1
|
Milović E, Matić IZ, Petrović N, Pašić I, Stanojković T, Petrović MR, Bogdanović GA, Ari F, Janković N. Chlorine containing tetrahydropyrimidines: Synthesis, characterization, anticancer activity and mechanism of action. Bioorg Chem 2024; 153:107907. [PMID: 39490136 DOI: 10.1016/j.bioorg.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The aim of the presented research was to explore anticancer potential of eleven newly synthesized tetrahydropyrimidine derivatives. The compounds were synthesized via Biginelli multicomponent one-pot reaction using different derivatives of vanillin, ethyl 4-chloroacetoacetate and (N-methyl)urea. The cytotoxic effects of the compounds were examined on three human malignant cell lines (HeLa, K562, and MCF7), and normal lung fibroblasts MRC-5. The mechanisms of anticancer activity were examined for two compounds 4a and 4b which showed the strongest and selective cytotoxicity against chronic myelogenous leukaemia K562 cells (IC50 = 1.76 ± 0.09, and 1.66 ± 0.05, respectively). The changes of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and vascular endothelial growth factor A (VEGFA) were investigated in the K562 cell line, as well as oncomiRNA miR-10b, miR-23a described to have both features, depending on a specific type of malignancy, and miR-34a with mostly described as a tumour suppressor.
Collapse
Affiliation(s)
- Emilija Milović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia; "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Ivana Pašić
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia
| | | | - Miloš R Petrović
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade 11 000, Serbia
| | - Goran A Bogdanović
- "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Ferda Ari
- Department of Biology, Faculty of Science and Art, Bursa Uludag University, Bursa 16059, Turkey
| | - Nenad Janković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia.
| |
Collapse
|
2
|
Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, Shivangere NB, Attia SM, Nadeem A, Elayaperumal S, Kumar BRP. Novel dihydropyrimidines as promising EGFR & HER2 inhibitors: Insights from experimental and computational studies. Eur J Med Chem 2024; 275:116607. [PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
Collapse
Affiliation(s)
- Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuvaraj Sivamani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Kiran C Nilugal
- School of Pharmacy, Management and Science University, Selangor, 40100, Malaysia
| | | | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumitha Elayaperumal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
3
|
Cao S, Li H, Teng X, Si H, Chen R, Zhu Y. Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox‐Catalyzed Domino Annulation of Oxime Esters and Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Sánchez-Sancho F, Escolano M, Gaviña D, Csáky AG, Sánchez-Roselló M, Díaz-Oltra S, del Pozo C. Synthesis of 3,4-Dihydropyrimidin(thio)one Containing Scaffold: Biginelli-like Reactions. Pharmaceuticals (Basel) 2022; 15:ph15080948. [PMID: 36015096 PMCID: PMC9413519 DOI: 10.3390/ph15080948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
Collapse
Affiliation(s)
| | - Marcos Escolano
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Daniel Gaviña
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain;
| | - María Sánchez-Roselló
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Santiago Díaz-Oltra
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
- Correspondence: (S.D.-O.); (C.d.P.)
| | - Carlos del Pozo
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
- Correspondence: (S.D.-O.); (C.d.P.)
| |
Collapse
|
5
|
Zeng M, Xue Y, Qin Y, Peng F, Li Q, Zeng MH. CuBr-promoted domino Biginelli reaction for the diastereoselective synthesis of bridged polyheterocycles: mechanism studies and in vitro anti-tumor activities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Rathwa SK, Vasava MS, Bhoi MN, Borad MA, Patel HD. Recent advances in the synthesis of C-5-substituted analogs of 3,4-dihydropyrimidin-2-ones: A review. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1423503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sanjay K. Rathwa
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Mahesh S. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Manoj N. Bhoi
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Mayuri A. Borad
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|