1
|
Fujimori C, Umatani C, Chimura M, Ijiri S, Bando H, Hyodo S, Kanda S. In vitro and in vivo gene transfer in the cloudy catshark Scyliorhinus torazame. Dev Growth Differ 2022; 64:558-565. [PMID: 36376176 PMCID: PMC10099843 DOI: 10.1111/dgd.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Cartilaginous fishes have various unique physiological features such as a cartilaginous skeleton and a urea-based osmoregulation strategy for adaptation to their marine environment. Also, because they are a sister group of bony vertebrates, understanding their unique features is important from an evolutionary perspective. However, genetic engineering based on gene functions as well as cellular behavior has not been effectively utilized in cartilaginous fishes. This is partly because their reproductive strategy involves internal fertilization, which results in difficulty in microinjection into fertilized eggs at the early developmental stage. Here, to identify efficient gene transfer methods in cartilaginous fishes, we examined the effects of various methods both in vitro and in vivo using the cloudy catshark, a candidate model cartilaginous fish species. In all methods, green fluorescent protein (GFP) expression was used to evaluate exogenous gene transfer. First, we examined gene transfer into primary cultured cells from cloudy catshark embryos by lipofection, polyethylenimine (PEI) transfection, adenovirus infection, baculovirus infection, and electroporation. Among the methods tested, lipofection, electroporation, and baculovirus infection enabled the successful transfer of exogenous genes into primary cultured cells. We then attempted in vivo transfection into cloudy catshark embryos by electroporation and baculovirus infection. Although baculovirus-injected groups did not show GFP fluorescence, electroporation successfully introduced GFP into muscle cells. Furthermore, we succeeded in GFP transfer into adult tissues by electroporation. The in vitro and in vivo gene transfer methods that worked in this study may open ways for genetic manipulation including knockout experiments and cellular lineage analysis in cartilaginous fishes.
Collapse
Affiliation(s)
- Chika Fujimori
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Misaki Chimura
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Hisanori Bando
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Susumu Hyodo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Ruiz N, de Abreu LA, Parizi LF, Kim TK, Mulenga A, Braz GRC, Vaz IDS, Logullo C. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS One 2015; 10:e0130008. [PMID: 26091260 PMCID: PMC4474930 DOI: 10.1371/journal.pone.0130008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/15/2015] [Indexed: 11/18/2022] Open
Abstract
RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.
Collapse
Affiliation(s)
- Newton Ruiz
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda—Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM/UFRJ), Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica–Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Carlos Logullo
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- * E-mail:
| |
Collapse
|
3
|
Hai A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. LAB ON A CHIP 2012; 12:2865-73. [PMID: 22678065 DOI: 10.1039/c2lc40091j] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study demonstrates the use of on-chip gold mushroom-shaped microelectrodes (gMμEs) to generate localized electropores in the plasma membrane of adhering cultured neurons and to electrophysiologically monitor the ensuing membrane repair dynamics. Delivery of an alternating voltage pulse (0.5-1 V, 100 Hz, 300 ms) through an extracellularly positioned micrometer-sized gMμE electroporates the patch of plasma membrane facing the microelectrode. The repair dynamics of the electropores were analyzed by continuous monitoring of the neuron transmembrane potential, input resistance (R(in)) and action potential (AP) amplitude with an intracellular microelectrode and a number of neighbouring extracellular gMμEs. Electroporation by a gMμE is associated with local elevation of the free intracellular calcium concentration ([Ca(2+)](i)) around the gMμE. The membrane repair kinetics proceeds as an exponential process interrupted by abrupt recovery steps. These abrupt events are consistent with the "membrane patch model" of membrane repair in which patches of intracellular membrane fuse with the plasma membrane at the site of injury. Membrane electroporation by a single gMμE generates a neuron-gMμE configuration that permits recordings of attenuated intracellular action potentials. We conclude that the use of on-chip cultured neurons via a gMμE configuration provides a unique neuroelectronic interface that enables the selection of individual cells for electroporation, generates a confined electroporated membrane patch, monitors membrane repair dynamics and records attenuated intracellular action potentials.
Collapse
Affiliation(s)
- Aviad Hai
- Department of Neurobiology the Life Sciences Institute, and the Harvey M. Kruger Family center for Nanoscience and Nanotechnology. The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
4
|
Yuan TF, Menéndez-González M, Arias-Carrión O. Single neuron electroporation in manipulating and measuring the central nervous system. Int Arch Med 2010; 3:28. [PMID: 21054865 PMCID: PMC2987861 DOI: 10.1186/1755-7682-3-28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 01/20/2023] Open
Abstract
The development and application of single neuron electroporation largely advanced the use of traditional genetics in investigations of the central nervous system. This quick and accurate manipulation of the brain at individual neuron level allowed the gain and loss of functional analyses of different genes and/or proteins. This manuscript reviewed the development of the technique and discussed some technical aspects in practical manipulations. Then the manuscript summarized the potential applications with this technique. Last but not least, the technique showed prospective future when combined with other modern methods in neuroscience research.
Collapse
|
5
|
Braeken D, Huys R, Loo J, Bartic C, Borghs G, Callewaert G, Eberle W. Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes. Biosens Bioelectron 2010; 26:1474-7. [PMID: 20727728 DOI: 10.1016/j.bios.2010.07.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/07/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
The investigation of single-neuron parameters is of great interest because many aspects in the behavior and communication of neuronal networks still remain unidentified. However, the present available techniques for single-cell measurements are slow and do not allow for a high-throughput approach. We present here a CMOS compatible microelectrode array with 84 electrodes (with diameters ranging from 1.2 to 4.2 μm) that are smaller than the size of cell, thereby supporting single-cell addressability. We show controllable electroporation of a single cell by an underlying electrode while monitoring changes in the intracellular membrane potential. Further, by applying a localized electrical field between two electrodes close to a neuron while recording changes in the intracellular calcium concentration, we demonstrate activation of a single cell (∼270%, DF/F(0)), followed by a network response of the neighboring cells. The technology can be easily scaled up to larger electrode arrays (theoretically up to 137,000 electrodes/mm(2)) with active CMOS electronics integration able to perform high-throughput measurements on single cells.
Collapse
Affiliation(s)
- Dries Braeken
- Bioelectronics Group, Imec, Kapeldreef 75, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | |
Collapse
|
6
|
Braeken D, Huys R, Loo J, Bartic C, Borghs G, Callewaert G, Eberle W. Single-cell stimulation and electroporation using a novel 0.18 µ CMOS chip with subcellular-sized electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:6473-6476. [PMID: 21096721 DOI: 10.1109/iembs.2010.5627352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In drug screening and pharmaceutical research, high-throughput systems that are able to perform single-cell measurements are highly desired. Micro-electrode arrays try to answer this need but still suffer from significant drawbacks such as a small amount of electrodes and the inability to address single cells. Here, we present a novel multi-transistor array chip with 16,384 subcellular-sized electrodes based on 0.18 µm CMOS technology. We show that single-cell stimulation is possible by applying voltage pulses on the electrode to stimulate the cells lying on top. Electroporation of the cell membrane is observed using the whole-cell patch clamp technique and fluorescent dye-based live imaging. This technology could be used for high-throughput, single-cell manipulations for the purpose of large-scale drug screening and the investigation of fundamental cell processes.
Collapse
Affiliation(s)
- Dries Braeken
- Bioelectronics Group, Imec, Kapeldreef 75, 3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
7
|
Chang WC, Sretavan DW. Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls. Biosens Bioelectron 2009; 24:3600-7. [PMID: 19535240 DOI: 10.1016/j.bios.2009.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 11/25/2022]
Abstract
As biomedical research has moved increasingly towards experimentation on single cells and subcellular structures, there has been a need for microscale devices that can perform manipulation and stimulation at a correspondingly small scale. We propose a microelectrode array (MEA) featuring thickened microelectrodes with vertical sidewalls (VSW) to focus electrical fields horizontally on targets positioned in between paired electrodes. These microelectrodes were fabricated using gold electroplating that was molded by photolithographically patterned SU-8 photoresist. Finite element modeling showed that paired VSW electrodes produce more uniform electrical fields compared to conventional planar microelectrodes. Using paired microelectrodes, 3 microm thick and spaced 10 microm apart, we were able to perform local electroporation of individual axonal processes, as demonstrated by entry of EGTA to locally chelate intra-axonal calcium, quenching the fluorescence of a pre-loaded calcium indicator dye. The same electrode configuration was used to electroporate individual cells, resulting in the targeted transfection of a transgene expressing a cytoplasmically soluble green fluorescent protein (GFP). In addition to electroporation, our electrode configuration was also capable of precisely targeted field stimulation on individual neurons, resulting in action potentials that could be tracked by optical means. With its ability to deliver well-characterized electrical fields and its versatility, our configuration of paired VSW electrodes may provide the basis for a new tool for high-throughput and high-content experimentation in broad areas of neuroscience and biomedical research.
Collapse
Affiliation(s)
- Wesley C Chang
- Department of Ophthalmology, University of California, K110, Box 0730, UC San Francisco, 10 Koret Way, K-110, San Francisco, CA 94143, USA.
| | | |
Collapse
|
8
|
Yuan TF. Vaccination by muscle electroporation: The injury helps. Vaccine 2008; 26:4105-6. [DOI: 10.1016/j.vaccine.2008.05.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 05/25/2008] [Indexed: 10/21/2022]
|
9
|
Abstract
Modern electroporation has been widely and successfully used in gene therapies and drug submissions on large animals including human. The DNA vaccine submission was now focused on muscle electroporation and has been shown to be a perspective application. Here we review some potentials of this application and discuss some difficulties in practical works.
Collapse
|