1
|
Bretin L, Husiev Y, Ramu V, Zhang L, Hakkennes M, Abyar S, Johns AC, Le Dévédec SE, Betancourt T, Kornienko A, Bonnet S. Red-Light Activation of a Microtubule Polymerization Inhibitor via Amide Functionalization of the Ruthenium Photocage. Angew Chem Int Ed Engl 2024; 63:e202316425. [PMID: 38061013 DOI: 10.1002/anie.202316425] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 12/21/2023]
Abstract
Photoactivated chemotherapy (PACT) is a promising cancer treatment modality that kills cancer cells via photochemical uncaging of a cytotoxic drug. Most ruthenium-based photocages used for PACT are activated with blue or green light, which penetrates sub-optimally into tumor tissues. Here, we report amide functionalization as a tool to fine-tune the toxicity and excited states of a terpyridine-based ruthenium photocage. Due to conjugation of the amide group with the terpyridine π system in the excited state, the absorption of red light (630 nm) increased 8-fold, and the photosubstitution rate rose 5-fold. In vitro, red light activation triggered inhibition of tubulin polymerization, which led to apoptotic cell death both in normoxic (21 % O2 ) and hypoxic (1 % O2 ) cancer cells. In vivo, red light irradiation of tumor-bearing mice demonstrated significant tumor volume reduction (45 %) with improved biosafety, thereby demonstrating the clinical potential of this compound.
Collapse
Affiliation(s)
- Ludovic Bretin
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Yurii Husiev
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Vadde Ramu
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Liyan Zhang
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Matthijs Hakkennes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Selda Abyar
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Andrew C Johns
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300, RA Leiden, The Netherlands
| |
Collapse
|
2
|
Exploration of 4-aminopyrrolo[2,3-d]pyrimidine as antitubercular agents. Mol Divers 2022; 27:753-765. [PMID: 35598185 PMCID: PMC9124159 DOI: 10.1007/s11030-022-10453-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/26/2022] [Indexed: 11/06/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide. Developing new anti-TB compounds using cost-effective processes is critical to reduce TB incidence and accomplish the End TB Strategy milestone. Herein, we describe the synthesis and structure–activity relationships of a library of thirty 7H-Pyrrolo[2,3-d]pyrimidine derivatives providing insights into the contributions of different aromatic, aryl and alkyl substitution at the C-4 position of the 7-deazapurine ring. The minimum inhibitory concentration (MIC) of the compounds against the green fluorescent protein (GFP) reporter strain of Mycobacterium tuberculosis was assayed using the standard broth microdilution method, and cell toxicity was determined using the MTT assay. Sixteen compounds displayed in vitro activity against the GFP reporter strain of Mycobacterium tuberculosis with MIC90 values of 0.488–62.5 µM. This study highlights the most potent derivative, N-(4-phenoxy phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine with a MIC90 value of 0.488 µM and was non-cytotoxic to the Vero cell line. Moreover, all the potent compounds from this series have a ClogP value less than 4 and molecular weight < 400; thus, likely to maintain drug-likeness during lead optimisation.
Collapse
|
3
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
4
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
5
|
Wang Y, Zhang WX, Xi Z. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem Soc Rev 2020; 49:5810-5849. [PMID: 32658233 DOI: 10.1039/c9cs00478e] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbodiimides are a unique class of heterocumulene compounds that display distinctive chemical properties. The rich chemistry of carbodiimides has drawn increasing attention from chemists in recent years and has made them exceedingly useful compounds in modern organic chemistry, especially in the synthesis of N-heterocycles. This review has outlined the extensive application of carbodiimides in the synthesis of N-heterocycles from the 1980s to today. A wide range of reactions for the synthesis of various types of N-heterocyclic systems (three-, four-, five-, six-, seven-, larger-membered and fused heterocycles) have been developed on the basis of carbodiimides and their derivatives.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Dasari R, Błauż A, Medellin DC, Kassim RM, Viera C, Santarosa M, van der Westhuyzen AE, van Otterlo WAL, Olivas T, Yildiz T, Betancourt T, Shuster CB, Rogelj S, Rychlik B, Hudnall T, Frolova LV, Kornienko A. Microtubule-Targeting 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins: Exploration of the N3 and N9 Positions and Interaction with Multidrug-Resistance Proteins. ChemMedChem 2019; 14:322-333. [PMID: 30562414 PMCID: PMC6476547 DOI: 10.1002/cmdc.201800658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Our laboratories have been investigating synthetic analogues of marine alkaloid rigidins that possess promising anticancer activities. These analogues, based on the 7-deazahypoxanthine skeleton, are available in one- or two-step synthetic sequences and exert cytotoxicity by disrupting microtubule dynamics in cancer cells. In the present work we extended the available structure-activity relationship (SAR) data to N3- and N9-substituted derivatives. Although N3 substitution results in loss of activity, the N9-substituted compounds retain nanomolar antiproliferative activities and the anti-tubulin mode of action of the original unsubstituted compounds. Furthermore, our results also demonstrate that multidrug-resistance (MDR) proteins do not confer resistance to both N9-unsubstituted and -substituted compounds. It was found that sublines overexpressing ABCG2, ABCC1, and ABCB1 proteins are as responsive to the rigidin analogues as their parental cell lines. Thus, the study reported herein provides further impetus to investigate the rigidin-inspired 7-deazahypoxanthines as promising anticancer agents.
Collapse
Affiliation(s)
- Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Derek C Medellin
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Roaa M Kassim
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Carlos Viera
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Maximo Santarosa
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Alet E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, 7602, Stellenbosch, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, 7602, Stellenbosch, South Africa
| | - Taryn Olivas
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Tugba Yildiz
- Materials Science and Engineering Program, Texas State University, San Marcos, TX, 78666, USA
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
- Materials Science and Engineering Program, Texas State University, San Marcos, TX, 78666, USA
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Snezna Rogelj
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Todd Hudnall
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Liliya V Frolova
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| |
Collapse
|
7
|
Cyclothiomethylation of primary amines with formaldehyde and aromatic dithiols – an effective method for the synthesis of cyclophanes. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2341-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
van der Westhuyzen AE, Frolova LV, Kornienko A, van Otterlo WAL. The Rigidins: Isolation, Bioactivity, and Total Synthesis-Novel Pyrrolo[2,3-d]Pyrimidine Analogues Using Multicomponent Reactions. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2018; 79:191-220. [PMID: 29455836 DOI: 10.1016/bs.alkal.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rigidins (2-6) are pyrrolopyrimidine alkaloids isolated from marine tunicates. Since their isolation, refinement of their total syntheses, and biochemical evaluation, interest toward this pyrrolo[2,3-d]pyrimidine scaffold as a medicinal candidate has been triggered. The derivatization of these natural products has led to the discovery of a novel range of 7-deazahypoxanthines, which exhibit extremely potent anticancer activity in human cancer cell lines. A major breakthrough toward the synthesis of rigidin and various rigidin analogues has been the application of multicomponent reactions (MCRs). The rapid assembly of molecular diversity and flexibility displayed by MCRs makes it an attractive strategy for the preparation of rigidin-inspired small molecules. Furthermore, a number of rigidin-like 7-deazaxanthine compounds have been reported in the literature and the popularity of implementing MCRs to construct these 7-deazaxanthines is highlighted here. It is our hope that the synthetic methods described in this chapter will result in the further generation of rigidin-inspired compounds that will move on from being "hits" into "leads" in the medicinal chemistry drug discovery pipeline and potentially into anticancer therapeutics.
Collapse
Affiliation(s)
- Aletta E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, South Africa
| | - Liliya V Frolova
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, United States
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, South Africa.
| |
Collapse
|
9
|
Fekete B, Palkó M, Haukka M, Fülöp F. Synthesis of Pyrrolo[1,2-a]pyrimidine Enantiomers via Domino Ring-Closure followed by Retro Diels-Alder Protocol. Molecules 2017; 22:molecules22040613. [PMID: 28406463 PMCID: PMC6154686 DOI: 10.3390/molecules22040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/14/2023] Open
Abstract
From 2-aminonorbornene hydroxamic acids, a simple and efficient method for the preparation of pyrrolo[1,2-a]pyrimidine enantiomers is reported. The synthesis is based on domino ring-closure followed by microwave-induced retro Diels-Alder (RDA) protocols, where the chirality of the desired products is transferred from norbornene derivatives. The stereochemistry of the synthesized compounds was proven by X-ray crystallography. The absolute configuration of the product is determined by the configuration of the starting amino hydroxamic acid.
Collapse
Affiliation(s)
- Beáta Fekete
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, FIN-40014 Turku, Finland.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös utca 6, Szeged H-6720, Hungary.
| |
Collapse
|
10
|
Khabibullina GR, Fedotova ES, Meshcheryakova ES, Buslaeva TM, Akhmetova VR, Ibragimov AG. Synthesis of Dithiaza- and Dioxadithiazacycloalkanes by Cyclothiomethylation of Arylamines with Formaldehyde and α,ω-Dithiols. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Saikia L, Roudragouda P, Thakur AJ. A one pot, two-step synthesis of 5-arylpyrrolo[2,3- d ]pyrimidines and screening of their preliminary antibacterial properties. Bioorg Med Chem Lett 2016; 26:992-998. [DOI: 10.1016/j.bmcl.2015.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022]
|
12
|
Medellin DC, Zhou Q, Scott R, Hill RM, Frail SK, Dasari R, Ontiveros SJ, Pelly SC, van Otterlo WAL, Betancourt T, Shuster CB, Hamel E, Bai R, LaBarbera DV, Rogelj S, Frolova LV, Kornienko A. Novel Microtubule-Targeting 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins with Potent in Vitro and in Vivo Anticancer Activities. J Med Chem 2015; 59:480-5. [PMID: 26641132 DOI: 10.1021/acs.jmedchem.5b01426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Docking studies of tubulin-targeting C2-substituted 7-deazahypoxanthine analogues of marine alkaloid rigidins led to the design and synthesis of compounds containing linear C2-substituents. The C2-alkynyl analogue was found to have double- to single-digit nanomolar antiproliferative IC50 values and showed statistically significant tumor size reduction in a colon cancer mouse model at nontoxic concentrations. These results provide impetus and further guidance for the development of these rigidin analogues as anticancer agents.
Collapse
Affiliation(s)
- Derek C Medellin
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - R Matthew Hill
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Sarah K Frail
- Departments of Chemistry and Biology, New Mexico Tech , Socorro, New Mexico 87801, United States
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Steven J Ontiveros
- Department of Biology, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University , Stellenbosch, Western Cape, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University , Stellenbosch, Western Cape, South Africa
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States.,Materials Science, Engineering, and Commercialization Program, Texas State University , San Marcos, Texas 78666, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick National Laboratory of Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick National Laboratory of Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Snezna Rogelj
- Departments of Chemistry and Biology, New Mexico Tech , Socorro, New Mexico 87801, United States
| | - Liliya V Frolova
- Departments of Chemistry and Biology, New Mexico Tech , Socorro, New Mexico 87801, United States
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| |
Collapse
|
13
|
Dasari R, De Carvalho A, Medellin DC, Middleton KN, Hague F, Volmar MNM, Frolova LV, Rossato MF, De La Chapa JJ, Dybdal-Hargreaves NF, Pillai A, Mathieu V, Rogelj S, Gonzales CB, Calixto JB, Evidente A, Gautier M, Munirathinam G, Glass R, Burth P, Pelly SC, van Otterlo WAL, Kiss R, Kornienko A. Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9-Epipolygodial against Drug-Resistant Cancer Cells. ChemMedChem 2015; 10:2014-26. [PMID: 26434977 PMCID: PMC4831215 DOI: 10.1002/cmdc.201500360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 12/18/2022]
Abstract
Polygodial, a terpenoid dialdehyde isolated from Polygonum hydropiper L., is a known agonist of the transient receptor potential vanilloid 1 (TRPV1). In this investigation a series of polygodial analogues were prepared and investigated for TRPV1-agonist and anticancer activities. These experiments led to the identification of 9-epipolygodial, which has antiproliferative potency significantly exceeding that of polygodial. 9-Epipolygodial was found to maintain potency against apoptosis-resistant cancer cells as well as those displaying the multidrug-resistant (MDR) phenotype. In addition, the chemical feasibility for the previously proposed mechanism of action of polygodial, involving the formation of a Paal-Knorr pyrrole with a lysine residue on the target protein, was demonstrated by the synthesis of a stable polygodial pyrrole derivative. These studies reveal rich chemical and biological properties associated with polygodial and its direct derivatives. These compounds should inspire further work in this area aimed at the development of new pharmacological agents, or the exploration of novel mechanisms of covalent modification of biological molecules with natural products.
Collapse
Affiliation(s)
- Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Annelise De Carvalho
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Derek C Medellin
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Kelsey N Middleton
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire, Faculté des Sciences, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Marie N M Volmar
- Neurosurgical Research, University Clinics Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Liliya V Frolova
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Mateus F Rossato
- Center of Innovation and Preclinical Studies, Av. Luiz Boiteux Piazza 1302, Cachoeira do Bom Jesus, Florianópolis, SC, 88056-000, Brazil
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jorge J De La Chapa
- Department of Comprehensive Dentistry, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Nicholas F Dybdal-Hargreaves
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akshita Pillai
- Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Ave., Rockford, IL, 61107, USA
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Snezna Rogelj
- Departments of Chemistry and Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - João B Calixto
- Center of Innovation and Preclinical Studies, Av. Luiz Boiteux Piazza 1302, Cachoeira do Bom Jesus, Florianópolis, SC, 88056-000, Brazil
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire, Faculté des Sciences, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Ave., Rockford, IL, 61107, USA
| | - Rainer Glass
- Neurosurgical Research, University Clinics Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patricia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n Campus do Valonguinho, Centro-Niterói, RJ, 24020-140, Brazil
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|