245. [PMID: 37747108 DOI: 10.1002/ajb2.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PREMISE Species delimitation is an integral part of evolution and ecology and is vital in conservation science. However, in some groups, species delimitation is difficult, especially where ancestral relationships inferred from morphological or genetic characters are discordant, possibly due to a complicated demographic history (e.g., recent divergences between lineages). Modern genetic techniques can take into account complex histories to distinguish species at a reasonable cost and are increasingly used in numerous applications. We focus on the scribbly gums, a group of up to five closely related and morphologically similar "species" within the eucalypts. METHODS Multiple populations of each recognized scribbly gum species were sampled over a wide region across climates, and genomewide scans were used to resolve species boundaries. RESULTS None of the taxa were completely divergent, and there were two genetically distinct entities: the inland distributed Eucalyptus rossii and a coastal conglomerate consisting of four species forming three discernible, but highly admixed groups. Divergence among taxa was likely driven by temporal vicariant processes resulting in partial separation across biogeographic barriers. High interspecific gene flow indicated separated taxa reconnected at different points in time, blurring species boundaries. CONCLUSIONS Our results highlight the need for genetic screening when dealing with closely related taxonomic entities, particularly those with modest morphological differences. We show that high-throughput sequencing can be effective at identifying species groupings and processes driving divergence, even in the most taxonomically complex groups, and be used as a standard practice for disentangling species complexes.
Collapse
Affiliation(s)
- Susan Rutherford
- Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, USA
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
| | - Justin S H Wan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Doyle CAT, Yap JS, Bragg J, Rossetto M, Orme A, Ooi MJK. Reproductive characteristics, population genetics, and pairwise kinship inform strategic recovery of a plant species in a fragmented landscape. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Chantelle A. T. Doyle
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Jia‐Yee Samantha Yap
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Jason Bragg
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Andrew Orme
- National Herbarium of New South Wales, Australian Institute of Botanical Science Royal Botanic Garden Sydney New South Wales Australia
| | - Mark J. K. Ooi
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
5
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Lu-Irving P, Bragg JG, Rossetto M, King K, O’Brien M, van der Merwe MM. Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:522. [PMID: 36771606 PMCID: PMC9921034 DOI: 10.3390/plants12030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of Hakea (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between H. sericea and H. teretifolia was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, H. sericea was found to be habitually selfing, while H. teretifolia more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Jason G. Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Kit King
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Mitchell O’Brien
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Innovation Quarter Westmead, Level 3, East Tower, 158-164 Hawkesbury Rd., Westmead, NSW 2145, Australia
| | - Marlien M. van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| |
Collapse
|
7
|
Wilson TC, Rossetto M, Bain D, Yap JS, Wilson PD, Stimpson ML, Weston PH, Croft L. A turn in species conservation for hairpin banksias: demonstration of oversplitting leads to better management of diversity. AMERICAN JOURNAL OF BOTANY 2022; 109:1652-1671. [PMID: 36164832 PMCID: PMC9828017 DOI: 10.1002/ajb2.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.
Collapse
Affiliation(s)
- Trevor C. Wilson
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - David Bain
- Ecosystems and Threatened Species, Biodiversity Conservation and ScienceNSW Department of Planning and EnvironmentWollongongAustralia
| | - Jia‐Yee S. Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Peter D. Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Margaret L. Stimpson
- Botany, School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNSW2351Australia
| | - Peter H. Weston
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
| | - Larry Croft
- Centre of Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelong3125VictoriaAustralia
| |
Collapse
|
8
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
9
|
Folio DM, Gil J, Caudron A, Labonne J. Genotype-by-environment interactions drive the maintenance of genetic variation in a Salmo trutta L. hybrid zone. Evol Appl 2021; 14:2698-2711. [PMID: 34815748 PMCID: PMC8591331 DOI: 10.1111/eva.13307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Allopatric gene pools can evolve in different directions through adaptive and nonadaptive processes and are therefore a source of intraspecific diversity. The connection of these previously isolated gene pools through human intervention can lead to intraspecific diversity loss, through extirpation of native populations or hybridization. However, the mechanisms leading to these situations are not always explicitly documented and are thus rarely used to manage intraspecific diversity. In particular, genotype-by-environment (GxE) interactions can drive postzygotic reproductive isolation mechanisms that may result in a mosaic of diversity patterns, depending on the local environment. We test this hypothesis using a salmonid species (Salmo trutta) in the Mediterranean (MED) area, where intensive stocking from non-native Atlantic (ATL) origins has led to various outcomes of hybridization with the native MED lineage, going from MED resilience to total extirpation via full hybridization. We investigate patterns of offspring survival at egg stage in natural environments, based on parental genotypes in interaction with river temperature, to detect potential GxE interactions. Our results show a strong influence of maternal GxE interaction on embryonic survival, mediated by maternal effect through egg size, and a weak influence of paternal GxE interaction. In particular, when egg size is large and temperature is cold, the survival rate of offspring originating from MED females is three times higher than that of ATL females' offspring. Because river temperatures show contrast at small scale, this cold adaptation for MED females' offspring constitutes a potent postzygotic mechanism to explain small-scale spatial heterogeneity in diversity observed in MED areas where ATL fish have been stocked. It also indicates that management efforts could be specifically targeted at the environments that actively favor native intraspecific diversity through eco-evolutionary processes such as postzygotic selection.
Collapse
Affiliation(s)
- Dorinda Marie Folio
- Université de Pau et des Pays de l’AdourUMR INRAE‐UPPAEcobiopSaint‐Pée‐sur‐NivelleFrance
- SCIMABIO InterfaceThonon‐les‐BainsFrance
| | - Jordi Gil
- UMR CARRTELINRAEUSMBThonon‐les‐BainsFrance
- Conservatoire des Espaces Naturels Rhône‐AlpesVogüeFrance
| | | | - Jacques Labonne
- Université de Pau et des Pays de l’AdourUMR INRAE‐UPPAEcobiopSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
10
|
Bragg JG, Yap JS, Wilson T, Lee E, Rossetto M. Conserving the genetic diversity of condemned populations: Optimizing collections and translocation. Evol Appl 2021; 14:1225-1238. [PMID: 34025763 PMCID: PMC8127699 DOI: 10.1111/eva.13192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
We consider approaches for conserving genetic diversity from plant populations whose destruction is imminent. We do this using SNP genotype data from two endangered species, Pimelea spicata and Eucalyptus sp. Cattai. For both species, we genotyped plants from a 'condemned' population and designed ex situ collections, characterizing how the size and composition of the collection affected the genetic diversity preserved. Consistent with previous observations, populations where genetic diversity was optimized captured more alleles than populations of equal size chosen at random. This benefit of optimization was larger when the propagation population was small. That is, small numbers of individuals (e.g. 20) needed to be selected carefully to capture a comparable proportion of alleles to optimized populations, but larger random populations (e.g. >48) captured almost as many alleles as optimized populations. We then examined strategies for generating translocation populations based on the horticultural constraints presented by each species. In P. spicata, which is readily grown from cuttings, we designed translocation populations of different sizes, using different numbers of ramets from each member of propagation populations. We then performed simulations to predict the loss of alleles from these populations over 10 generations. Large translocation populations were predicted to maintain a greater proportion of source population alleles than smaller translocation populations, but this effect was saturated beyond 200 individuals. In E. sp. Cattai, we examined strategies to promote the diversity of progeny from a conservation planting scenario with 36 individuals. This included the optimization of the spatial arrangement of the planting and supplementing the diversity of the condemned population with individuals from additional sites. In sum, we studied approaches for designing genetically diverse translocations of condemned populations for two species that require contrasting methods of propagation, illustrating the application of approaches that were useful in different circumstances.
Collapse
Affiliation(s)
- Jason G. Bragg
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
- School of Biological Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Jia‐Yee S. Yap
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
- Queensland Alliance of Agriculture and Food InnovationUniversity of QueenslandSanta LuciaQLDAustralia
| | - Trevor Wilson
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
| | - Enhua Lee
- Biodiversity and Conservation DivisionDepartment of Planning, Industry and EnvironmentParramattaNSWAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical Science, The Royal Botanic Garden SydneySydneyNSWAustralia
- Queensland Alliance of Agriculture and Food InnovationUniversity of QueenslandSanta LuciaQLDAustralia
| |
Collapse
|
11
|
Rossetto M, Yap JYS, Lemmon J, Bain D, Bragg J, Hogbin P, Gallagher R, Rutherford S, Summerell B, Wilson TC. A conservation genomics workflow to guide practical management actions. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Robins TP, Binks RM, Byrne M, Hopper SD. Landscape and taxon age are associated with differing patterns of hybridization in two Eucalyptus (Myrtaceae) subgenera. ANNALS OF BOTANY 2021; 127:49-62. [PMID: 32914170 PMCID: PMC7750730 DOI: 10.1093/aob/mcaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is an important evolutionary process that can have a significant impact on natural plant populations. Eucalyptus species are well known for weak reproductive barriers and extensive hybridization within subgenera, but there is little knowledge of whether patterns of hybridization differ among subgenera. Here, we examine eucalypts of Western Australia's Stirling Range to investigate how patterns of hybridization are associated with landscape and taxon age between the two largest Eucalyptus subgenera: Eucalyptus and Symphyomyrtus. In doing so, we tested a hypothesis of OCBIL (old, climatically buffered, infertile landscape) theory that predicts reduced hybridization on older landscapes. METHODS Single nucleotide polymorphism markers were applied to confirm the hybrid status, parentage and genetic structure of five suspected hybrid combinations for subg. Eucalyptus and three combinations for subg. Symphyomyrtus. KEY RESULTS Evidence of hybridization was found in all combinations, and parental taxa were identified for most combinations. The older parental taxa assessed within subg. Eucalyptus, which are widespread on old landscapes, were identified as well-defined genetic entities and all hybrids were exclusively F1 hybrids. In addition, many combinations showed evidence of clonality, suggesting that the large number of hybrids recorded from some combinations is the result of long-term clonal spread following a few hybridization events rather than frequent hybridization. In contrast, the species in subg. Symphyomyrtus, which typically occur on younger landscapes and are more recently evolved, showed less distinction among parental taxa, and where hybridization was detected, there were high levels of introgression. CONCLUSIONS Reduced hybridization in subg. Eucalyptus relative to extensive hybridization in subg. Symphyomyrtus affirmed the hypothesis of reduced hybridization on OCBILs and demonstrate that clade divergence times, landscape age and clonality are important drivers of differing patterns of speciation and hybridization in Eucalyptus.
Collapse
Affiliation(s)
- T P Robins
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
| | - R M Binks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - S D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, The University of Western Australia, Albany, WA, Australia
| |
Collapse
|
13
|
Rutherford S, Wan JSH, Cohen JM, Benson D, Rossetto M. Looks can be deceiving: speciation dynamics of co-distributed Angophora (Myrtaceae) species in a varying landscape. Evolution 2020; 75:310-329. [PMID: 33325041 DOI: 10.1111/evo.14140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms underlying species divergence remains a central goal in evolutionary biology. Landscape genetics can be a powerful tool for examining evolutionary processes. We used genome-wide scans to genotype samples from populations of eight Angophora species. Angophora is a small genus within the eucalypts comprising common and rare species in a heterogeneous landscape, making it an appropriate group to study speciation. We found A. hispida was highly differentiated from the other species. Two subspecies of A. costata (subsp. costata and subsp. euryphylla) formed a group, while the third (subsp. leiocarpa, which is only distinguished by its smooth fruits and provenance) was supported as a distinct pseudocryptic species. Other species that are morphologically distinct could not be genetically differentiated (e.g., A. floribunda and A. subvelutina). Distribution and genetic differentiation within Angophora were strongly influenced by temperature and humidity, as well as biogeographic barriers, particularly rivers and higher elevation regions. While extensive introgression was found between many populations of some species (e.g., A. bakeri and A. floribunda), others only hybridized at certain locations. Overall, our findings suggest multiple mechanisms drove evolutionary diversification in Angophora and highlight how genome-wide analyses of related species in a diverse landscape can provide insights into speciation.
Collapse
Affiliation(s)
- Susan Rutherford
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Justin S H Wan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Joel M Cohen
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Doug Benson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| |
Collapse
|