1
|
Kim S, Yeop Baek S, Cha C. Bioactive Microgels with Tunable Microenvironment as a 3D Platform to Guide the Complex Physiology of Hepatocellular Carcinoma Spheroids. Chembiochem 2024:e202400482. [PMID: 39226234 DOI: 10.1002/cbic.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it often disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC's, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.
Collapse
Affiliation(s)
- Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Hora J, Rambhia N, Mani I. Drug repurposing for personalized medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:107-122. [PMID: 38942534 DOI: 10.1016/bs.pmbts.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Personalized medicine has emerged as a revolutionary approach to healthcare in the 21st century. By understanding a patient's unique genetic and biological characteristics, it aims to tailor treatments specifically to the individual. This approach takes into account factors such as an individual's lifestyle, genetic makeup, and environmental factors to provide targeted therapies that have the potential to be more effective and lower the risk of side reactions or ineffective treatments. It is a paradigm shift from the traditional "one size fits all" approach in medicine, where patients with similar symptoms or diagnoses receive the same standard treatments regardless of their differences. It leads to improved clinical outcomes and more efficient use of healthcare resources. Drug repurposing is a strategy that uses existing drugs for new indications and aims to take advantage of the known safety profiles, pharmacokinetics, and mechanisms of action of these drugs to accelerate the development process. Precision medicine may undergo a revolutionary change as a result, enabling the rapid development of novel treatment plans utilizing drugs that traditional methods would not otherwise link to. In this chapter, we have focused on a few strategies wherein drug repurposing has shown great success for precision medicine. The approach is particularly useful in oncology as there are many variations induced in the genetic material of cancer patients, so tailored treatment approaches go a long way. We have discussed the cases of breast cancer, glioblastoma and hepatocellular carcinoma. Other than that, we have also looked at drug repurposing approaches in anxiety disorders and COVID-19.
Collapse
Affiliation(s)
- Jahnvi Hora
- Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nishita Rambhia
- Manipal School of Life Science, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
3
|
Abdelall EKA, Elshemy HAH, Labib MB, Mohamed FEA. Design, synthesis of novel chromene-based scaffolds targeting hepatocellular carcinoma: Cell cycle arrest, cytotoxic effect against resistant cancer cells, apoptosis induction, and c-Src inhibition. Drug Dev Res 2024; 85:e22133. [PMID: 37971069 DOI: 10.1002/ddr.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
New chromene derivatives were synthesized based on 4-(3,4-dimethoxy)-4H-chromene scaffold. All target compounds exhibited cytotoxic activity against HepG2 cells (IC50 = 2.40-141.22 μM). Chromens 5 and 9 showed superior cytotoxicity over staurosporine (IC50 = 18.27 μM) and vinblastine (IC50 = 5.20 μM). c-Src kinase inhibition assay of compounds 5 and 9 displayed the dominant c-Src inhibitory activity of 5 (IC50 = 0.184 μM) over 9 (IC50 = 0.288 μM). The safety of the most potent compound 5 against normal WI-38 cells was confirmed via its IC50 of 115.75 μM comparable with 5-FU (IC50 = 16.28 μM). Moreover, the promising chromene 5 displayed potent cytotoxicity against resistant HepG2 cells with IC50 of 26.03 μM comparable with 5-FU (IC50 = 42.68 μM). The most active chromene 5 arrested the HepG2 cell cycle at the S phase and induced a 29-fold increase in the total number of apoptotic cells indicating pre-G1 apoptosis. The ability of compound 5 to induce apoptosis was supported via elevation of caspase-3, caspase-7, caspase-9 and proapoptotic Bax protein levels in addition to downregulation of the antiapoptotic Bcl2 protein. Molecular docking studies of compound 5 showed good binding interaction pattern inside c-Src kinase enzyme active site.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Takahashi M, Araki T, Yashima H, Nagamine A, Nagano D, Yamamoto K. Increased c‑SRC expression is involved in acquired resistance to lenvatinib in hepatocellular carcinoma. Oncol Lett 2023; 26:529. [PMID: 38020292 PMCID: PMC10654551 DOI: 10.3892/ol.2023.14116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023] Open
Abstract
Lenvatinib, a multi-kinase inhibitor, serves a crucial role in the treatment of unresectable hepatocellular carcinoma (HCC). However, >50% of patients receiving lenvatinib therapy experience tumor growth or metastasis within 1 year, highlighting the need to address acquired resistance as a critical clinical challenge. To elucidate the factors associated with acquired resistance to lenvatinib, a lenvatinib-resistant HCC cell line (JHH-7_LR) was established by exposing a lenvatinib-sensitive HCC cell line, JHH-7, to lenvatinib. The changes in protein expression associated with the development of resistance were analyzed using a proteomic approach, detecting 1,321 proteins and significant changes in the expression of 267 proteins. Using Ingenuity Pathway Analysis bioinformatics software, it was revealed that the activity of multiple signaling pathways varied alongside the changes in expression of these proteins, and c-SRC was identified as a protein involved in a number of these signaling pathways, with its activity varying markedly upon the acquisition of resistance. When co-administering dasatinib, a c-SRC inhibitor, the partial restoration of lenvatinib sensitivity in the JHH-7_LR cell line was observed. The present study demonstrated that increased c-SRC expression was partially associated with HCC resistance to lenvatinib, suggesting that c-SRC inhibition could reduce the resistance of HCC to lenvatinib.
Collapse
Affiliation(s)
- Masamitsu Takahashi
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Takuya Araki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Hideaki Yashima
- Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Nagamine
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Education Center for Clinical Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Daisuke Nagano
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Education and Research Center for Clinical Pharmacy, Faculty of Pharmacy, Niigata University of Pharmacy and Medical and Applied Life Sciences, Niigata, Niigata 956-8603, Japan
| | - Koujirou Yamamoto
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
5
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
6
|
Kasner MT, Halloran MB, Pan J, Ritchie EK, Fetterly GJ, Kramer D, Hangauer DG, Thompson JE. A phase Ib dose escalation study of oral monotherapy with KX2-391 in elderly patients with acute myeloid leukemia. Invest New Drugs 2022; 40:773-781. [PMID: 35579731 DOI: 10.1007/s10637-022-01255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Poor tolerance to standard therapies and multi-drug resistance complicate treatment of elderly patients with acute myeloid leukemia (AML). It is therefore imperative to explore novel tolerable agents and target alternative pathways. KX2-391 is an oral non-ATP-competitive inhibitor of Src kinase and tubulin polymerization. This multi-center phase Ib open-label safety and activity study involved elderly patients with relapsed or refractory AML, or who declined standard chemotherapy. Twenty-four patients averaging 74 years of age were enrolled. The majority previously received hypomethylating agents. Five doses were tested: 40 mg (n = 1), 80 mg (n = 2), 120 mg (n = 8), 140 mg (n = 12), and 160 mg (n = 1). Seven patients were treated for 12 days or less, nine for 15-29 days, five for 33-58 days, and three for 77-165 days. One patient receiving 120 mg for 165 days had reduced splenomegaly and survived 373 days. Another had no evidence of disease progression for 154 days. One patient receiving 160 mg for 12 days remained treatment-free for about 18 months. Dose-limiting toxicities occurred in eight patients at: 120 mg (transaminitis, hyperbilirubinemia), 140 mg (mucositis, allergic reaction, transaminitis, acute kidney injury), and 160 mg (mucositis). The maximum tolerated dose for KX2-391 was 120 mg once daily. KX2-391 bone marrow concentrations were approximately similar to plasma concentrations. This is the first study to evaluate the safety of KX2-391 in elderly patients with AML. Further studies are warranted, including alternative dosing phase I trials evaluating shorter courses at higher doses and phase II trials. (Clinical Trial Registration:The study was registered at ClinicalTrials.gov: NCT01397799 (July 20, 2011)).
Collapse
Affiliation(s)
- Margaret T Kasner
- Thomas Jefferson University, 834 Chestnut Street, Philadelphia, PA, 19107, USA.
| | - Molly B Halloran
- Thomas Jefferson University, 834 Chestnut Street, Philadelphia, PA, 19107, USA
| | - Jonathan Pan
- Cooper University Healthcare, 2 Cooper Plaza, Camden, NJ, 08103, USA
| | - Ellen K Ritchie
- Weill Cornell Medicine, 530 East 70th Street, New York, NY, 10021, USA
| | - Gerald J Fetterly
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Douglas Kramer
- Athenex Pharmaceuticals, 701 Ellicott Street, Buffalo, NY, 14203, USA
| | - David G Hangauer
- Athenex Pharmaceuticals, 701 Ellicott Street, Buffalo, NY, 14203, USA
| | - James E Thompson
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| |
Collapse
|
7
|
Seo HY, Lee SH, Lee JH, Lee JH, Jang BK, Kim MK. Kahweol Induces Apoptosis in Hepatocellular Carcinoma Cells by Inhibiting the Src/mTOR/STAT3 Signaling Pathway. Int J Mol Sci 2021; 22:ijms221910509. [PMID: 34638852 PMCID: PMC8508869 DOI: 10.3390/ijms221910509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
Kahweol, a coffee-specific diterpene, induces apoptosis in human cancer cells, and some targets of kahweol-mediated apoptosis have been identified. However, the specific apoptotic effects and mechanism of action of kahweol in hepatocellular carcinoma (HCC) cells are unknown. This study was performed to investigate the molecular mechanism by which kahweol induces apoptosis in HCC cells. The Src pathway is associated with apoptosis in cancer. In this study, we found that kahweol induces apoptosis by inhibiting phosphorylation of Src, and also inhibiting p-mTOR and p-STAT3. Therefore, we suggest that kahweol is a potent inhibitor of HCC cell growth.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
| | - Ji-Ha Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Dageu 42601, Korea;
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
- Correspondence: (B.K.J.); (M.K.K.); Tel.: +82-53-258-7720 (B.K.J.); +82-53-258-7730 (M.K.K.)
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
- Correspondence: (B.K.J.); (M.K.K.); Tel.: +82-53-258-7720 (B.K.J.); +82-53-258-7730 (M.K.K.)
| |
Collapse
|
8
|
Shin JY, Ahn SM. Src is essential for the endosomal delivery of the FGFR4 signaling complex in hepatocellular carcinoma. J Transl Med 2021; 19:138. [PMID: 33794926 PMCID: PMC8017611 DOI: 10.1186/s12967-021-02807-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hepatocytes usually express fibroblast growth factor receptor 4 (FGFR4), but not its ligand, fibroblast growth factor 19 (FGF19). A subtype of hepatocellular carcinoma (HCC) expresses FGF19, which activates the FGFR4 signaling pathway that induces cell proliferation. FGFR4 inhibitors that target this mechanism are under clinical development for the treatment of HCCs with FGF19 amplification or FGFR4 overexpression. Src plays an essential role in the FGFR1 and FGFR2 signaling pathways. However, it is yet to be understood whether Src has any role in the FGF19-FGFR4 pathway in HCCs. In this study, we aimed to elucidate the role of Src in the FGF19-FGFR4 axis in HCC. Methods 3 HCC cell lines expressing both FGF19 and FGFR4 were selected. The expression of each protein was suppressed by siRNA treatment, and the activity-regulating relationship between FGFR4 and Src was investigated by westernblot. Co-immunoprecipitation was performed using the FGFR4 antibody to identify the endosomal complex formation and receptor endocytosis. The intracellular migration pathways of the endosomal complex were observed by immuno-fluorescence and nuclear co-immunoprecipitation. Dasatinib and BLU9931 were used for cytotoxicity comparison. Results FGFR4 modulates the activity of Src and Src modulates the expression of FGFR4, showing a mutual regulatory relationship. FGFR4 activated by FGF19 formed an endosomal complex with Src and STAT3 and moved to the nucleus. However, when Src was suppressed, the formation of the endosomal complex was not observed. FGFR4 was released from the complex transferred into the nucleus and the binding of Src and STAT3 was maintained. Dasatinib showed cytotoxic results comparable to BLU9931. The results of our study demonstrated that Src is essential for the nuclear transport of STAT3, as it induces the endosomal delivery of FGFR4 in FGF19-expressing HCC cell lines. Conclusions We found that Src is essential for the endosomal delivery of the FGFR4 signaling complex in HCC. Our findings provide a scientific rationale for repurposing Src inhibitors for the treatment of HCCs in which the FGFR4 pathway is activated. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02807-4.
Collapse
Affiliation(s)
- Ji-Yon Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Ahn
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Liang L, Zhu K, Tao J, Lu S. ORN: Inferring patient-specific dysregulation status of pathway modules in cancer with OR-gate Network. PLoS Comput Biol 2021; 17:e1008792. [PMID: 33819263 PMCID: PMC8049496 DOI: 10.1371/journal.pcbi.1008792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/15/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Pathway level understanding of cancer plays a key role in precision oncology. However, the current amount of high-throughput data cannot support the elucidation of full pathway topology. In this study, instead of directly learning the pathway network, we adapted the probabilistic OR gate to model the modular structure of pathways and regulon. The resulting model, OR-gate Network (ORN), can simultaneously infer pathway modules of somatic alterations, patient-specific pathway dysregulation status, and downstream regulon. In a trained ORN, the differentially expressed genes (DEGs) in each tumour can be explained by somatic mutations perturbing a pathway module. Furthermore, the ORN handles one of the most important properties of pathway perturbation in tumours, the mutual exclusivity. We have applied the ORN to lower-grade glioma (LGG) samples and liver hepatocellular carcinoma (LIHC) samples in TCGA and breast cancer samples from METABRIC. Both datasets have shown abnormal pathway activities related to immune response and cell cycles. In LGG samples, ORN identified pathway modules closely related to glioma development and revealed two pathways closely related to patient survival. We had similar results with LIHC samples. Additional results from the METABRIC datasets showed that ORN could characterize critical mechanisms of cancer and connect them to less studied somatic mutations (e.g., BAP1, MIR604, MICAL3, and telomere activities), which may generate novel hypothesis for targeted therapy.
Collapse
Affiliation(s)
- Lifan Liang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kunju Zhu
- Clinical Medicine Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Yang J, Zhang X, Liu L, Yang X, Qian Q, Du B. c-Src promotes the growth and tumorigenesis of hepatocellular carcinoma via the Hippo signaling pathway. Life Sci 2021; 264:118711. [PMID: 33186566 DOI: 10.1016/j.lfs.2020.118711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
We investigated the association between c-Src and the progression of hepatocellular carcinoma (HCC) and its underlying mechanisms. The relationship between c-Src expression and the occurrence and development of HCC was explored using GEPIA and further confirmed by western blotting analysis and real-time quantitative PCR. CCK-8, flow cytometry, Transwell, and wound-healing assays were conducted to analyze the effects of c-Src on the growth, cell cycle, apoptosis, migration, and infiltration of HCC cells. Mouse models of transplanted xenogeneic human tumors were constructed to explore the effects of c-Src on HCC tumor growth. Compared with that in adjacent normal liver tissues, the expression level of c-Src in HCC tissues was significantly increased and was negatively correlated with patient survival. These findings are consistent with those in the GEPIA database. Downregulation of c-Src expression can inhibit the growth, infiltration, and migration of HCC cells. c-Src impeded the translocation of YAP from the nucleus to the cytoplasm and promoted Yes-associated protein transcriptional activity. In vivo experiments showed that c-Src inhibition suppressed tumor growth in mice. We found that c-Src can promote the growth and tumorigenesis of HCC cells by activating the Hippo signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Xiujuan Zhang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China.
| | - Leilei Liu
- Department of Ultrasound, The Second People's Hospital of Fujian Province, Fuzhou 350001, Fujian, China
| | - Xin Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Qingfu Qian
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Bin Du
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
11
|
Transcriptomics-Based Drug Repurposing Approach Identifies Novel Drugs against Sorafenib-Resistant Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12102730. [PMID: 32977582 PMCID: PMC7598246 DOI: 10.3390/cancers12102730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC), a type of liver cancer, remains a treatment challenge due to late detection and resistance to currently approved drugs. It takes 15–20 years for a single new drug to become FDA approved. The purpose of this study was to expedite identification of novel drugs against drug-resistant HCC. For this, we matched gene expression alterations in resistant HCC with gene expression changes caused by treatment of cancer cells with drugs already FDA approved for other diseases to find the drug that can reverse the resistance-related changes. Among the identified drugs, we validated the growth inhibitory effect of two drugs, identified their mechanism in HCC and, thus, provided proof of concept evidence for validity of this drug repurposing approach with potential for use in personalized medicine. Abstract Objective: Hepatocellular carcinoma (HCC) is frequently diagnosed in patients with late-stage disease who are ineligible for curative surgical therapies. The majority of patients become resistant to sorafenib, the only approved first-line therapy for advanced cancer, underscoring the need for newer, more effective drugs. The purpose of this study is to expedite identification of novel drugs against sorafenib resistant (SR)-HCC. Methods: We employed a transcriptomics-based drug repurposing method termed connectivity mapping using gene signatures from in vitro-derived SR Huh7 HCC cells. For proof of concept validation, we focused on drugs that were FDA-approved or under clinical investigation and prioritized two anti-neoplastic agents (dasatinib and fostamatinib) with targets associated with HCC. We also prospectively validated predicted gene expression changes in drug-treated SR Huh7 cells as well as identified and validated the targets of Fostamatinib in HCC. Results: Dasatinib specifically reduced the viability of SR-HCC cells that correlated with up-regulated activity of SRC family kinases, its targets, in our SR-HCC model. However, fostamatinib was able to inhibit both parental and SR HCC cells in vitro and in xenograft models. Ingenuity pathway analysis of fostamatinib gene expression signature from LINCS predicted JAK/STAT, PI3K/AKT, ERK/MAPK pathways as potential targets of fostamatinib that were validated by Western blot analysis. Fostamatinib treatment reversed the expression of genes that were deregulated in SR HCC. Conclusion: We provide proof of concept evidence for the validity of this drug repurposing approach for SR-HCC with implications for personalized medicine.
Collapse
|
12
|
Zou Y, Zhao X, Li Y, Duan S. miR-552: an important post-transcriptional regulator that affects human cancer. J Cancer 2020; 11:6226-6233. [PMID: 33033505 PMCID: PMC7532495 DOI: 10.7150/jca.46613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
MiR-552 is a small non-coding RNA located on chromosome 1p34.3, and its expression level is significantly up-regulated in tissues or cells of various tumors. miR-552 can target multiple genes. These targeted genes play important regulatory roles in biological processes such as gene transcription and translation, cell cycle progression, cell proliferation, apoptosis, cell migration, and invasion. Besides, miR-552 may affect the efficacy of various anticancer drugs by targeting genes such as TP53 and RUNX3. This review summarizes the biological functions and clinical expressions of miR-552 in human cancer. Our goal is to explore the potential value of miR-552 in the diagnosis, prognosis, and treatment of human cancer.
Collapse
Affiliation(s)
- Yuhao Zou
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Xin Zhao
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
The E3 ubiquitin ligase TRIM7 suppressed hepatocellular carcinoma progression by directly targeting Src protein. Cell Death Differ 2019; 27:1819-1831. [PMID: 31802035 DOI: 10.1038/s41418-019-0464-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant Src kinase activity is known to be involved in a variety of human malignancies, whereas the regulatory mechanism of Src has not been completely clarified. Here, we demonstrated that tripartite motif containing 7 (TRIM7) directly interacted with Src, induced Lys48-linked polyubiquitination of Src and reduced the abundance of Src protein in hepatocellular carcinoma (HCC) cells. We further identified TRIM7 as a tumor suppressor in HCC cells through its negative modulation of the Src-mTORC1-S6K1 axis in vivo and in vitro in several HCC models. Moreover, we verified the dysregulated expression of TRIM7 in clinical liver cancer tissues and its negative correlation with Src protein in clinical HCC specimens. Overall, we demonstrated that TRIM7 suppressed HCC progression through its direct negative regulation of Src and modulation of the Src-mTORC1-S6K1 axis; thus, we provided a novel insight into the development of HCC and defined a promising therapeutic strategy for cancers with overactive Src by modulating TRIM7.
Collapse
|
14
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
15
|
Bao J, Chen X, Hou Y, Kang G, Li Q, Xu Y. LncRNA DBH-AS1 facilitates the tumorigenesis of hepatocellular carcinoma by targeting miR-138 via FAK/Src/ERK pathway. Biomed Pharmacother 2018; 107:824-833. [DOI: 10.1016/j.biopha.2018.08.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
|
16
|
El Sayed I, Helmy MW, El-Abhar HS. Inhibition of SRC/FAK cue: A novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci 2018; 213:248-257. [PMID: 30292831 DOI: 10.1016/j.lfs.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Statins extended their hypocholestremic effect to show a promising anticancer activity. Hepatocellular carcinoma (HCC), the third common cause of cancer-related death, responded positively to statins. Some in-vitro studies reveal the rosuvastatin antitumor effect, but barely in-vivo studies. Hence, we evaluated the antitumor potential of rosuvastatin in a HCC model, the possible signaling cues involved, and whether it augments the dasatinib anticancer effect. METHOD For the in-vitro study, the IC50 and the combination (CI)/dose reduction (DRI) indices were determined for HCC cell line (HepG2) treated with dasatinib and/or rosuvastatin. For the in-vivo study, mice with diethylnitrosamine-induced HCC were treated for 21 days with dasatinib and/or rosuvastatin (10 and 20 mg/kg, respectively). The p-focal adhesion kinase/p-rous sarcoma oncogene cellular homolog (p-FAK/p-Src) cascade and its downstream molecules were assessed. RESULTS The in-vitro study confirmed the synergistic effect of rosuvastatin with dasatinib, which entailed the in-vivo results. The two drugs decreased the p-FAK/p-Src cue along with p-Ras/c-Raf, p-STAT-3, and p-Akt levels to enhance apoptosis by an increase in caspase-3 level and a decline in survivin level. Additionally, they inhibited HGF, VEGF, and the MMP-9. Moreover, the different treatments downregulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. The best effect was mediated by the combination regimen that surpassed the effect of either drug alone. CONCLUSION Our results highlighted some of the signals involved in rosuvastatin antitumor effect and nominate it as an adds-on therapy with dasatinib to yield a better effect in HCC through inhibiting the FAK/Src cascade.
Collapse
Affiliation(s)
- Ibrahim El Sayed
- Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, El-Bahira, Egypt.
| | - Hanan S El-Abhar
- Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Calandro P, Iovenitti G, Zamperini C, Candita F, Dreassi E, Chiariello M, Angelucci A, Schenone S, Botta M, Mancini A. Plasmin-Binding Tripeptide-Decorated Liposomes Loading Pyrazolo[3,4- d]pyrimidines for Targeting Hepatocellular Carcinoma. ACS Med Chem Lett 2018; 9:646-651. [PMID: 30034594 DOI: 10.1021/acsmedchemlett.8b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancer types worldwide. HCC cells were proved to overexpress c-Src and Sgk1, a tyrosine and a serine-threonine kinase, respectively, whose role is crucial for the development and progression of the tumor. Pyrazolo[3,4-d]pyrimidine derivatives are a class of tyrosine kinase inhibitors that have shown good activity against HepG2. HCC cells were also proved to overexpress plasmin, which is localized on the cell surface bound to its receptors. In this study, a tripeptide with sequence d-Ala-Phe-Lys, which binds a specific reactive site of plasmin, was synthesized and characterized. This tripeptide was used to decorate liposomes encapsulating three selected pyrazolo[3,4-d]pyrimidines. Liposomes bearing tripeptide have been characterized, not showing remarkable differences with respect to the corresponding tripeptide-free liposomes. In vitro HepG2 cell uptake profiles and cytotoxicities showed that the presence of the tripeptide on the liposomal membrane surface improves the cell-penetrating ability of liposomes and increases the activity of two of the three tested compounds.
Collapse
Affiliation(s)
- Pierpaolo Calandro
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Giulia Iovenitti
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo Berardenga, Siena, Italy
| | - Francesca Candita
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, 67100, Coppito, L’Aquila, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo Berardenga, Siena, Italy
- Biotechnology College of Science and Technology, Temple University, Biolife Science Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Arianna Mancini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
18
|
Liu W, Guo TF, Jing ZT, Yang Z, Liu L, Yang YP, Lin X, Tong QY. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway. FASEB J 2018; 32:3033-3046. [PMID: 29401603 DOI: 10.1096/fj.201701144r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatitis B virus core protein (HBc) is expressed preferentially in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). HBc can function as an oncogene arising from its gene regulatory properties, but how it contributes functionally to hepatocarcinogenesis remains unclear. In this study, we determined the molecular and functional roles of HBc during HBV-associated hepatocellular tumorigenesis. HBc increased tumor formation of hepatoma cells. Moreover, expression of HBc specifically promoted proliferation of hepatoma cells in vitro. Mechanistic investigations revealed that these effects were caused by activation of the Src/PI3K/Akt pathway through proximal switch from inactive Src to the active form of the kinase by HBc. HBc-mediated sarcoma (Src) kinase activation was associated with down-regulation of C-terminal Src kinase (Csk). In addition, HBc enhances Src expression by activation of alternative Src 1A promoter in an Sp1 transcription factor-dependent manner. Proliferation induced by stable HBc expression was associated with increased G1-S cell cycle progression mediated by Src kinase activation. HBc-induced cellular proliferation and tumor formation were reversed by administration of the Src inhibitor saracatinib. Together, our findings suggest that HBc promotes tumorigenesis of hepatoma cells by enhancing the expression of total Src and the active form of the kinase and subsequently activates Src/PI3K/Akt signaling pathway, revealing novel insights into the underlying mechanisms of HBV-associated hepatocarcinogenesis.-Liu, W., Guo, T.-F., Jing, Z.-T., Yang, Z., Liu, L., Yang, Y.-P., Lin, X., Tong, Q.-Y. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Teng-Fei Guo
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
| | - Zhen-Tang Jing
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Zhi Yang
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Lei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Yuan-Ping Yang
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| | - Xu Lin
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qiao-Yun Tong
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China; and
| |
Collapse
|
19
|
Shukla NM, Arimoto KI, Yao S, Fan JB, Zhang Y, Sato-Kaneko F, Lao FS, Hosoya T, Messer K, Pu M, Cottam HB, Carson DA, Hayashi T, Zhang DE, Corr M. Identification of Compounds That Prolong Type I Interferon Signaling as Potential Vaccine Adjuvants. SLAS DISCOVERY 2018; 23:960-973. [PMID: 29751735 DOI: 10.1177/2472555218774308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vaccines are reliant on adjuvants to enhance the immune stimulus, and type I interferons (IFNs) have been shown to be beneficial in augmenting this response. We were interested in identifying compounds that would sustain activation of an endogenous type I IFN response as a co-adjuvant. We began with generation of a human monocytic THP-1 cell line with an IFN-stimulated response element (ISRE)-β-lactamase reporter construct for high-throughput screening. Pilot studies were performed to optimize the parameters and conditions for this cell-based Förster resonance energy transfer (FRET) reporter assay for sustaining an IFN-α-induced ISRE activation signal. These conditions were confirmed in an initial pilot screen, followed by the main screen for evaluating prolongation of an IFN-α-induced ISRE activation signal at 16 h. Hit compounds were identified using a structure enrichment strategy based on chemoinformatic clustering and a naïve "Top X" approach. A select list of confirmed hits was then evaluated for toxicity and the ability to sustain IFN activity by gene and protein expression. Finally, for proof of concept, a panel of compounds was used to immunize mice as co-adjuvant with a model antigen and an IFN-inducing Toll-like receptor 4 agonist, lipopolysaccharide, as an adjuvant. Selected compounds significantly augmented antigen-specific immunoglobulin responses.
Collapse
Affiliation(s)
- Nikunj M Shukla
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Kei-Ichiro Arimoto
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Shiyin Yao
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jun-Bao Fan
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Yue Zhang
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Fumi Sato-Kaneko
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Fitzgerald S Lao
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Tadashi Hosoya
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Karen Messer
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA.,2 Department of Family Medicine and Public Health, Division of Biostatistics and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Minya Pu
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA.,2 Department of Family Medicine and Public Health, Division of Biostatistics and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Howard B Cottam
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Dennis A Carson
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Dong-Er Zhang
- 1 Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA.,3 Department of Pathology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maripat Corr
- 4 Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Smolinski MP, Bu Y, Clements J, Gelman IH, Hegab T, Cutler DL, Fang JWS, Fetterly G, Kwan R, Barnett A, Lau JYN, Hangauer DG. Discovery of Novel Dual Mechanism of Action Src Signaling and Tubulin Polymerization Inhibitors (KX2-391 and KX2-361). J Med Chem 2018; 61:4704-4719. [PMID: 29617135 DOI: 10.1021/acs.jmedchem.8b00164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The discovery of potent, peptide site directed, tyrosine kinase inhibitors has remained an elusive goal. Herein we describe the discovery of two such clinical candidates that inhibit the tyrosine kinase Src. Compound 1 is a phase 3 clinical trial candidate that is likely to provide a first in class topical treatment for actinic keratosis (AK) with good efficacy and dramatically less toxicity compared to existing standard therapy. Compound 2 is a phase 1 clinical trial candidate that is likely to provide a first in class treatment of malignant glioblastoma and induces 30% long-term complete tumor remission in animal models. The discovery strategy for these compounds iteratively utilized molecular modeling, along with the synthesis and testing of increasingly elaborated proof of concept compounds, until the final clinical candidates were arrived at. This was followed with mechanism of action (MOA) studies that revealed tubulin polymerization inhibition as the second MOA.
Collapse
Affiliation(s)
- Michael P Smolinski
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Yahao Bu
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - James Clements
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics , Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Taher Hegab
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - David L Cutler
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Jane W S Fang
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Gerald Fetterly
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Rudolf Kwan
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Allen Barnett
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Johnson Y N Lau
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - David G Hangauer
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| |
Collapse
|
21
|
Quantitative proteomics reveal the anti-tumour mechanism of the carbohydrate recognition domain of Galectin-3 in Hepatocellular carcinoma. Sci Rep 2017; 7:5189. [PMID: 28701735 PMCID: PMC5507876 DOI: 10.1038/s41598-017-05419-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a serious threat to human health. The carbohydrate recognition domain of Galectin-3 (Gal3C) has been reported to be an anti-tumour molecule. In this study, we aim to explore effects of Gal3C in HCC and its possible molecular mechanism with quantitative proteomics approach. We found that rGal3C stimulation could inhibit cell viability, migration and invasion of HepG2. After rGal3C stimulating, 190 proteins were differentially expressed. Eighty up-regulated proteins located mainly in extracellular exosome and involved in cell adhesion and metabolism, and 110 down-regulated proteins located in mitochondria and extracellular exosome, and related to processes of metabolism and oxidation-reduction. Of the differentially expressed proteins, CLU, NDRG1, CD166, S100A11 and Galectin-1 were carcinoma-related proteins affected by rGal3C. Potential receptors of rGal3C were explored by an UV cross-linking capture strategy. We showed that rGal3C could induce dephosphorylating of FAK/SRC. Blocking of the FAK/SRC pathway resulted in down-regulation of NDRG1. Immunofluorescence suggested that rGal3C could disrupt integrin clustering. Our study provides valuable insight into the anti-tumour mechanism of rGal3C in HCC on a proteomics level and is the first to reveal the possible mechanism involving integrin/FAK/SRC pathway and NDRG1. These results provide useful guidance of developing new therapies for HCC.
Collapse
|
22
|
de Graaff MA, Malu S, Guardiola I, Kruisselbrink AB, de Jong Y, Corver WE, Gelderblom H, Hwu P, Nielsen TO, Lazar AJ, Somaiah N, Bovée JVMG. High-Throughput Screening of Myxoid Liposarcoma Cell Lines: Survivin Is Essential for Tumor Growth. Transl Oncol 2017; 10:546-554. [PMID: 28654818 PMCID: PMC5487254 DOI: 10.1016/j.tranon.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Myxoid liposarcoma (MLS) is a soft tissue sarcoma characterized by a recurrent t(12;16) translocation. Although tumors are initially radio- and chemosensitive, the management of inoperable or metastatic MLS can be challenging. Therefore, our aim was to identify novel targets for systemic therapy. We performed an in vitro high-throughput drug screen using three MLS cell lines (402091, 1765092, DL-221), which were treated with 273 different drugs at four different concentrations. Cell lines and tissue microarrays were used for validation. As expected, all cell lines revealed a strong growth inhibition to conventional chemotherapeutic agents, such as anthracyclines and taxanes. A good response was observed to compounds interfering with Src and the mTOR pathway, which are known to be affected in these tumors. Moreover, BIRC5 was important for MLS survival because a strong inhibitory effect was seen at low concentration using the survivin inhibitor YM155, and siRNA for BIRC5 decreased cell viability. Immunohistochemistry revealed abundant expression of survivin restricted to the nucleus in all 32 tested primary tumor specimens. Inhibition of survivin in 402-91 and 1765-92 by YM155 increased the percentage S-phase but did not induce apoptosis, which warrants further investigation before application in the treatment of metastatic MLS. Thus, using a 273-compound drug screen, we confirmed previously identified targets (mTOR, Src) in MLS and demonstrate survivin as essential for MLS survival.
Collapse
Affiliation(s)
- Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shruti Malu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irma Guardiola
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yvonne de Jong
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
23
|
Peterson TA, Gauran IIM, Park J, Park D, Kann MG. Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples. PLoS Comput Biol 2017; 13:e1005428. [PMID: 28426665 PMCID: PMC5398485 DOI: 10.1371/journal.pcbi.1005428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful. Traditional methods for identifying somatic variants that drive cancer are 'gene-centric' in that they consider only somatic variants within a particular gene and make no comparison to other similar genes in the same family that may play a similar role in cancer. In this work, we present oncodomain hotspots, a new 'domain-centric' method for identifying clusters of somatic mutations across entire gene families using protein domain models. Our analysis confirms that our approach creates a framework for leveraging structural and functional information encapsulated by protein domains into the analysis of somatic variants in cancer, enabling the assessment of even rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of somatic variants that act at the level of domain families altering pathways known to be involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell metabolism. Due to oncodomain hotspots' unique ability to assess rare variants, we expect our method to become an important tool for the analysis of sequenced tumor genomes, complementing existing methods.
Collapse
Affiliation(s)
- Thomas A. Peterson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- University of California, San Francisco, Institute for Computational Health Science, San Francisco, California, United States of America
| | - Iris Ivy M. Gauran
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Junyong Park
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - DoHwan Park
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Maricel G. Kann
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Zhang L, Duan HB, Yang YS. Knockdown of Rap2B Inhibits the Proliferation and Invasion in Hepatocellular Carcinoma Cells. Oncol Res 2017; 25:19-27. [PMID: 28081729 PMCID: PMC7840814 DOI: 10.3727/096504016x14685034103914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rap2B, a member of the Ras family of small GTP-binding proteins, was found to be highly expressed in various human tumors and plays an important role in the development of tumors. However, the function of Rap2B in hepatocellular carcinoma (HCC) remains unclear. Therefore, in this study, we investigated the biological functions of Rap2B in HCC and the potential underlying mechanisms. Our results indicated that Rap2B was highly expressed in HCC tissues and cell lines. Rap2B silencing obviously inhibited the proliferation, migration, and invasion of HCC cells, as well as attenuated xenografted tumor growth in vivo. Furthermore, Rap2B silencing greatly reduced the expression levels of phosphorylated focal adhesion kinase (p-FAK), matrix metalloproteinase-2 (MMP-2), and MMP-9 in HCC cells. In conclusion, our data suggest that Rap2B silencing inhibits the proliferation and invasion in HCC cells. Thus, Rap2B may have potential as a treatment for HCC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General HospitalBeijingP.R. China
| | - Hong-Bin Duan
- Emergency Department, Shanxi Provincial Peoples HospitalTaiyuanP.R. China
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General HospitalBeijingP.R. China
| |
Collapse
|
25
|
Discovery of novel dual VEGFR2 and Src inhibitors using a multistep virtual screening approach. Future Med Chem 2016; 9:7-24. [PMID: 27995811 DOI: 10.4155/fmc-2016-0162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Simultaneous inhibition of VEGFR2 and Src may enhance the efficacy of VEGFR2-targeted cancer therapeutics. Hence, development of dual inhibitors on VEGFR2 and Src can be a useful strategy for such treatments. MATERIALS & METHODS A multistep virtual screening protocol, comprising ligand-based support vector machines method, drug-likeness rules filter and structure-based molecular docking, was developed and employed to identify dual inhibitors of VEGFR2 and Src from a large commercial chemical library. Kinase inhibitory assays and cell viability assays were then used for experimental validation. RESULTS A set of compounds belonging to six different molecular scaffolds was identified and sent for biological evaluation. Compound 3c belonging to the 2-amino-3-cyanopyridine scaffold exhibited good antiproliferative effect and dual-target activities against VEGFR2 and Src. CONCLUSION This study demonstrated the ability of the multistep virtual screening approach to identify novel multitarget agents.
Collapse
|
26
|
Xiong J, Wu JS, Mao SS, Yu XN, Huang XX. Effect of saracatinib on pulmonary metastases from hepatocellular carcinoma. Oncol Rep 2016; 36:1483-90. [PMID: 27460949 DOI: 10.3892/or.2016.4968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Src is involved in multiple processes of cancer metastasis; however, its significance in HCC is not well defined. In the present study, overexpression of Src phosphorylation (Y416) was observed in the highly metastatic MHCC97H cell line; additionally, through inhibition of Src kinase activation, HCC cell proliferation, migration, invasion and colony formation were significantly reduced in vitro. Tumour growth was not affected in the orthotopic xenograft HCC model, but the metastasic potential was inhibited as revealed by reduced lung metastasic foci after administration of saracatinib. Phosphorylation level of Src pathway signalling molecules, such as Src, FAK and Stat3, were also reduced in vitro and in vivo, as a result of the anti-metastasic effects caused by saracatinib treatment. In conclusion, we demonstrated the pro-metastasic role of Src in HCC, and further experiments suggest the use of the Src inhibitor in combination with cytotoxic agents and other anticancer treatments to improve HCC prognosis.
Collapse
Affiliation(s)
- Ju Xiong
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P.R. China
| | - Jin-Sheng Wu
- Department of Oncology, Hainan Nonken Nada Hospital, Danzhou, Hainan 571700, P.R. China
| | - Shan-Shan Mao
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| | - Xiang-Nan Yu
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| | - Xiao-Xi Huang
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| |
Collapse
|
27
|
Zhao R, Wu Y, Wang T, Zhang Y, Kong D, Zhang L, Li X, Wang G, Jin Y, Jin X, Zhang F. Elevated Src expression associated with hepatocellular carcinoma metastasis in northern Chinese patients. Oncol Lett 2015; 10:3026-3034. [PMID: 26722284 DOI: 10.3892/ol.2015.3706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Src, a non-receptor type of tyrosine, was recently reported to modulate multiple signaling pathways in human tumors. Therefore, the present study aimed to determine the expression and distribution of Src on hepatocellular carcinoma (HCC). The expressions of total Src (t-Src) and an active form of Src [phosphorylated (p-) Y416Src] were analyzed in 52 northern Chinese patients with HCC using immunohistochemistry. The positive expression rates of t-Src and p-Y416Src in HCC tissue were 65.38 and 42.30%, respectively, which is significantly higher than that in adjacent non-tumor tissue (30.76 and 13.46%; P<0.001 and P=0.010, respectively). The staining intensity of t-Src and p-Y416Src were also significantly higher in HCC tissues compared with adjacent normal tissues (P<0.001 and P=0.023, respectively). t-Src expression was positively and significantly correlated with tumor stage (P=0.002), cellular differentiation (P=0.007), metastasis (P=0.030) and the expression level of CA19-9 (P=0.016), while p-Y416Src expression was only significantly correlated with tumor stage (P=0.010). The expression of t-Src and p-Y416Src were also investigated using immunocytochemistry in two HCC cell lines with different metastatic potentials (MHCC97-L and HCCLM3) that are derived from a single HCC patient. Consistently, the expression of t-Src and p-Y416Src were stronger in the cells with higher metastatic potential compared with those exhibiting lower metastatic potential. Taken together, the current data indicate that Src expression is elevated and active in Chinese patients with HCC and that t-Src may have a key role in promoting HCC metastasis.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Department of Microbiology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yiqi Wu
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Department of Microbiology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tianzhen Wang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuhua Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dan Kong
- Department of Gynecology, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaobo Li
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Guangyu Wang
- Department of Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yinji Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China ; Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
28
|
Ezaka K, Kanda M, Sugimoto H, Shimizu D, Oya H, Nomoto S, Sueoka S, Tanaka Y, Takami H, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Fujiwara M, Kodera Y. Reduced Expression of Adherens Junctions Associated Protein 1 Predicts Recurrence of Hepatocellular Carcinoma After Curative Hepatectomy. Ann Surg Oncol 2015; 22 Suppl 3:S1499-507. [PMID: 26122373 DOI: 10.1245/s10434-015-4695-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) frequently recurs after curative resection. Therefore, the availability of sensitive biomarkers for progression and recurrence is essential for managing patients' clinical course. Adherens junctions associated protein 1 (AJAP1) may serve this purpose, because it mediates activities of tumor cells. METHODS AJAP1 mRNA levels and those of genes encoding potential interacting proteins, such as SRC in HCC cell lines, and 144 pairs of resected liver tissues were determined as well as the methylation status of the AJAP1 promoter and copy number changes at AJAP1 locus. The expression pattern of AJAP1 protein was evaluated using immunohistochemistry. RESULTS AJAP1 mRNA levels varied among nine HCC cell lines, and AJAP1 expression was reactivated after demethylation of its promoter. AJAP1 mRNA levels correlated inversely with those of SRC in HCC cell lines and tissues. AJAP1 mRNA levels were suppressed in HCC tissues. The expression pattern of AJAP1 correlated significantly with that of AJAP1 mRNA. Low levels of AJAP1 mRNA in patients with HCC associated significantly with elevated levels of tumor markers, larger tumor size, serosal infiltration, vascular invasion, hypermethylation of the AJAP1 promoter, and copy number loss at AJAP1 locus. Patients with low levels of AJAP1 expression were more likely to experience shorter disease-free survival (DFS), and multivariate analysis identified low AJAP1 expression as an independent factor for predicting DFS. CONCLUSIONS AJAP1 may function as a key regulatory molecule associated with the recurrence of HCC. Hypermethylation of the AJAP1 promoter is a key regulatory mechanism controlling AJAP1 expression.
Collapse
Affiliation(s)
- Kazuhiro Ezaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Satoshi Sueoka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoji Hashimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiyasu Okamura
- Department of Hepato-biliary-pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Hu YJ, Li HY, Qiu KJ, Li DC, Zhou JH, Hu YH, Zhang FM. Downregulation of Notch1 inhibits the invasion of human hepatocellular carcinoma HepG2 and MHCC97H cells through the regulation of PTEN and FAK. Int J Mol Med 2014; 34:1081-6. [PMID: 25110169 DOI: 10.3892/ijmm.2014.1889] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 11/06/2022] Open
Abstract
Tumor invasion and metastasis are the main causes of mortality in patients with hepatocellular carcinoma (HCC). Thus, the effective inhibition of these tumorigenic processes is critical in order for HCC therapy to be effective. Previous studies have demonstrated that Notch1 is associated with metastasis in several human malignancies. However, the exact molecular mechanisms underlying the Notch1-mediated induction of the invasion of HCC cells remain poorly understood. In the present study, we demonstrate that, compared to the normal liver cell line, L02, Notch1 is highly expressed in the human HCC cell lines, HepG2 and MHCC97H. Using small interfering RNA (siRNA), we knocked down the expression of Notch1 in the cell lines. Notch1 expression in the HCC cell lines was also measured following transfection with siRNA using RT-PCR and western blot analysis. In addition, a migration and invasion assay was performed to determine the effects of Notch1 knockdown on cell migration and invasion. Our results demonstrated that the downregulation of Notch1 by small interfering RNA (siRNA) significantly inhibited the migration and invasion of both HCC cell lines. Additionally, we demonstrated that the knockdown of Notch1 in both HCC cell lines increased both the total expression of phosphatase and tensin homolog (PTEN) and its phosphorylated form. By contrast, focal adhesion kinase (FAK) and phospho-FAK expression was decreased following Notch1 depletion. Taken together, our data suggest that targeting Notch1 may be a useful therapeutic approach to inhibiting the metastasis of HCC cells.
Collapse
Affiliation(s)
- Yan-Jian Hu
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hong-Ying Li
- Department of Biochemistry, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Kai-Jie Qiu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Da-Chuan Li
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jia-Hui Zhou
- Department of Applied Statistics, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Yan-Hua Hu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Feng-Min Zhang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
30
|
Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 2014; 67:1-12. [PMID: 25002206 DOI: 10.1007/s10616-014-9761-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
As cellular models for in vitro liver cancer and toxicity studies, HepG2 and Hep3B are the two most frequently used liver cancer cell lines. Because of their similarities they are often treated as the same in experimental studies. However, there are many differences that have been largely over-sighted or ignored between them. In this review, we summarize the differences between HepG2 and Hep3B cell lines that can be found in the literature based on PubMed search. We particularly focus on the differential gene expression, differential drug responses (chemosensitivity, cell cycle and growth inhibition, and gene induction), signaling pathways associated with these differences, as well as the factors in governing these differences between HepG2 and Hep3B cell lines. Based on our analyses of the available data, we suggest that neither HBx nor p53 may be the crucial factor to determine the differences between HepG2 and Hep3B cell lines although HBx regulates the expression of the majority of genes that are differentially expressed between HepG2 and Hep3B. Instead, the different maturation stages in cancer development of the original specimen between HepG2 and Hep3B may be responsible for the differences between them. This review provides insight into the molecular mechanisms underlying the differences between HepG2 and Hep3B and help investigators especially the beginners in the areas of liver cancer research and drug metabolism to fully understand, and thus better use and interpret the data from these two cell lines in their studies.
Collapse
|
31
|
Zhong L, Fu XY, Zou C, Yang LL, Zhou S, Yang J, Tang Y, Cheng C, Li LL, Xiang R, Chen LJ, Chen YZ, Wei YQ, Yang SY. A preclinical evaluation of a novel multikinase inhibitor, SKLB-329, as a therapeutic agent against hepatocellular carcinoma. Int J Cancer 2014; 135:2972-83. [PMID: 24789676 DOI: 10.1002/ijc.28944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a serious life-threatening malignant disease of liver. Molecular targeted therapies are considered a promising strategy for the treatment of HCC. Sorafenib is the first, and so far the only targeted drug approved by the US Food and Drug Administration (FDA) for clinical therapy of HCC. Despite being effective in some HCC patients, some demerits of sorafenib in the treatment of HCC, such as modest survival benefits, and drug resistance, have also been reported, which highlights the unmet medical need among patients with HCC. Here, we report a novel multikinase inhibitor discovered by us, SKLB-329, which potently inhibits angiogenesis-related kinases including VEGFR1/2/3, and FGFR2, and the Src kinase. SKLB-329 significantly inhibited endothelial cell growth, migration, invasion and tube formation. It showed potent anti-angiogenic activity in a transgenic zebrafish model. Moreover, SKLB-329 could efficiently restrain the proliferation of HCC cells through down-regulation of Src-mediated FAK and Stat3 activity. In vivo, oral administration of SKLB-329 considerably suppressed the tumor growth in HCC xenograft models (HepG2 and SMMC7721) in a dose-dependent manner. In all of the in vitro and in vivo assays of this investigation, sorafenib was used as a positive control, and in most assays SKLB-329 exhibited a higher potency compared with the positive control. In addition, SKLB-329 also bears favorable pharmacokinetic properties. Collectively, the results of preclinical studies presented here demonstrate that SKLB-329 is a promising drug candidate for HCC treatment.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Su B, Gillard B, Gao L, Eng KH, Gelman IH. Src controls castration recurrence of CWR22 prostate cancer xenografts. Cancer Med 2013; 2:784-92. [PMID: 24403252 PMCID: PMC3892383 DOI: 10.1002/cam4.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022] Open
Abstract
Recurrence of prostate cancer (CaP) after androgen-deprivation therapy continues to have the greatest impact on patient survival. Castration-recurrent (CR)-CaP is likely driven by the activation of androgen receptor (AR) through multiple mechanisms including induction of AR coregulators, AR mutants or splice variants, and AR posttranslational modification such as phosphorylation by Src-family and Ack1 tyrosine kinases. Here, we address whether Src is required for the CR growth of human CWR22 CaP xenografts. The shRNA-mediated Src knockdown or treatment with the Src inhibitors, dasatinib or KXO1, reduced CaP recurrence over controls and increased time-to-recurrence following castration. Moreover, CR-CaP [Src-shRNA] tumors that recurred had similar Src protein and activation levels as those of parental cells, strengthening the notion that Src activity is required for progression to CR-CaP. In contrast, the ability of dasatinib or KXO1 to inhibit Src kinase activity in vitro did not correlate with their ability to inhibit serum-driven in vitro proliferation of CR and androgen-dependent stable cell lines derived from CWR22 tumors (CWR22Rv1 and CWR22PC, respectively), suggesting that the in vitro proliferation of these CaP lines is Src independent. Taken together, these findings strongly suggest that Src is a potent and specific therapeutic target for CR-CaP progression.
Collapse
Affiliation(s)
- Bing Su
- Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangzhou, China; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | |
Collapse
|
33
|
Lu JW, Yang WY, Tsai SM, Lin YM, Chang PH, Chen JR, Wang HD, Wu JL, Jin SLC, Yuh CH. Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 2013; 8:e76951. [PMID: 24130815 PMCID: PMC3793937 DOI: 10.1371/journal.pone.0076951] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis is a multistep process that starts from fatty liver and transitions to fibrosis and, finally, into cancer. Many etiological factors, including hepatitis B virus X antigen (HBx) and p53 mutations, have been implicated in hepatocarcinogenesis. However, potential synergistic effects between these two factors and the underlying mechanisms by which they promote hepatocarcinogenesis are still unclear. In this report, we show that the synergistic action of HBx and p53 mutation triggers progressive hepatocellular carcinoma (HCC) formation via src activation in zebrafish. Liver-specific expression of HBx in wild-type zebrafish caused steatosis, fibrosis and glycogen accumulation. However, the induction of tumorigenesis by HBx was only observed in p53 mutant fish and occurred in association with the up-regulation and activation of the src tyrosine kinase pathway. Furthermore, the overexpression of src in p53 mutant zebrafish also caused hyperplasia, HCC, and sarcomatoid HCC, which were accompanied by increased levels of the signaling proteins p-erk, p-akt, myc, jnk1 and vegf. Increased expression levels of lipogenic factors and the genes involved in lipid metabolism and glycogen storage were detected during the early stages of hepatocarcinogenesis in the HBx and src transgenic zebrafish. The up-regulation of genes involved in cell cycle regulation, tumor progression and other molecular hallmarks of human liver cancer were found at later stages in both HBx and src transgenic, p53 mutant zebrafish. Together, our study demonstrates that HBx and src overexpression induced hepatocarcinogenesis in p53 mutant zebrafish. This phenomenon mimics human HCC formation and provides potential in vivo platforms for drug screening for therapies for human liver cancer.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan, Taiwan
| | - Wan-Yu Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Su-Mei Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua City, Changhua County, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Hou-Loung Town, Miaoli County, Taiwan
| | - Pen-Heng Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nangang District, Taipei, Taiwan
| | | | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
34
|
A phase I trial of KX2-391, a novel non-ATP competitive substrate-pocket- directed SRC inhibitor, in patients with advanced malignancies. Invest New Drugs 2013; 31:967-73. [PMID: 23361621 DOI: 10.1007/s10637-013-9929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/09/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Src kinase is central to tumor cell proliferation, apoptosis, and metastasis. KX2-391 is a synthetic, orally bioavailable small molecule inhibitor of Src tyrosine kinase (TK) signaling and tubulin polymerization. This compound is distinct from other Src kinase inhibitors by targeting the peptide substrate rather than the ATP binding site; the binding site on hetero-dimeric tubulin is novel and distinct from the taxanes and other known tubulin inhibitors. METHODS This multicenter Phase I trial utilized a 4 + 2 study design to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics (PK) of KX2-391 in patients with refractory solid tumors. RESULTS Forty-four (44) patients (18 M, 26 F; median age, 59) were enrolled in 9 dose cohorts. Dose-limiting toxicities, all reversible within 7 days, occurred in 7 patients and consisted of elevated AST (n = 4), ALT (n = 2), neutropenia (n = 1), thrombocytopenia (n = 1), failure to thrive (n = 1) and anorexia (n = 1). The MTD is 40 mg BID continuously. Eleven patients had stable disease for ≥ 4 months, including patients with ovarian, carcinoid, papillary thyroid, prostate, pancreas and head and neck cancer. Patients with prostate and pancreatic cancer also had significant biomarker decreases (PSA, 205 ng/mL to 39 ng/mL; CA19-9, 38,838 U/mL to 267 U/mL). The ovarian cancer patient has had stable disease > 12 months. KX2-391 was orally available, rapidly absorbed, and exposure was proportional to dose across the range investigated. CONCLUSIONS KX2-391 has a favorable pharmacokinetic profile, is well tolerated, demonstrates preliminary evidence of biologic activity, and warrants further evaluation in Phase II trials.
Collapse
|
35
|
Chang AY, Wang M. Molecular mechanisms of action and potential biomarkers of growth inhibition of dasatinib (BMS-354825) on hepatocellular carcinoma cells. BMC Cancer 2013; 13:267. [PMID: 23721490 PMCID: PMC3680296 DOI: 10.1186/1471-2407-13-267] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/23/2013] [Indexed: 12/16/2022] Open
Abstract
Background Molecular targeted therapy has emerged as a promising treatment of Hepatocellular carcinoma (HCC). One potential target is the Src family Kinase (SFK). C-Src, a non-receptor tyrosine kinase is a critical link of multiple signal pathways that regulate proliferation, invasion, survival, metastasis, and angiogenesis. In this study, we evaluated the effects of a novel SFK inhibitor, dasatinib (BMS-354825), on SFK/FAK/p130CAS, PI3K/PTEN/Akt/mTOR, Ras/Raf/MAPK and Stats pathways in 9 HCC cell lines. Methods Growth inhibition was assessed by MTS assay. EGFR, Src and downstream proteins FAK, Akt, MAPK42/44, Stat3 expressions were measured by western blot. Cell adhesion, migration and invasion were performed with and without dasatinib treatment. Results The IC50 of 9 cell lines ranged from 0.7 μM ~ 14.2 μM. In general the growth inhibition by dasatinib was related to total Src (t-Src) and the ratio of activated Src (p-Src) to t-Src. There was good correlation of the sensitivity to dasatinib and the inhibition level of p-Src, p-FAK576/577 and p-Akt. No inhibition was found on Stat3 and MAPK42/44 in all cell lines. The inhibition of cell adhesion, migration and invasion were correlated with p-FAK inhibition. Conclusion Dasatinib inhibits the proliferation, adhesion, migration and invasion of HCC cells in vitro via inhibiting of Src tyrosine kinase and affecting SFK/FAK and PI3K/PTEN/Akt, but not Ras/Raf/MEK/ERK and JAK/Stat pathways. T-Src and p-Src/t-Src may be useful biomarkers to select HCC patients for dasatinib treatment.
Collapse
|
36
|
Finn RS, Aleshin A, Dering J, Yang P, Ginther C, Desai A, Zhao D, von Euw E, Busuttil RW, Slamon DJ. Molecular subtype and response to dasatinib, an Src/Abl small molecule kinase inhibitor, in hepatocellular carcinoma cell lines in vitro. Hepatology 2013; 57:1838-46. [PMID: 23299860 DOI: 10.1002/hep.26223] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 11/17/2012] [Indexed: 12/25/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the fifth most common malignancy and is the third leading cause of cancer death worldwide. Recently, the multitargeted kinase inhibitor sorafenib was shown to be the first systemic agent to improve survival in advanced HCC. Unlike other malignancies such as breast cancer, in which molecular subtypes have been clearly defined (i.e., luminal, HER2 amplified, basal, etc.) and tied to effective molecular therapeutics (hormone blockade and trastuzumab, respectively), in HCC this translational link does not exist. Molecular profiling studies of human HCC have identified unique molecular subtypes of the disease. We hypothesized that a panel of human HCC cell lines would maintain molecular characteristics of the clinical disease and could then be used as a model for novel therapeutics. Twenty human HCC cell lines were collected and RNA was analyzed using the Agilent microarray platform. Profiles from the cell lines in vitro recapitulate previously described subgroups from clinical material. Next, we evaluated whether molecular subgroup would have predictive value for response to the Src/Abl inhibitor dasatinib. The results demonstrate that sensitivity to dasatinib was associated with a progenitor subtype. Dasatinib was effective at inducing cell cycle arrest and apoptosis in "progenitor-like" cell lines but not in resistant lines. CONCLUSION These findings suggest that cell line models maintain the molecular background of HCC and that subtype may be important for selecting patients for response to novel therapies. In addition, it highlights a potential role for Src family signaling in this progenitor subtype of HCC.
Collapse
Affiliation(s)
- Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bai X, Wang J, Zhang L, Ma J, Zhang H, Xia S, Zhang M, Ma X, Guo Y, Rong R, Cheng S, Shu W, Wang Y, Leng J. Prostaglandin E₂ receptor EP1-mediated phosphorylation of focal adhesion kinase enhances cell adhesion and migration in hepatocellular carcinoma cells. Int J Oncol 2013; 42:1833-41. [PMID: 23525457 DOI: 10.3892/ijo.2013.1859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/04/2013] [Indexed: 12/20/2022] Open
Abstract
The prostaglandin E₂ (PGE₂) EP1 receptor has been implicated in hepatocellular carcinoma (HCC) cell invasion. However, little is known about the mechanisms of EP1 receptor-mediated cell adhesion and migration. We previously showed that PGE₂ promotes cell adhesion and migration by activating focal adhesion kinase (FAK). The present study was designed to elucidate the association between the EP1 receptor and FAK activation in HCC cells and to investigate the related signaling pathways. The effects of PGE₂, EP1 agonist 17-phenyl trinor-PGE₂ (17-PT-PGE₂), PKC and EGFR inhibitors on FAK activation were investigated by treatment of Huh-7 cells. Phosphorylation of FAK Y397 and c-Src Y416 was investigated by western blotting. Cell adhesion and migration were analyzed by WST and transwell assays, respectively. Protein kinase C (PKC) activity was measured with a PKC assay kit. The results showed that 17-PT-PGE₂ (3 µM) increased FAK Y397 phosphorylation by more than 2-fold and promoted cell adhesion and migration in Huh-7 cells. In transfected 293 cells, expression of the EP1 receptor was confirmed to upregulate FAK phosphorylation, while the EP1 receptor antagonist sc-19220 decreased PGE₂-mediated FAK activation. PKC activity and c-Src Y416 phosphorylation were enhanced after 17-PT-PGE₂ treatment. Both PKC and c-Src inhibitor suppressed the 17-PT-PGE₂-upregulated FAK phosphorylation, as well as 17-PT-PGE₂-induced cell adhesion and migration. In addition, exogenous epidermal growth factor (EGF) treatment increased FAK phosphorylation. The EGF receptor (EGFR) inhibitor also suppressed 17-PT-PGE₂-upregulated FAK phosphorylation. Our study suggests that the PGE₂ EP1 receptor regulates FAK phosphorylation by activating the PKC/c-Src and EGFR signal pathways, which may coordinately regulate adhesion and migration in HCC.
Collapse
Affiliation(s)
- Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cavalloni G, Peraldo-Neia C, Sarotto I, Gammaitoni L, Migliardi G, Soster M, Marchiò S, Aglietta M, Leone F. Antitumor activity of Src inhibitor saracatinib (AZD-0530) in preclinical models of biliary tract carcinomas. Mol Cancer Ther 2012; 11:1528-38. [PMID: 22452946 DOI: 10.1158/1535-7163.mct-11-1020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biliary tract carcinoma (BTC) has a poor prognosis due to limited treatment options. There is, therefore, an urgent need to identify new targets and to design innovative therapeutic approaches. Among potential candidate molecules, we evaluated the nonreceptor tyrosine kinase Src, observing promising antitumor effects of its small-molecule inhibitor saracatinib in BTC preclinical models. The presence of an active Src protein was investigated by immunohistochemistry in 19 surgical samples from patients with BTC. Upon saracatinib treatment, the phosphorylation of Src and of its downstream transducers was evaluated in the BTC cell lines TFK-1, EGI-1, HuH28, and TGBC1-TKB. The effect of saracatinib on proliferation and migration was analyzed in these same cell lines, and its antitumor activity was essayed in EGI-1 mouse xenografts. Saracatinib-modulated transcriptome was profiled in EGI-1 cells and in tumor samples of the xenograft model. Src was activated in about 80% of the human BTC samples. In cultured BTC cell lines, low-dose saracatinib counteracted the activation of Src and of its downstream effectors, increased the fraction of cells in G(0)-G(1) phase, and inhibited cell migration. At high concentrations (median dose from 2.26-6.99 μmol/L), saracatinib was also capable of inhibiting BTC cell proliferation. In vivo, saracatinib treatment resulted in delayed tumor growth, associated with an impaired vascular network. Here, we provide a demonstration that the targeted inhibition of Src kinase by saracatinib is of therapeutic benefit in preclinical models of BTC. We propose our results as a basis for the design of saracatinib-based clinical applications.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Department of Medical Oncology, University of Turin Medical School, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng SJ, Kok SH, Lee JJ, Yen-Ping Kuo M, Cheng SL, Huang YL, Chen HM, Chang HH, Chiang CP. Significant association of SRC protein expression with the progression, recurrence, and prognosis of oral squamous cell carcinoma in Taiwan. Head Neck 2011; 34:1340-5. [DOI: 10.1002/hed.21923] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 12/18/2022] Open
|
40
|
Lu JW, Hsia Y, Yang WY, Lin YI, Li CC, Tsai TF, Chang KW, Shieh GS, Tsai SF, Wang HD, Yuh CH. Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis 2011; 33:209-19. [PMID: 22021908 DOI: 10.1093/carcin/bgr224] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus X antigen plays an important role in the development of human hepatocellular carcinoma (HCC). The key regulators controlling the temporal downstream gene expression for HCC progression remains unknown. In this study, we took advantage of systems biology approach and analyzed the microarray data of the HBx transgenic mouse as a screening process to identify the differentially expressed genes and applied the software Pathway Studio to identify potential pathways and regulators involved in HCC. Using subnetwork enrichment analysis, we identified five common regulator genes: EDN1, BMP7, BMP4, SPIB and SRC. Upregulation of the common regulators was validated in the other independent HBx transgenic mouse lines. Furthermore, we verified the correlation of their RNA expression levels by using the human HCC samples, and their protein levels by using the human liver disease tissue arrays. EDN1, bone morphogenetic protein (BMP) 4 and BMP7 were upregulated in cirrhosis, BMP4, BMP7 and SRC were further upregulated in hepatocellular or cholangiocellular carcinoma samples. The trend of increasing expression of the common regulators correlates well with the progression of human liver cancer. Overexpression of the common regulators increases the cell viability, promotes migration and invasiveness and enhances the colony formation ability in Hep3B cells. Our approach allows us to identify the critical genes in hepatocarcinogenesis in an HBx-induced mouse model. The validation of the gene expressions in the liver cancer of human patients and their cellular function assays suggests that the identified common regulators may serve as useful molecular targets for the early-stage diagnosis or therapy for HCC.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer. Cancers (Basel) 2011; 3:2444-61. [PMID: 24212818 PMCID: PMC3757426 DOI: 10.3390/cancers3022444] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 01/11/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.
Collapse
|
42
|
Synthesis and pharmacological evaluation of thieno[2,3-b]pyridine derivatives as novel c-Src inhibitors. Bioorg Med Chem 2011; 19:2517-28. [PMID: 21459579 DOI: 10.1016/j.bmc.2011.03.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
Abstract
Among the recently investigated targets for cancer therapy is the c-Src non-receptor tyrosine kinase. Indeed research around deregulated activity of this enzyme has proven its role in tumor progression, while the beneficial effects of c-Src inhibitors in several pathological models has also been demonstrated. We report here the preparation and pharmacological profile of a novel series of c-Src inhibitors that was elaborated around a 3-amino-thieno[2,3-b]pyridine discovered during an HTS campaign. c-Src enzyme inhibition and c-Src inhibition were investigated in a series of related compounds derived from the initial hit. Molecular modeling as well as X-ray studies on one active compound allowed us to hypothesize on ligand orientation and interactions within the ATP hydrophobic pocket. Design and synthesis of structural analogs then led to new ligands possessing quite efficient enzymatic and c-Src inhibition. The structure-activity elements disclosed in this study shed light on the role played by substituents on the thienopyridine ring as well as the impact of other aromatic moieties in the molecule when interacting with the enzyme.
Collapse
|
43
|
Quintela-Fandino M, González-Martín A, Colomer R. Targeting cytoskeleton reorganisation as antimetastatic treatment. Clin Transl Oncol 2011; 12:662-9. [PMID: 20947480 DOI: 10.1007/s12094-010-0575-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metastatic relapse is responsible for 90% of cancer-related deaths. The process of distant spreading is a cascade of events that is regulated in a highly complex manner; one cellular phenomenon underlying all the events is cytoskeletal reorganisation. Despite the fact that the ability to leave the primary site and establish a viable mass in a distant site is a hallmark of cancer, targeting cytoskeletal reorganisation is an emerging field. In this review we describe the key signalling pathways controlling cytoskeletal reorganisation and the current targeted therapies against the "druggable" nodes. Finally, we discuss potential implications of trial design that can play a role in detecting the specific activity of this drug class.
Collapse
Affiliation(s)
- Miguel Quintela-Fandino
- Breast Cancer Unit, Clinical Research Programme CNIO-Spanish National Cancer Research Center C/ Melchor Fernández Almagro, 3 ES-28029 Madrid, Spain.
| | | | | |
Collapse
|
44
|
Kudo K, Arao T, Tanaka K, Nagai T, Furuta K, Sakai K, Kaneda H, Matsumoto K, Tamura D, Aomatsu K, De Velasco MA, Fujita Y, Saijo N, Kudo M, Nishio K. Antitumor activity of BIBF 1120, a triple angiokinase inhibitor, and use of VEGFR2+pTyr+ peripheral blood leukocytes as a pharmacodynamic biomarker in vivo. Clin Cancer Res 2010; 17:1373-81. [PMID: 21131553 DOI: 10.1158/1078-0432.ccr-09-2755] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE BIBF 1120 is a potent, orally available triple angiokinase inhibitor that inhibits VEGF receptors (VEGFR) 1, 2, and 3, fibroblast growth factor receptors, and platelet-derived growth factor receptors. This study examined the antitumor effects of BIBF 1120 on hepatocellular carcinoma (HCC) and attempted to identify a pharmacodynamic biomarker for use in early clinical trials. EXPERIMENTAL DESIGN We evaluated the antitumor and antiangiogenic effects of BIBF 1120 against HCC cell line both in vitro and in vivo. For the pharmacodynamic study, the phosphorylation levels of VEGFR2 in VEGF-stimulated peripheral blood leukocytes (PBL) were evaluated in mice inoculated with HCC cells and treated with BIBF 1120. RESULTS BIBF 1120 (0.01 μmol/L) clearly inhibited the VEGFR2 signaling in vitro. The direct growth inhibitory effects of BIBF 1120 on four HCC cell lines were relatively mild in vitro (IC(50) values: 2-5 μmol/L); however, the oral administration of BIBF 1120 (50 or 100 mg/kg/d) significantly inhibited the tumor growth and angiogenesis in a HepG2 xenograft model. A flow cytometric analysis revealed that BIBF 1120 significantly decreased the phosphotyrosine (pTyr) levels of VEGFR2(+)CD45(dim) PBLs and the percentage of VEGFR2(+)pTyr(+) PBLs in vivo; the latter parameter seemed to be a more feasible pharmacodynamic biomarker. CONCLUSIONS We found that BIBF 1120 exhibited potent antitumor and antiangiogenic activity against HCC and identified VEGFR2(+)pTyr(+) PBLs as a feasible and noninvasive pharmacodynamic biomarker in vivo.
Collapse
Affiliation(s)
- Kanae Kudo
- Department of Genome Biology and Gastroenterology, Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schenone S, Brullo C, Musumeci F, Botta M. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 2010; 19:931-45. [PMID: 20557276 DOI: 10.1517/13543784.2010.499898] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD c-Src and Bcr-Abl are two non-receptor or cytoplasmic tyrosine kinases (TKs) that play important roles in the development of solid and hematological malignancies. Indeed, Src is overexpressed or hyperactivated in a variety of solid tumors, while Bcr-Abl is the causative agent of chronic myeloid leukemia (CML), where Src is also involved. The two enzymes share significant sequence homology and remarkable structural resemblance. AREAS COVERED IN THIS REVIEW ATP-competitive compounds originally developed as Src inhibitors, showed to be also potent Abl inhibitors. Dasatinib, the first dual Src/Abl inhibitor approved by the US FDA in 2006 for the treatment of imatinib-resistant CML, is currently being tested in several clinical trials for the treatment of different solid tumors. SKI-606 and AZD0530 are two other important dual Src/Abl inhibitors extensively tested in animal models and in clinical trials, but not entered into therapy yet. WHAT THE READER WILL GAIN In this review we will report the latest results regarding dasatinib, SKI-606 and AZD0530, but also the knowledge on new compounds that have appeared in the literature in the last few years, including AP24163, AP24534, XL228, DC2036. We will focus on the most recent clinical trials or on preclinical studies that are in progress on these small-molecule TK inhibitors that represent a targeted therapy with high potential against cancer. TAKE HOME MESSAGE Molecularly targeted therapies, including the inhibition of specific TKs hyperactivated or overexpressed in many human cancers, could be less toxic than the classical non-specific cytotoxic chemotherapeutic agents; they could offer important therapeutic effects, especially if used in association with other agents such as monoclonal antibodies.
Collapse
Affiliation(s)
- Silvia Schenone
- University of Genoa, Dipartimento di Scienze Farmaceutiche, Viale Benedetto VX, Genoa, Italy.
| | | | | | | |
Collapse
|
46
|
Boschelli F, Arndt K, Gambacorti-Passerini C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 2010; 46:1781-9. [PMID: 20399641 DOI: 10.1016/j.ejca.2010.02.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/11/2010] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
Abstract
Bosutinib (SKI-606) is an orally active Src and Abl kinase inhibitor presently in Phase III trials for treatment of chronic myelogenous leukaemia (CML), and in Phase II trials for treatment of breast cancer. Bosutinib is a potent antiproliferative and proapoptotic agent in CML cells and inhibits Bcr-Abl mediated signalling at nanomolar concentrations. Short-term administration of bosutinib causes regression of K562 and KU812 CML tumour xenografts. BaF3 murine myeloid cells expressing wild-type Bcr-Abl are sensitive to bosutinib treatment, as are BaF3 cells expressing many imatinib-resistant forms of Bcr-Abl. Recent studies indicate that bosutinib is active against a broader spectrum of kinases than originally believed. These additional inhibitory activities have interesting possibilities for further clinical development. This review will focus on preclinical studies supporting the clinical development of bosutinib for treatment of CML, with a discussion on the broader potential of this agent in other oncology indications.
Collapse
Affiliation(s)
- Frank Boschelli
- Department of Oncology, Wyeth Research (Wyeth Research is Now Pfizer Research), Pearl River, NY, USA.
| | | | | |
Collapse
|
47
|
Edwards J. Src kinase inhibitors: an emerging therapeutic treatment option for prostate cancer. Expert Opin Investig Drugs 2010; 19:605-14. [PMID: 20367532 DOI: 10.1517/13543781003789388] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Once prostate cancer becomes castration-resistant, bone metastases are a significant problem and treatment options are limited. As a result, there is a need for more effective therapies that have antitumor and anti-bone metastatic effects. Because Src and Src-family kinases (SFKs) are involved in multiple signaling pathways central to prostate cancer development, progression, and metastasis, in addition to normal and pathologic osteoclast activities, Src inhibition represents a valid therapeutic strategy for investigation. AREAS COVERED IN THIS REVIEW Here, current treatment options for advanced prostate cancer, the preclinical rationale behind using Src inhibitors, emerging data from clinical trials of Src inhibitors in prostate cancer, and future therapeutic directions are described. Data published in peer-reviewed journals within the last 20 years or presented at recent European or American Society of Clinical Oncology conferences have been reviewed. WHAT THE READER WILL GAIN Readers will gain an insight into the development of therapeutic Src inhibitors, including dasatinib and saracatinib; an understanding of their effects on prostate cancer cells and the bone microenvironment; and emerging clinical data. TAKE HOME MESSAGE Src is implicated in prostate cancer progression and metastasis, therefore treatment with Src inhibitors warrants further investigation.
Collapse
Affiliation(s)
- Joanne Edwards
- University of Glasgow, Glasgow Western Infirmary, Division of Cancer Sciences and Molecular Pathology, Faculty of Medicine, Glasgow, UK.
| |
Collapse
|
48
|
Okamoto W, Okamoto I, Yoshida T, Okamoto K, Takezawa K, Hatashita E, Yamada Y, Kuwata K, Arao T, Yanagihara K, Fukuoka M, Nishio K, Nakagawa K. Identification of c-Src as a potential therapeutic target for gastric cancer and of MET activation as a cause of resistance to c-Src inhibition. Mol Cancer Ther 2010; 9:1188-97. [PMID: 20406949 DOI: 10.1158/1535-7163.mct-10-0002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapeutic strategies that target c-Src hold promise for a wide variety of cancers. We have now investigated both the effects of dasatinib, which inhibits the activity of c-Src and several other kinases, on cell growth as well as the mechanism of dasatinib resistance in human gastric cancer cell lines. Immunoblot analysis revealed the activation of c-Src at various levels in most gastric cancer cell lines examined. Dasatinib inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and induced G(1) arrest, as revealed by flow cytometry, in a subset of responsive cell lines. In other responsive cell lines, dasatinib inhibited both ERK and AKT phosphorylation and induced apoptosis, as revealed by an increase in caspase-3 activity and cleavage of poly(ADP-ribose) polymerase. Depletion of c-Src by RNA interference also induced G(1) arrest or apoptosis in dasatinib-responsive cell lines, indicating that the antiproliferative effect of dasatinib is attributable to c-Src inhibition. Gastric cancer cell lines positive for the activation of MET were resistant to dasatinib. Dasatinib had no effect on ERK or AKT signaling, whereas the MET inhibitor PHA-665752 induced apoptosis in these cells. The subsets of gastric cancer cells defined by a response to c-Src or MET inhibitors were distinct and nonoverlapping. Our results suggest that c-Src is a promising target for the treatment of gastric cancer and that analysis of MET amplification might optimize patient selection for treatment with c-Src inhibitors.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Medical Oncology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jin MS, Khang SK, Kim MS, Choi HS, Lee JE, Kim KH, Jeon DG, Koh JS. Lyn Expression in Osteoblastic Osteosarcoma Tissues and Its Correlation with Clinicopathologic Factors. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.2.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Min-Sun Jin
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Shin Kwang Khang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Suk Kim
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Hee-Seung Choi
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Jung-Eun Lee
- Laboratory and Experimental Pathology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kil-Ho Kim
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Dae-Geun Jeon
- Department of Orthopedic Surgery, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Soo Koh
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|
50
|
|