1
|
Ortega-Cuellar D, González-Sánchez I, Piñón-Zárate G, Cerbón MA, De la Rosa V, Franco-Juárez Y, Castell-Rodríguez A, Islas LD, Coronel-Cruz C. Protector Role of Cx30.2 in Pancreatic β-Cell against Glucotoxicity-Induced Apoptosis. BIOLOGY 2024; 13:468. [PMID: 39056663 PMCID: PMC11273625 DOI: 10.3390/biology13070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family. Two Cx genes have been identified in β cells, Cx36 and Cx30.2. We have found evidence that the glucose concentration on its own is sufficient to regulate Cx30.2 gene expression in mouse islets. In this work, we examine the involvement of the Cx30.2 protein in the survival of β cells (RIN-m5F). METHODS RIN-m5F cells were cultured in 5 mM D-glucose (normal) or 30 mM D-glucose (high glucose) for 24 h. Cx30.2 siRNAs was used to downregulate Cx30.2 expression. Apoptosis was measured by means of TUNEL, an annexin V staining method, and the cleaved form of the caspase-3 protein was determined using Western blot. RESULTS High glucose did not induce apoptosis in RIN-m5F β cells after 24 h; interestingly, high glucose increased the Cx30.2 total protein levels. Moreover, this work found that the downregulation of Cx30.2 expression in high glucose promoted apoptosis in RIN-m5F cells. CONCLUSION The data suggest that the upregulation of Cx30.2 protects β cells from hyperglycemia-induced apoptosis. Furthermore, Cx30.2 may be a promising avenue of therapeutic investigation for the treatment of glucose metabolic disorders.
Collapse
Affiliation(s)
- Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (D.O.-C.); (Y.F.-J.)
| | - Ignacio González-Sánchez
- Departamento de Biología, Facultad de Química, UNAM, Mexico City 04510, Mexico; (I.G.-S.); (M.A.C.)
| | - Gabriela Piñón-Zárate
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (G.P.-Z.); (A.C.-R.)
| | - Marco A. Cerbón
- Departamento de Biología, Facultad de Química, UNAM, Mexico City 04510, Mexico; (I.G.-S.); (M.A.C.)
| | - Víctor De la Rosa
- Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (V.D.l.R.); (L.D.I.)
| | - Yuliana Franco-Juárez
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (D.O.-C.); (Y.F.-J.)
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (G.P.-Z.); (A.C.-R.)
| | - León D. Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (V.D.l.R.); (L.D.I.)
| | - Cristina Coronel-Cruz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (G.P.-Z.); (A.C.-R.)
| |
Collapse
|
2
|
Zhang L, Shi L, Han J, Li Z. Protection of β-pancreatic cells from dysfunctionality of insulin using vitexin by apoptosis of INS-1 cells. Arch Physiol Biochem 2023; 129:1160-1167. [PMID: 33835897 DOI: 10.1080/13813455.2021.1910714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
AIMS This study was performed to explore the possible beneficial effects of vitexin on high glucose (HG)-induced cytotoxicity in pancreatic β-cells. METHODS INS-1 pancreatic β-cell line has used this study. HG-induced (33 Mm) exposed INS-1 cell death; the apoptosis INS-1 cells treated vitexin 10, 20, 40, and 80 µg/mL for 24 hours. The anti-apoptosis properties were evaluated by MTT assay, glucose-stimulated insulin secretion assay, biochemical assay, annexin-V-FITC staining and western blot analysis. RESULTS These findings demonstrate that vitexin treatment improved the HG-exposure, reduced the INS-1 cell viability and significantly enhanced glucose-stimulated insulin secretion in a dose-dependent manner. The antioxidant studies revealed that vitexin treatment significantly decreased lipid peroxidation and reactive oxygen species and increased antioxidant level of INS-1 cell line in 24 hrs. The findings of the study suggested that in the vitexin treatment group, pancreatic apoptosis and Bax protein expression reduced significantly. At the same time, Bcl-2 protein expression increased, and NF-κB protein in HG-induced INS-cells was inhibited. CONCLUSION Therefore, our results suggest that vitexin can be successfully used to regulate the expression of Bcl-2 family proteins, reduce lipid peroxidation and to improve the secretion of antioxidants in pancreatic β-cell lines.
Collapse
Affiliation(s)
- Li Zhang
- Department of endocrinology, The Fourth People's Hospital of Jinan city, Jinan, Shandong Province, China
| | - Lianfeng Shi
- Department of First General Medicine, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Juanjuan Han
- Department of First General Medicine, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Zhenzuo Li
- Department of endocrinology, The Fourth People's Hospital of Jinan city, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Huang XT, Xiong DY, Xiao JN, Deng L, Liu W, Tang SY. Kindlin-2 protects pancreatic β cells through inhibiting NLRP3 inflammasome activation in diabetic mice. Biochem Biophys Res Commun 2022; 614:1-8. [PMID: 35567938 DOI: 10.1016/j.bbrc.2022.04.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Diabetes mellitus has been a major public health problem worldwide, characterized by insulin resistance and dysfunction of β-cells. A previous study showed that Kindlin-2 loss in β-cells dramatically reduces insulin secretion and decreases β-cell mass, resulting in severe diabetes-like phenotypes. It suggests that Kindlin-2 in β-cells play an important role in regulating glucose homeostasis. However, the effect of Kindlin-2 on the function of β-cells under chronic hyperglycemia in diabetes has not been explored. Here we report that Kindlin-2 overexpression ameliorates diabetes and improves insulin secretion in mice induced by streptozocin. In contrast, Kindlin-2 insufficiency exacerbates diabetes and promotes β-cells dysfunction and inflammation in β-cells induced by a high-fat diet (HFD). In vitro, Kindlin-2 overexpression prevented high-glucose (HG)-induced dysfunction in β-cells. Kindlin-2 overexpression also decreased the expression of pro-inflammatory cytokines and NLRP3 inflammasome expression in β-cells exposed to HG. Furthermore, the loss of Kindlin-2 aggravates the expression of inflammatory cytokines and NLRP3 induced by HG in β-cells. Collectively, we demonstrate that Kindlin-2 protects against diabetes by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Da-Yan Xiong
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Jin-Nan Xiao
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
5
|
Li T, Quan H, Zhang H, Lin L, Ou Q, Chen K. Silencing cyclophilin A improves insulin secretion, reduces cell apoptosis, and alleviates inflammation as well as oxidant stress in high glucose-induced pancreatic β-cells via MAPK/NF-kb signaling pathway. Bioengineered 2021; 11:1047-1057. [PMID: 32970961 PMCID: PMC8291783 DOI: 10.1080/21655979.2020.1823729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cyclophilin A is increased in the plasm of diabetic patients, while its effects on high glucose (HG)-stimulated pancreatic β-cells are still pending. The aim of this research is to investigate the effects of cyclophilin A inhibition on HG-challenged pancreatic β-cells. For investigating the effects of cyclophilin A decrease on HG-induced pancreatic β-cells, the cells were separated into normal glucose (NG), Mannitol, HG, HG + shRNA-NC, and HG + shRNA-Cyclophilin A-1 groups. The protein and mRNA expression were detected via Western blot and qRT-PCR. CCK-8 assay and flow cytometry were employed for assessing cell viability and apoptosis. The levels of oxidative stress, inflammation, and insulin secretion were detected by corresponding kits. The cyclophilin A was higher in HG group. Knockdown of cyclophilin A was able to increase insulin secretion, decrease cell apoptosis, and alleviate inflammation as well as oxidant stress in HG-treated pancreatic β-cells via MAPK/NF-kb pathway. Taken together, Cyclophilin A, highly expressed in pancreatic β-cells induced by HG, is a promising therapeutic target for diabetes. Knockdown of cyclophilin A has protective effects against HG-challenged pancreatic β-cells via regulation of MAPK/NF-kb pathway. The findings in this study provided a new strategy for diabetic treatment and paved the way for future researches on diabetes treatment.
Collapse
Affiliation(s)
- Tangying Li
- Department of Health Care Centre, Hainan General Hospital , Haikou, Hainan, China
| | - Huibiao Quan
- Department of Endocrinology, Hainan General Hospital , Haikou, Hainan, China
| | - Huachuan Zhang
- Department of Endocrinology Laboratory, Hainan General Hospital , Haikou, Hainan, China
| | - Leweihua Lin
- Department of Endocrinology, Hainan General Hospital , Haikou, Hainan, China
| | - Qianying Ou
- Department of Endocrinology, Hainan General Hospital , Haikou, Hainan, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital , Haikou, Hainan, China
| |
Collapse
|
6
|
Liu Y, Mu S, Chen W, Liu S, Cong Y, Liu J, Jia N. Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. ENDOCRINOL DIAB NUTR 2021; 68:329-337. [PMID: 34556263 DOI: 10.1016/j.endien.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
Abstract
Saponins are the main bioactive substances with anti-hyperglycemic activities of Momordica charantia. This study aimed to verify the effects of M. charantia saponins on insulin secretion and explore the potential underlying mechanisms in INS-1 pancreatic β-cells. We injured INS-1 cells with 33.3mM glucose and then treated them with saponins. Saponins improved cell morphology and viability as demonstrated by inverted microscopy and CCK8 detection and significantly increased insulin secretion in a concentration-dependent manner as shown by ELISA. Thus, we obtained the optimal concentration for the subsequent experiments. Potential mechanisms were explored by immunofluorescence, western blotting, and RT-qPCR techniques. First, saponins increased the mRNA and protein levels of IRS-2 but decreased the serine 731 phosphorylation level of IRS-2. Moreover, saponins increased the phosphorylation of Akt protein and decreased the protein level of FoxO1, which were both reversed by the PI3K inhibitor ly294002. Furthermore, saponins increased the protein level of the downstream molecule and insulin initiating factor PDX-1, which was also reversed by ly294002. Saponins also increased Akt and PDX-1 mRNA and decreased FoxO1 mRNA, which were both reversed by ly294002. Saponins increased glucose-stimulated insulin secretion (GSIS) and intracellular insulin content, which were reversed by ly294002, as determined by ELISA. The immunofluorescence results also confirmed this tendency. In conclusion, our findings improve our understanding of the function of saponins in INS-1 pancreatic β-cells and suggest that saponins may increase insulin secretion via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Yufan Liu
- Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shumin Mu
- Department of Endocrinology, Hospital Affiliated to Shandong Traditional Chinese Medicine University, Jinan, China.
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shiyin Liu
- First Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxuan Cong
- Department of Endocrinology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Jiajia Liu
- Department of Endocrinology, People's Hospital of Gaotang County, Liaocheng, China
| | - Ning Jia
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
7
|
Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. ACTA ACUST UNITED AC 2020; 68:329-337. [PMID: 33069631 DOI: 10.1016/j.endinu.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Saponins are the main bioactive substances with anti-hyperglycemic activities of Momordica charantia. This study aimed to verify the effects of M. charantia saponins on insulin secretion and explore the potential underlying mechanisms in INS-1 pancreatic β-cells. We injured INS-1 cells with 33.3mM glucose and then treated them with saponins. Saponins improved cell morphology and viability as demonstrated by inverted microscopy and CCK8 detection and significantly increased insulin secretion in a concentration-dependent manner as shown by ELISA. Thus, we obtained the optimal concentration for the subsequent experiments. Potential mechanisms were explored by immunofluorescence, western blotting, and RT-qPCR techniques. First, saponins increased the mRNA and protein levels of IRS-2 but decreased the serine 731 phosphorylation level of IRS-2. Moreover, saponins increased the phosphorylation of Akt protein and decreased the protein level of FoxO1, which were both reversed by the PI3K inhibitor ly294002. Furthermore, saponins increased the protein level of the downstream molecule and insulin initiating factor PDX-1, which was also reversed by ly294002. Saponins also increased Akt and PDX-1 mRNA and decreased FoxO1 mRNA, which were both reversed by ly294002. Saponins increased glucose-stimulated insulin secretion (GSIS) and intracellular insulin content, which were reversed by ly294002, as determined by ELISA. The immunofluorescence results also confirmed this tendency. In conclusion, our findings improve our understanding of the function of saponins in INS-1 pancreatic β-cells and suggest that saponins may increase insulin secretion via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
|
8
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Hassan HM, Elmaidomy AH, Abdelmohsen UR. Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Adv 2020; 10:24951-24972. [PMID: 35517468 PMCID: PMC9055232 DOI: 10.1039/d0ra03576a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
Sargassum (F. Sargassaceae) is an important seaweed excessively distributed in tropical and subtropical regions.
Collapse
Affiliation(s)
- Mohammed I. Rushdi
- Department of Pharmacognosy
- Faculty of Pharmacy
- South Valley University
- Qena
- Egypt
| | | | - Hani Saber
- Department of Botany and Microbiology
- Faculty of Science
- South Valley University
- Qena
- Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy
- Faculty of Pharmacy
- Minia University
- 61519 Minia
- Egypt
| | - Wedad M. Abdelraheem
- Department of Medical Microbiology and Immunology
- Faculty of Medicine
- Minia University
- 61519 Minia
- Egypt
| | - Hashem A. Madkour
- Department of Marine and Environmental Geology
- National Institute of Oceanography and Fisheries
- 84511 Hurghada
- Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|