1
|
Khalili H, Forss A, Söderling J, Bröms G, Eriksson C, Sun J, Ludvigsson JF, Olén O. Statin Use is Associated with a Less Severe Disease Course In Inflammatory Bowel Disease: A Nationwide Cohort Study 2006-2020. Inflamm Bowel Dis 2025:izaf077. [PMID: 40279326 DOI: 10.1093/ibd/izaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Statins reduce the risk of inflammatory bowel disease (IBD), however their effect on IBD disease progression is largely unknown. METHODS We linked Swedish healthcare registers and performed a nationwide cohort study (2006-2020) of 19 788 adults (≥18 years) with ulcerative colitis (UC) and 12 582 with Crohn's disease (CD). Of these, 1733 with UC and 962 with CD were identified as incident statin users after UC or CD diagnosis. After 1:1 propensity score matching, we compared statin users with non-users to estimate the risk of IBD-related surgery, hospitalizations, and disease flares expressed as incidence rates (IRs) and multivariable-adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs). For outcomes with statistically significant estimates, we calculated the numbers needed to treat (NNT). RESULTS During a median follow-up of 3.4 years we observed a reduced risk of IBD-related surgery in statin users (UC, IR: 3.4 [95%CI: 2.1-4.8] per 1000 person-years; CD, IR: 9.2 [6.2-12.2]) compared with non-users in UC (IR: 6.3 [4.2-8.5]; aHR: 0.55 [0.31-0.97]) and CD (IR: 15.4 [11.0-19.7]; aHR: 0.54 [0.33-0.88]). The NNT to avoid one IBD-related surgical event per year of statin treatment were 345 (UC) and 161 (CD). For statin users, the risks of hospitalizations (IR: 17.0 [13.9-20.2]; aHR: 0.68 [0.51-0.91]) and disease flares (IR: 207.4 [193.2-221.6]; aHR: 0.86 [0.77-0.97]) were reduced in UC, but not in CD (IR: 20.3 [15.8-24.9]; aHR: 0.78 [0.56-1.09] and IR: 245.5 [223.9-267.1]; aHR: 1.02 [0.88-1.19]). In UC, NNT for hospitalizations and disease flares were 145 and 15. CONCLUSIONS Statins were associated with a reduced risk of IBD-related surgery, hospitalizations, and disease flares in patients with UC, and with a reduced risk of IBD-related surgery in patients with CD.
Collapse
Affiliation(s)
- Hamed Khalili
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anders Forss
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Centre for Digestive Health, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Söderling
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Bröms
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Gastroenterology, Department of Specialist Medicine, Danderyd Hospital, Stockholm, Sweden
| | - Carl Eriksson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jiangwei Sun
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ola Olén
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Stockholm South General Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Vital KD, Pires LO, Gallotti B, Silva JL, Lima de Jesus LC, Alvarez-Leite JI, Ferreira Ê, de Carvalho Azevedo VA, Santos Martins F, Nascimento Cardoso V, Antunes Fernandes SO. Atorvastatin attenuates intestinal mucositis induced by 5-fluorouracil in mice by modulating the epithelial barrier and inflammatory response. J Chemother 2025; 37:175-192. [PMID: 38711347 DOI: 10.1080/1120009x.2024.2345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1β, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octavio Pires
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janayne Luihan Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís Cláudio Lima de Jesus
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Jiang C, Yue T, Jia Z, Song L, Zeng X, Bao Z, Li X, Cui Z, Mi W, Li Q. Disulfidptosis links the pathophysiology of ulcerative colitis and immune infiltration in colon adenocarcinoma. Sci Rep 2025; 15:5365. [PMID: 39948102 PMCID: PMC11825938 DOI: 10.1038/s41598-025-89128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, significantly increases the risk of colon adenocarcinoma (COAD). Disulfidptosis, a novel form of programmed cell death, has been implicated in various diseases, including UC. This study investigates the expression of disulfidptosis-related genes, particularly CD2AP and MYH10, in UC and COAD. Through analysis of public datasets, we found MYH10 significantly upregulated and CD2AP downregulated in UC compared to healthy controls, with consistent patterns in COAD. Immune infiltration analysis revealed correlations between these genes and specific immune cell types, suggesting their roles in immune modulation. Molecular docking showed strong binding affinities of UC drugs such as budesonide and sulfasalazine with CD2AP and MYH10. Connectivity Map analysis identified additional drug candidates, including simvastatin and mephenytoin, which may be repurposed for UC and COAD therapy. These findings suggest disulfidptosis-related genes as potential biomarkers and therapeutic targets, linking chronic inflammation to cancer progression.
Collapse
Affiliation(s)
- Chenhao Jiang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Teng Yue
- Epidemiology and Biostatistics Institute, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyao Jia
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lili Song
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaohang Zeng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyu Bao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinying Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhuang Cui
- Epidemiology and Biostatistics Institute, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wenyi Mi
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Qianqian Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
4
|
Lenti MV, Santacroce G, Broglio G, Rossi CM, Di Sabatino A. Recent advances in intestinal fibrosis. Mol Aspects Med 2024; 96:101251. [PMID: 38359700 DOI: 10.1016/j.mam.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Despite many progresses have been made in the treatment of inflammatory bowel disease, especially due to the increasing number of effective therapies, the development of tissue fibrosis is a very common occurrence along the natural history of this condition. To a certain extent, fibrogenesis is a physiological and necessary process in all those conditions characterised by chronic inflammation. However, the excessive deposition of extracellular matrix within the bowel wall will end up in the formation of strictures, with the consequent need for surgery. A number of mechanisms have been described in this process, but some of them are not yet clear. For sure, the main trigger is the presence of a persistent inflammatory status within the mucosa, which in turn favours the occurrence of a pro-fibrogenic environment. Among the main key players, myofibroblasts, fibroblasts, immune cells, growth factors and cytokines must be mentioned. Although there are no available therapies able to target fibrosis, the only way to prevent it is by controlling inflammation. In this review, we summarize the state of art of the mechanisms involved in gut fibrogenesis, how to diagnose it, and which potential targets could be druggable to tackle fibrosis.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
5
|
Bjurström O, Karling P. The association between drugs and repeated treatment with budesonide in patients with microscopic colitis: a retrospective observational study. Therap Adv Gastroenterol 2024; 17:17562848241240640. [PMID: 38510459 PMCID: PMC10953108 DOI: 10.1177/17562848241240640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Background Smoking and the use of non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid (ASA), proton pump inhibitors (PPIs), serotonin reuptake inhibitors (SSRIs), and statins have been associated with microscopic colitis (MC). Objectives We investigated whether these factors were associated with repeated budesonide treatments in patients diagnosed with MC. Design Retrospective observational study. Methods All patients with a histologically verified diagnosis of MC at our clinic between the years 2006 and 2022 were identified. Baseline factors and drugs prescribed before and after diagnosis were registered. The influence of risk factors on the odds of having a prescription of oral budesonide and the odds of having a second course of budesonide was studied. Results Patients with MC (n = 183) with a mean age of 62.3 years [standard deviation (SD): 13.3 years] were followed for a median of 5 years (25th-75th percentile 4-10 years) after diagnosis. In all, 138 patients (75%) had at least one prescription of budesonide after diagnosis, and 90 patients (49%) had at least one clinical relapse treated with budesonide. Patients who had been prescribed NSAIDs within 1 year before clinical relapse had higher odds for clinical relapse [odds ratio (OR): 3.70, 95% confidence interval (CI): 1.06-12.9] but there was no increased risk for clinical relapse for the use of ASA (OR: 0.99, 95% CI: 0.39-2.90), PPIs (OR: 1.09, 95% CI: 0.45-2.63), SSRI (OR: 1.41, 95% CI: 0.82-2.44), or statins (OR: 0.83, 95% CI: 0.35-1.99). No association was seen between being a smoker and/or being prescribed NSAID, ASA, PPI, SSRI, and statins at baseline and the odds of having a prescription of oral budesonide within 1 year after diagnosis. Conclusion The risk of being prescribed a second course of budesonide is associated with receiving a prescription of NSAIDs but not with the use of ASA, PPIs, SSRIs, and statins.
Collapse
Affiliation(s)
- Oliver Bjurström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
6
|
Duan Y, Jia W, Liang Y, Zhang X, Yang Z, Yang Q. Progress in the treatment and prevention of esophageal stenosis after endoscopic submucosal dissection. Clin Res Hepatol Gastroenterol 2024; 48:102290. [PMID: 38311060 DOI: 10.1016/j.clinre.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
The primary treatment for early esophageal cancer and precancerous lesions is endoscopic submucosal dissection (ESD). However, this approach leads to a high incidence of postoperative esophageal stenosis, which can significantly impact a patient's quality of life. While various methods are available to prevent post-ESD esophageal stenosis, their effectiveness varies. Therefore, this study aims to provide an overview of the currently employed methods for preventing post-ESD esophageal stenosis in clinical practice in view of assisting clinical practitioners.
Collapse
Affiliation(s)
- Yangyang Duan
- Department of Digestive Endoscopy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Wenxiu Jia
- Department of Digestive Endoscopy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Ying Liang
- Department of Digestive Endoscopy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Xiuning Zhang
- Department of Digestive Endoscopy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Zhufeng Yang
- Department of Digestive Endoscopy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China.
| | - Qian Yang
- Department of Spleen and Stomach Diseases, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China; Hebei Key Laboratory of Turbidity Toxin Syndrome, Hebei, China; Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China.
| |
Collapse
|
7
|
Bao W, You Y, Ni J, Hou H, Lyu J, Feng G, Wang Y, You K, Zhang S, Zhang L, Cao X, Wang X, Li H, Li H, Xu J, Liu C, Luo X, Du P, Chen D, Shen X. Inhibiting sorting nexin 10 promotes mucosal healing through SREBP2-mediated stemness restoration of intestinal stem cells. SCIENCE ADVANCES 2023; 9:eadh5016. [PMID: 37647408 PMCID: PMC10468130 DOI: 10.1126/sciadv.adh5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Intestinal stem cell (ISC) is a promising therapeutic target for inflammatory bowel disease. Cholesterol availability is critical for ISC stemness. Low plasma cholesterol is a typical feature of Crohn's disease (CD); however, its impact on mucosal healing remains unclear. Here, we identified an essential role of sorting nexin 10 (SNX10) in maintaining the stemness of ISCs. SNX10 expression in intestinal tissues positively correlates with the severity of human CD and mouse colitis. Conditional SNX10 knockout in intestinal epithelial cells or ISCs promotes intestinal mucosal repair by maintaining the ISC population associated with increased intracellular cholesterol synthesis. Disassociation of ERLIN2 with SCAP by SNX10 deletion enhances the activation of SREBP2, resulting in increased cholesterol biosynthesis. DC-SX029, a small-molecule inhibitor of SNX10, was used to verify the druggable potential of SNX10 for the treatment of patients with CD. Our study provides a strategy for mucosal healing through SREBP2-mediated stemness restoration of ISCs.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiaren Lyu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Comparison of statins with steroids and botulinum toxin A in the prevention of benign strictures after esophageal endoscopic submucosal dissection: a retrospective cohort study. Surg Endosc 2023:10.1007/s00464-023-09906-x. [PMID: 36729230 DOI: 10.1007/s00464-023-09906-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Preventing benign strictures following esophageal endoscopic submucosal dissection (ESD) remains difficult, and finding a safe, effective, and simple management method is vital. We previously reported that rosuvastatin significantly reduced the incidence and severity of strictures in a rabbit model of esophageal stricture. Accordingly, in this study, we compared the effects of statins, steroids, and botulinum toxin A (BTX-A) on stricture prevention after ESD involving more than three-fourths of the luminal circumference. METHODS Of the 1019 ESD cases treated between January 2015 and December 2020, 246 met the inclusion criteria, with 21 cases excluded due to loss to follow-up, tumor recurrence, death, or need for additional surgery, radiotherapy, and/or chemotherapy. Of the 225 included cases, 145 received no intervention, while the remaining 80 were treated: 16 with oral steroids, 20 with topical triamcinolone acetonide (TA) injection, 21 with topical BTX-A injection, and 23 with statins. RESULTS The occurrence stricture rate in the statins group (17.4%, 4/23) was significantly lower than in the non-intervention (75.2%, 109/145, P = 0.000), oral steroids (56.3%, 9/16, P = 0.011) and TA injection (50%, 10/20, P = 0.023) groups, but comparable to in the BTX-A injection (38.1%, 8/21, P = 0.124) group. The dysphagia score was lower in the statin than non-intervention group (P = 0.000). Although there was no significant difference in the number of required dilations between groups, the maximum number of dilations in the statins group was only six. CONCLUSIONS Statins may be a potential treatment to prevent esophageal strictures after extensive ESD; however, clinical trials should be conducted to validate this.
Collapse
|
9
|
Park JM, Kim J, Lee YJ, Bae SU, Lee HW. Inflammatory bowel disease-associated intestinal fibrosis. J Pathol Transl Med 2023; 57:60-66. [PMID: 36623814 PMCID: PMC9846010 DOI: 10.4132/jptm.2022.11.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2023] Open
Abstract
Fibrosis is characterized by a proliferation of fibroblasts and excessive extracellular matrix following chronic inflammation, and this replacement of organ tissue with fibrotic tissue causes a loss of function. Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract, and intestinal fibrosis is common in IBD patients, resulting in several complications that require surgery, such as a stricture or penetration. This review describes the pathogenesis and various factors involved in intestinal fibrosis in IBD, including cytokines, growth factors, epithelial-mesenchymal and endothelial-mesenchymal transitions, and gut microbiota. Furthermore, histopathologic findings and scoring systems used for stenosis in IBD are discussed, and differences in the fibrosis patterns of ulcerative colitis and Crohn's disease are compared. Biomarkers and therapeutic agents targeting intestinal fibrosis are briefly mentioned at the end.
Collapse
Affiliation(s)
- Ji Min Park
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Jeongseok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu,
Korea
| | - Yoo Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu,
Korea
| | - Sung Uk Bae
- Division of Colorectal Surgery, Department of Surgery, Keimyung University School of Medicine, Daegu,
Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| |
Collapse
|
10
|
Vital KD, Cardoso BG, Lima IP, Campos AB, Teixeira BF, Pires LO, Dias BC, de Alcantara Candido P, Cardoso VN, Fernandes SOA. Therapeutic effects and the impact of statins in the prevention of ulcerative colitis in preclinical models: A systematic review. Fundam Clin Pharmacol 2022; 37:493-507. [PMID: 36514874 DOI: 10.1111/fcp.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Gatti Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iasmin Pinheiro Lima
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Beatriz Campos
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Faria Teixeira
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octávio Pires
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Coutinho Dias
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia de Alcantara Candido
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
12
|
Zhang J, Ou A, Tang X, Wang R, Fan Y, Fang Y, Zhao Y, Zhao P, Chen D, Wang B, Huang Y. "Two-birds-one-stone" colon-targeted nanomedicine treats ulcerative colitis via remodeling immune microenvironment and anti-fibrosis. J Nanobiotechnology 2022; 20:389. [PMID: 36042499 PMCID: PMC9429315 DOI: 10.1186/s12951-022-01598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dysregulated mucosal immune responses and colonic fibrosis impose two formidable challenges for ulcerative colitis treatment. It indicates that monotherapy could not sufficiently deal with this complicated disease and combination therapy may provide a potential solution. A chitosan-modified poly(lactic-co-glycolic acid) nanoparticle (CS-PLGA NP) system was developed for co-delivering patchouli alcohol and simvastatin to the inflamed colonic epithelium to alleviate the symptoms of ulcerative colitis via remodeling immune microenvironment and anti-fibrosis, a so-called “two-birds-one-stone” nanotherapeutic strategy. The bioadhesive nanomedicine enhanced the intestinal epithelial cell uptake efficiency and improved the drug stability in the gastrointestinal tract. The nanomedicine effectively regulated the Akt/MAPK/NF-κB pathway and reshaped the immune microenvironment through repolarizing M2Φ, promoting regulatory T cells and G-MDSC, suppressing neutrophil and inflammatory monocyte infiltration, as well as inhibiting dendritic cell maturation. Additionally, the nanomedicine alleviated colonic fibrosis. Our work elucidates that the colon-targeted codelivery for combination therapy is promising for ulcerative colitis treatment and to address the unmet medical need.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 501450, China
| | - Rong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Yujuan Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China
| | - Yuge Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongying Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Wang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China. .,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China.
| |
Collapse
|
13
|
Arjmand MH. The association between visceral adiposity with systemic inflammation, oxidative stress, and risk of post-surgical adhesion. Arch Physiol Biochem 2022; 128:869-874. [PMID: 32141779 DOI: 10.1080/13813455.2020.1733617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abdominal and pelvic adhesions are common post-operative complications. Despite new medical technologies, these adhesions are appearing to be unavoidable and little is known about their causation; for example, why certain patients/or tissues are more prone to adhesions. There have been no clinical studies about increasing the risk adhesions in obese patients, but there is some evidence about the molecular mechanisms involving visceral fat (VF) that may lead to profibrotic conditions. VF is an endocrine/inflammatory organ which produces many biologically active molecules such as adipokines and inflammatory cytokines. Inflammatory conditions, oxidative stress, and the expression some fibrotic molecules in the VF may induce pathological conditions in the abdominal cavity that predispose to the formation of fibrotic bands.
Collapse
Affiliation(s)
- Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Protective effect of rosuvastatin against the formation of benign esophageal stricture. Esophagus 2022; 19:343-350. [PMID: 34800196 DOI: 10.1007/s10388-021-00895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Benign esophageal strictures result from caustic or radiation injury or surgical procedures. Statins have anti-inflammatory and anti-fibrotic activities. We examined the role of rosuvastatin in preventing benign esophageal fibrosis and stricture formation in a rabbit model. METHODS Twenty-six rabbits were assigned to control and rosuvastatin groups. The rabbits in the rosuvastatin group were administered rosuvastatin 5 mg/day, 2 weeks prior to the esophageal stricture phase. Esophageal strictures were established by applying 4% sodium hydroxide solution to the middle esophagus. Esophagography was performed to evaluate the degree of esophageal stenosis, and histopathologic assessment of esophageal tissue damage was performed with hematoxylin-eosin and Masson staining. The expressions of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA) were examined by immunohistochemistry. RESULTS The incidence of strictures was significantly lower in the rosuvastatin group. Esophagography demonstrated mild stenosis in the narrowest inner esophageal diameter in the rosuvastatin group than in the control group, and Masson staining demonstrated significantly less collagen deposition in the rosuvastatin group. In addition, immunohistochemistry results showed that the expressions of TGF-β1, CTGF, and α-SMA significantly reduced in the rosuvastatin group. CONCLUSIONS The present study demonstrated that rosuvastatin prevents benign esophageal stricture formation. This effect may be exerted through the anti-fibrotic activity of rosuvastatin, which may be exerted by the inhibition of CTGF and α-SMA production induced by TGF-β1.
Collapse
|
15
|
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L, Danese S. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 2022; 19:169-184. [PMID: 34876680 DOI: 10.1038/s41575-021-00543-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.
Collapse
Affiliation(s)
| | - Federica Ungaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Centre, Laboratory of Gastrointestinal Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INSERM NGERE, University of Lorraine, Vandoeuvre-les-Nancy, Nancy, France.,Nancy University Hospital, Vandoeuvre-les-Nancy, Nancy, France
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
16
|
Wang P, Zhao Y, Wang J, Wu Z, Sui B, Mao X, Shi S, Kou X. Dephosphorylation of Caveolin-1 Controls C-X-C Motif Chemokine Ligand 10 Secretion in Mesenchymal Stem Cells to Regulate the Process of Wound Healing. Front Cell Dev Biol 2021; 9:725630. [PMID: 34790658 PMCID: PMC8592036 DOI: 10.3389/fcell.2021.725630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) secrete cytokines in a paracrine or autocrine manner to regulate immune response and tissue regeneration. Our previous research revealed that MSCs use the complex of Fas/Fas-associated phosphatase-1 (Fap-1)/caveolin-1 (Cav-1) mediated exocytotic process to regulate cytokine and small extracellular vesicles (EVs) secretion, which contributes to accelerated wound healing. However, the detailed underlying mechanism of cytokine secretion controlled by Cav-1 remains to be explored. We show that Gingiva-derived MSCs (GMSCs) could secrete more C-X-C motif chemokine ligand 10 (CXCL10) but showed lower phospho-Cav-1 (p-Cav-1) expression than skin-derived MSCs (SMSCs). Moreover, dephosphorylation of Cav-1 by a Src kinase inhibitor PP2 significantly enhances CXCL10 secretion, while activating phosphorylation of Cav-1 by H2O2 restraints CXCL10 secretion in GMSCs. We also found that Fas and Fap-1 contribute to the dephosphorylation of Cav-1 to elevate CXCL10 secretion. Tumor necrosis factor-α serves as an activator to up-regulate Fas, Fap-1, and down-regulate p-Cav-1 expression to promote CXCL10 release. Furthermore, local applying p-Cav-1 inhibitor PP2 could accelerate wound healing, reduce the expression of α-smooth muscle actin and increase cleaved-caspase 3 expression. These results indicated that dephosphorylation of Cav-1 could inhibit fibrosis during wound healing. The present study establishes a previously unknown role of p-Cav-1 in controlling cytokine release of MSC and may present a potential therapeutic approach for promoting scarless wound healing.
Collapse
Affiliation(s)
- Panpan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yingji Zhao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhiying Wu
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| |
Collapse
|
17
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
18
|
Basso PJ, Sales-Campos H, Nardini V, Duarte-Silva M, Alves VBF, Bonfá G, Rodrigues CC, Ghirotto B, Chica JEL, Nomizo A, Cardoso CRDB. Peroxisome Proliferator-Activated Receptor Alpha Mediates the Beneficial Effects of Atorvastatin in Experimental Colitis. Front Immunol 2021; 12:618365. [PMID: 34434187 PMCID: PMC8382038 DOI: 10.3389/fimmu.2021.618365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.
Collapse
Affiliation(s)
- Paulo José Basso
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Murillo Duarte-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Beatriz Freitas Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giuliano Bonfá
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cassiano Costa Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ghirotto
- Departmento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Lochhead P, Khalili H, Sachs MC, Chan AT, Olén O, Ludvigsson JF. Association Between Statin Use and Inflammatory Bowel Diseases: Results from a Swedish, Nationwide, Population-based Case-control Study. J Crohns Colitis 2021; 15:757-765. [PMID: 33216873 PMCID: PMC8247597 DOI: 10.1093/ecco-jcc/jjaa235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In addition to their potent lipid-lowering action, statins may modulate inflammation. However, data on statin use and the risk of inflammatory bowel diseases [IBD] have been inconsistent. METHODS We searched the Nationwide Swedish Patient Register [inpatient and non-primary outpatient care] to identify adults diagnosed with Crohn's disease [CD, n = 7637] or ulcerative colitis [UC, n = 15 652] from 2006 to 2014. Each case was matched to 10 general population controls [n = 232 890]. Data on dispensed statin prescriptions were extracted from the Prescribed Drug Register. Conditional logistic regression models estimated odds ratios [ORs] for risk of IBD according to statin exposure while controlling for potential confounders, including indications for statin therapy. RESULTS In multivariable adjusted models, compared with no statin use, any statin use was associated with a lower risk of CD (OR = 0.71; 95% confidence interval [CI], 0.63-0.79), but not UC [OR = 1.03; 95% CI, 0.96-1.11]. The lowest OR for CD was seen for current statin use [OR = 0.67; 95% CI, 0.60-0.75]. For CD, the lowest category of cumulative statin dose [31-325 defined daily dose, DDD] was associated with an OR of 0.73 [95% CI, 0.61-0.88] and the highest category [>1500 DDD] with an OR of 0.66 [95% CI, 0.55-0.80], ptrend = 0.10. For UC, the lowest and highest dose categories yielded ORs of 1.12 [95% CI, 1.00-1.25] and 0.99 [95% CI, 0.88-1.13], respectively, ptrend = 0.13. CONCLUSIONS Statin use was associated with a lower risk of CD, but not of UC. The association with CD risk appeared strongest for current statin use. Our findings suggest that statin use may influence the development of CD.
Collapse
Affiliation(s)
- Paul Lochhead
- Clinical and Translational Epidemiology Unit,
Massachusetts General Hospital and Harvard Medical School, Boston,
MA, USA
- Division of Gastroenterology, Massachusetts General
Hospital, Boston, MA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit,
Massachusetts General Hospital and Harvard Medical School, Boston,
MA, USA
- Division of Gastroenterology, Massachusetts General
Hospital, Boston, MA, USA
| | - Michael C Sachs
- Clinical Epidemiology Division, Department of Medicine
Solna, Karolinska Institutet, Stockholm, Sweden
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit,
Massachusetts General Hospital and Harvard Medical School, Boston,
MA, USA
- Division of Gastroenterology, Massachusetts General
Hospital, Boston, MA, USA
| | - Ola Olén
- Clinical Epidemiology Division, Department of Medicine
Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science and Education
Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm South
General Hospital, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Örebro University
Hospital, Örebro, Sweden
| |
Collapse
|
20
|
Sands BE, Colombel JF, Ha C, Farnier M, Armuzzi A, Quirk D, Friedman GS, Kwok K, Salese L, Su C, Taub PR. Lipid Profiles in Patients With Ulcerative Colitis Receiving Tofacitinib-Implications for Cardiovascular Risk and Patient Management. Inflamm Bowel Dis 2020; 27:797-808. [PMID: 32870265 PMCID: PMC8128390 DOI: 10.1093/ibd/izaa227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) are at elevated risk of cardiovascular disease vs the general population, despite a lower prevalence of traditional risk factors, including hyperlipidemia. Mechanistic studies in patients with rheumatoid arthritis and psoriasis suggest that tofacitinib restores serum lipids to preinflammation levels by reversing inflammation-induced cholesterol metabolism changes. We reviewed data on lipid levels and cardiovascular events, alongside recommendations for managing lipid levels during tofacitinib treatment in patients with UC, based on up-to-date expert guidelines. METHODS Data were identified from a phase 3/open-label, long-term extension (OLE) tofacitinib UC clinical program (cutoff May 27, 2019). Literature was identified from PubMed (search terms "lipid," "cholesterol," "lipoprotein," "cardiovascular," "inflammation," "atherosclerosis," "tofacitinib," "rheumatoid arthritis," "psoriasis," "inflammatory bowel disease," "ulcerative colitis," "hyperlipidemia," and "guidelines") and author knowledge. Data were available from 4 phase 3 clinical trials of 1124 patients with moderately to severely active UC who received ≥1 dose of tofacitinib 5 or 10 mg twice daily in induction (two identical trials), maintenance, and OLE studies (treatment duration ≤6.8 years; 2576.4 patient-years of drug exposure). RESULTS In the OLE study, tofacitinib treatment was not associated with major changes from baseline in total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, total cholesterol/high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol/high-density lipoprotein cholesterol, with lipid levels and ratios generally remaining stable over time. The major adverse cardiovascular events incidence rate was 0.26/100 patient-years (95% confidence interval, 0.11-0.54). CONCLUSIONS Lipid levels and ratios remained generally unchanged from baseline in the OLE study after tofacitinib treatment, and major adverse cardiovascular events were infrequent. Long-term studies are ongoing. CLINICALTRIALS.GOV IDENTIFIERS NCT01465763, NCT01458951, NCT01458574, NCT01470612.
Collapse
Affiliation(s)
- Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA,Address correspondence to: Bruce E. Sands, MD, Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1069, New York, NY 10029 ()
| | - Jean-Frédéric Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christina Ha
- Inflammatory Bowel Disease Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michel Farnier
- PEC2, EA 7460, University of Bourgogne—Franche Comté and Department of Cardiology, CHU Dijon-Bourgogne, Dijon, France
| | - Alessandro Armuzzi
- IBD Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniel Quirk
- Inflammation & Immunology, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Gary S Friedman
- Inflammation & Immunology, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Kenneth Kwok
- Inflammation & Immunology, Pfizer Inc, New York, New York, USA
| | - Leonardo Salese
- Inflammation & Immunology, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Chinyu Su
- Inflammation & Immunology, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Pam R Taub
- Division of Cardiovascular Medicine, University of California, San Diego, California, USA
| |
Collapse
|
21
|
Wei YH, Liao SL, Wang SH, Wang CC, Yang CH. Simvastatin and ROCK Inhibitor Y-27632 Inhibit Myofibroblast Differentiation of Graves' Ophthalmopathy-Derived Orbital Fibroblasts via RhoA-Mediated ERK and p38 Signaling Pathways. Front Endocrinol (Lausanne) 2020; 11:607968. [PMID: 33597925 PMCID: PMC7883643 DOI: 10.3389/fendo.2020.607968] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-induced differentiation of orbital fibroblasts into myofibroblasts is an important pathogenesis of Graves' ophthalmopathy (GO) and leads to orbital tissue fibrosis. In the present study, we explored the antifibrotic effects of simvastatin and ROCK inhibitor Y-27632 in primary cultured GO orbital fibroblasts and tried to explain the molecular mechanisms behind these effects. Both simvastatin and Y-27632 inhibited TGF-β-induced α-smooth muscle actin (α-SMA) expression, which serves as a marker of fibrosis. The inhibitory effect of simvastatin on TGF-β-induced RhoA, ROCK1, and α-SMA expression could be reversed by geranylgeranyl pyrophosphate, an intermediate in the biosynthesis of cholesterol. This suggested that the mechanism of simvastatin-mediated antifibrotic effects may involve RhoA/ROCK signaling. Furthermore, simvastatin and Y-27632 suppressed TGF-β-induced phosphorylation of ERK and p38. The TGF-β-mediated α-SMA expression was suppressed by pharmacological inhibitors of p38 and ERK. These results suggested that simvastatin inhibits TGF-β-induced myofibroblast differentiation via suppression of the RhoA/ROCK/ERK and p38 MAPK signaling pathways. Thus, our study provides evidence that simvastatin and ROCK inhibitors may be potential therapeutic drugs for the prevention and treatment of orbital fibrosis in GO.
Collapse
Affiliation(s)
- Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sen-Hsu Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chun Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chang-Hao Yang,
| |
Collapse
|
22
|
Milenkovic U, Ilg MM, Zuccato C, Ramazani Y, De Ridder D, Albersen M. Simvastatin and the Rho-kinase inhibitor Y-27632 prevent myofibroblast transformation in Peyronie's disease-derived fibroblasts via inhibition of YAP/TAZ nuclear translocation. BJU Int 2019; 123:703-715. [PMID: 30536599 DOI: 10.1111/bju.14638] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To uncover the anti-myofibroblast (MFB) properties of Rho-kinase inhibitor (compound Y-27632) and simvastatin in an in vitro model of Peyronie's disease (PD), a sexually debilitating disease caused by an irreversible fibrotic plaque in the penile tunica albuginea (TA). MATERIALS AND METHODS Primary human fibroblasts (FBs) were isolated from surgically obtained TA tissue from patients with PD. To induce MFB status, cells were stimulated with 3 ng/mL transforming growth factor-β1 (TGF-β1). Increasing doses of Y-27632 and simvastatin were added. Real-time quantitative PCR was used to assess mRNA expression of α-smooth muscle actin (α-SMA), collagen III, elastin and connective tissue growth factor (CTGF) after 72 h. Western blot analysis was used to quantify α-SMA protein contents, and immunofluorescence (IF) was used to visualize MFB differentiation by staining for α-SMA after 72 h. A resazurin-based assay was used to assess cell viability to ensure the anti-MFB effect of the drugs. A mechanistic study was performed using IF staining for YAP/TAZ nuclear translocation. RESULTS After 72 h of stimulation with TGF-β1, a six- to 10-fold upregulation of α-SMA could be observed. When treated with Y-27632 or simvastatin, the α-SMA, collagen III, elastin and CTGF mRNA expression was impeded. Additionally, TGF-β1 stimulation showed a twofold increase in α-SMA protein expression, which was reversed to non-stimulated levels after treatment with Y-27632 and simvastatin. Using IF, stimulated cells were identified as MFB (α-SMA+, Vim+) as opposed to the non-stimulated, Y-27632- and simvastatin-treated cells (α-SMA-, Vim+). The resazurin-based assay confirmed that the cell viability was not compromised by the administered drugs. On stimulation with TGF-β1, nuclear translocation of YAP/TAZ could be observed, which was prevented by adding the aforementioned compounds. CONCLUSION Transformation of FBs into the contractile and extracellular matrix-producing MFBs occurs after TGF-β1 stimulation. In our experiments, Rho-kinase inhibition and simvastatin treatment were shown to prevent this in TGF-β1-stimulated cells on an RNA and protein level through the inhibition of YAP/TAZ nuclear translocation. Y-27632 and simvastatin could become a novel treatment option in the early treatment of PD.
Collapse
Affiliation(s)
- Uros Milenkovic
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Marcus M Ilg
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Carola Zuccato
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Faculty of Medicine and Surgery, University of Padua, Padua, Italy
| | - Yasaman Ramazani
- Department of Pediatric Nephrology and Growth and Regeneration, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Sun Y, Zhang Y, Chi P. Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol Med Rep 2018; 18:3907-3913. [PMID: 30152848 PMCID: PMC6131636 DOI: 10.3892/mmr.2018.9423] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/02/2018] [Indexed: 01/27/2023] Open
Abstract
Intestinal fibroblasts, the main effector cells of intestinal fibrosis, are considered to be a good target for anti-fibrotic therapy. The aim of the present study was to examine the effects of pirfenidone (PFD) on human intestinal fibroblasts (HIFs) stimulated by transforming growth factor (TGF)-β1 and to explore the potential mechanism. Prior to stimulation with TGF-β1 (10 ng/ml), HIFs were treated with or without PFD (1 mg/ml). Cell proliferation was determined by Cell Counting Kit (CCK)-8 and colony formation assays, and cell apoptosis was assessed using flow cytometry and a TUNEL assay. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to evaluate the mRNA and protein expressions of α-smooth muscle actin (α-SMA), collagen I and fibronectin. The protein expression of TGF-β1/mothers against decapentaplegic homolog (Smad) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways was evaluated by western blotting. CCK-8 and colony formation assays demonstrated that PFD significantly inhibited cell proliferation in HIFs stimulated with TGF-β1. Flow cytometry and TUNEL assays revealed that PFD treatment significantly enhanced apoptosis in TGF-β1-stimulated HIFs. In addition, PFD markedly reduced TGF-β1-induced HIF activities, such as myofibroblast differentiation (α-SMA), and collagen production (collagen I and fibronectin). These effects of PFD were mediated by the inhibition of the TGF-β1/Smad and PI3K/AKT signaling pathways. Therefore, the present study demonstrated that PFD reduced TGF-β1-induced fibrogenic activities of HIFs, suggesting that PFD may be a potential therapeutic agent for intestinal fibrosis.
Collapse
Affiliation(s)
- Yanwu Sun
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yiyi Zhang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
24
|
Lian L, Huang Q, Zhang L, Qin H, He X, He X, Ke J, Xie M, Lan P. Anti-fibrogenic Potential of Mesenchymal Stromal Cells in Treating Fibrosis in Crohn's Disease. Dig Dis Sci 2018; 63:1821-1834. [PMID: 29704139 DOI: 10.1007/s10620-018-5082-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal fibrosis is a major complication of CD and may result in stricture formation leading to intestinal obstruction. MSCs play multiple roles in active CD and fibrosis-associated diseases. AIMS This study was designed to investigate the role of MSCs in CD-associated intestinal fibrosis. METHODS Intestinal fibrosis was induced over 7 weeks of enema with increasing doses of TNBS and assessed by Masson's trichrome staining. Transcriptome sequencing and gene set enrichment analysis were conducted to reveal the transcriptome changes among groups at the mRNA level. Immunofluorescence assays were used to validate the role of EMT in intestinal fibrosis. Quantitative real-time PCR and immunohistochemistry analyses were performed to clarify the association between the anti-fibrogenic properties of MSCs and the immune microenvironment. Western blotting was used to verify the potential signaling pathways. RESULTS Fibrotic tissue accumulation and inflammatory cell infiltration were detected in the colon tissue after TNBS induction treatment. Prophylactic MSCs treatment inhibited colon shortening, while therapeutic treatment decreased colon weight. Prophylactic treatment with MSCs inhibited the accumulation of fibrotic tissue, the expression of fibrotic proteins and EMT. Therapeutic MSCs treatment reversed the established intestinal fibrosis and reduced EMT. The secretion of the fibrogenic factors IL-1beta, IL-6 and IL-13 was down-regulated after both MSCs treatment approaches, while IL-10, an anti-fibrogenic factor, was up-regulated. Both MSCs therapies inhibited the expression of TGF-beta and the phosphorylation of Smad2 and Smad3 after TNBS induction. CONCLUSION MSCs exert anti-fibrogenic activity against CD-associated fibrosis by regulating the inflammatory environment, inhibiting the TGF-beta/Smad signaling pathway and ameliorating EMT.
Collapse
Affiliation(s)
- Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Qunsheng Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longjuan Zhang
- Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huabo Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of General and Pediatric Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Jia Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Steiner CA, Higgins PDR. Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:347-385. [DOI: 10.1007/978-3-319-90578-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Xu C, Ghali S, Wang J, Shih DQ, Ortiz C, Mussatto CC, Lee EC, Tran DH, Jacobs JP, Lagishetty V, Fleshner P, Robbins L, Vu M, Hing TC, McGovern DPB, Koon HW. CSA13 inhibits colitis-associated intestinal fibrosis via a formyl peptide receptor like-1 mediated HMG-CoA reductase pathway. Sci Rep 2017; 7:16351. [PMID: 29180648 PMCID: PMC5703874 DOI: 10.1038/s41598-017-16753-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Many Crohn’s disease (CD) patients develop intestinal strictures, which are difficult to prevent and treat. Cationic steroid antimicrobial 13 (CSA13) shares cationic nature and antimicrobial function with antimicrobial peptide cathelicidin. As many functions of cathelicidin are mediated through formyl peptide receptor-like 1 (FPRL1), we hypothesize that CSA13 mediates anti-fibrogenic effects via FPRL1. Human intestinal biopsies were used in clinical data analysis. Chronic trinitrobenzene sulfonic acid (TNBS) colitis-associated intestinal fibrosis mouse model with the administration of CSA13 was used. Colonic FPRL1 mRNA expression was positively correlated with the histology scores of inflammatory bowel disease patients. In CD patients, colonic FPRL1 mRNA was positively correlated with intestinal stricture. CSA13 administration ameliorated intestinal fibrosis without influencing intestinal microbiota. Inhibition of FPRL1, but not suppression of intestinal microbiota, reversed these protective effects of CSA13. Metabolomic analysis indicated increased fecal mevalonate levels in the TNBS-treated mice, which were reduced by the CSA13 administration. CSA13 inhibited colonic HMG-CoA reductase activity in an FPRL1-dependent manner. Mevalonate reversed the anti-fibrogenic effect of CSA13. The increased colonic FPRL1 expression is associated with severe mucosal disease activity and intestinal stricture. CSA13 inhibits intestinal fibrosis via FPRL1-dependent modulation of HMG-CoA reductase pathway.
Collapse
Affiliation(s)
- Chunlan Xu
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA.,The Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xian, Shaanxi Province, China
| | - Sally Ghali
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiani Wang
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Christina Ortiz
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Caroline C Mussatto
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine C Lee
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Diana H Tran
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonathan P Jacobs
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Venu Lagishetty
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Phillip Fleshner
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Lori Robbins
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michelle Vu
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tressia C Hing
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hon Wai Koon
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Holvoet T, Devriese S, Castermans K, Boland S, Leysen D, Vandewynckel YP, Devisscher L, Van den Bossche L, Van Welden S, Dullaers M, Vandenbroucke RE, De Rycke R, Geboes K, Bourin A, Defert O, Hindryckx P, De Vos M, Laukens D. Treatment of Intestinal Fibrosis in Experimental Inflammatory Bowel Disease by the Pleiotropic Actions of a Local Rho Kinase Inhibitor. Gastroenterology 2017. [PMID: 28642198 DOI: 10.1053/j.gastro.2017.06.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Intestinal fibrosis resulting in (sub)obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFβ-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side effects, we evaluated the effects of a locally acting ROCK inhibitor (AMA0825) on intestinal fibrosis. METHODS Fibrosis was assessed in mouse models using dextran sulfate sodium (DSS) and adoptive T-cell transfer. The in vitro and ex vivo effects of AMA0825 were studied in different cell types and in CD biopsy cultures. RESULTS ROCK is expressed in fibroblastic, epithelial, endothelial, and muscle cells of the human intestinal tract and is activated in inflamed and fibrotic tissue. Prophylactic treatment with AMA0825 inhibited myofibroblast accumulation, expression of pro-fibrotic factors, and accumulation of fibrotic tissue without affecting clinical disease activity and histologic inflammation in 2 models of fibrosis. ROCK inhibition reversed established fibrosis in a chronic DSS model and impeded ex vivo pro-fibrotic protein secretion from stenotic CD biopsies. AMA0825 reduced TGFβ1-induced activation of myocardin-related transcription factor (MRTF) and p38 mitogen-activated protein kinase (MAPK), down-regulating matrix metalloproteinases, collagen, and IL6 secretion from fibroblasts. In these cells, ROCK inhibition potentiated autophagy, which was required for the observed reduction in collagen and IL6 production. AMA0825 did not affect pro-inflammatory cytokine secretion from other ROCK-positive cell types, corroborating the selective in vivo effect on fibrosis. CONCLUSIONS Local ROCK inhibition prevents and reverses intestinal fibrosis by diminishing MRTF and p38 MAPK activation and increasing autophagy in fibroblasts. Overall, our results show that local ROCK inhibition is promising for counteracting fibrosis as an add-on therapy for CD.
Collapse
Affiliation(s)
- Tom Holvoet
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Sarah Devriese
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | - Melissa Dullaers
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Molecular Biomedical Research, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Molecular Biomedical Research, Ghent University, Ghent, Belgium
| | - Karel Geboes
- Department of Pathology, Ghent University, Ghent, Belgium
| | | | | | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Martine De Vos
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Simvastatin treatment boosts benefits of apoptotic cell infusion in murine lung fibrosis. Cell Death Dis 2017; 8:e2860. [PMID: 28594406 PMCID: PMC5520916 DOI: 10.1038/cddis.2017.260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
A single early-phase infusion of apoptotic cells can inhibit bleomycin-induced lung inflammation and fibrosis; however, it is unknown whether these effects can be enhanced with additional infusions and/or statin treatment. Here, we investigated whether an increased frequency of apoptotic cell injection, with or without efferocytosis enhancer simvastatin, facilitates therapeutic efficacy. An additional injection of apoptotic cells during the intermediate phase (7 days post-bleomycin treatment) or simvastatin administration alone on days 7–13 post-treatment did not promote anti-fibrotic responses beyond those induced by a single early apoptotic cell infusion alone. Additional administration of apoptotic cells with simvastatin further enhanced the efferocytic ability of alveolar macrophages and PPARγ activity, and induced hepatocyte growth factor and interleukin-10 expression, in alveolar macrophages and lung tissue. Additional administration of apoptotic cells with simvastatin also reduced mRNA expression of bleomycin-induced epithelial-mesenchymal transition (EMT) markers in isolated alveolar type II epithelial cells, fibrotic markers in fibroblasts, and hydroxyproline in lung tissue. Enhanced anti-EMT and anti-fibrotic efficacy was confirmed by immunofluorescence and trichrome staining of lung tissue. This suggests that additional administration of apoptotic cells with simvastatin during the intermediate phase of bleomycin-induced lung fibrosis may boost the anti-fibrotic properties of early apoptotic cell infusion.
Collapse
|
29
|
López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci 2017; 74:803-826. [PMID: 27624395 PMCID: PMC11107577 DOI: 10.1007/s00018-016-2363-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
30
|
Editorial: Statins for Inflammatory Bowel Disease: Expanding the Scope of Prevention. Am J Gastroenterol 2016; 111:1424-1426. [PMID: 27694857 DOI: 10.1038/ajg.2016.338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
In addition to cholesterol depletion, statins also significantly decrease systemic inflammation as measured by C-reactive protein. In this issue of American Journal of Gastroenterology, Ungaro et al. present their results on the associations between statin prescriptions and risk of Crohn's disease (CD) and ulcerative colitis (UC). Using a national medical claims and pharmacy database created by Symphony Health Solutions LLC (SHA), they show that any use of statin is protective against diagnosis of CD and UC. The protective effect against CD appears strongest among older populations (>60 years old). These findings offer intriguing insights into inflammatory pathways that could be modulated by cholesterol lowering drugs. In addition, if replicated in other cohorts, these results provide further rationale for investigating the use of statins in broader preventive efforts, including healthy patients at risk of developing inflammatory bowel disease.
Collapse
|
31
|
Jacob N, Targan SR, Shih DQ. Cytokine and anti-cytokine therapies in prevention or treatment of fibrosis in IBD. United European Gastroenterol J 2016; 4:531-40. [PMID: 27536363 DOI: 10.1177/2050640616649356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
The frequency of fibrosing Crohn's disease (CD) is significant, with approximately 40% of CD patients with ileal disease developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic, inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomodulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epigenetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and therefore highlight the complexity of disease, but also shed light on targetable pathways. Exclusively targeting fibrosis may be difficult, however, because of the relatively slow evolution of fibrosis in CD, and the potential adverse effects of inhibiting pathways involved in tissue repair and mucosal healing. Acknowledging these caveats, cytokine-targeted therapy has become the mainstay of treatment for many inflammatory conditions and is being evaluated for fibrotic disorders. The question of whether anti-cytokine therapy will prove useful for intestinal fibrosis is, therefore, acutely relevant. This review will highlight some of the current therapeutics targeting cytokines involved in fibrosis.
Collapse
Affiliation(s)
- Noam Jacob
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Digestive Diseases, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
32
|
Abstract
Statins are among the most widely prescribed medications in the world. In addition to lowering cholesterol, statins have been shown to have immunomodulatory effects in multiple studies. For example, statins modulate the interaction between T cells and antigen-presenting cells, resulting in decreased T-cell activation and reduced levels of inflammatory cytokines. Statins have also been demonstrated to inhibit the migration of leukocytes across vascular endothelium into tissues. Although most research on the immune effects of statins has been conducted in the context of cardiovascular, rheumatological, or metabolic disease, various studies have shown that statins may have a significant impact on intestinal immunity and mucosal inflammation. Clinical research has suggested that statins may have benefit in inflammatory bowel disease. In this article, we review the effect of statins on the immune system and gastrointestinal tract, highlighting the potential for novel therapeutic applications in inflammatory bowel disease.
Collapse
|
33
|
Bitto A, Bagnato GL, Pizzino G, Roberts WN, Irrera N, Minutoli L, Russo G, Squadrito F, Saitta A, Bagnato GF, Altavilla D. Simvastatin prevents vascular complications in the chronic reactive oxygen species murine model of systemic sclerosis. Free Radic Res 2016; 50:514-22. [PMID: 26846205 DOI: 10.3109/10715762.2016.1149171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims Systemic sclerosis (SSc) is characterized by vasculopathy and organ fibrosis. Although microvascular alterations are very well characterized, structural and functional abnormalities of large vessels are not well defined. Therefore, we evaluated the effect of simvastatin administration on aortic and small renal arteries thickening, and on myofibroblasts differentiation in a murine model of SSc. Methods and results SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl, 100 μl) for 6 weeks. Mice (n = 23) were randomized to receive: HOCl (n = 10); HOCl plus simvastatin (40 mg/kg; n = 8); or vehicle (n = 5). Simvastatin administration started 30 min after HOCl injection, and up to week 6. Aortic and small renal arteries intima-media thickness was evaluated by histological analysis. Immunostaining for α-smooth muscle actin (SMA), vascular endothelial growth factor receptor 2 (VEGFR2), and CD31 in aortic tissues was performed to evaluate myofibroblast differentiation and endothelial markers.In HOCl-treated mice, intima-media thickening with reduced lumen diameter was observed in the aorta and in small renal arteries and simvastatin administration prevented this increase. Aortic and renal myofibroblasts count, as expressed by α-SMA + density, was lower in the group of mice treated with simvastatin compared to HOCl-treated mice. Simvastatin prevented the reduction in VEGFR2 and CD31 expression induced by HOCl. Conclusions The administration of simvastatin regulates collagen deposition in the aortic tissues and in the small renal arteries by modulating myofibroblasts differentiation and vascular markers. Further studies are needed to better address the effect of statins in the macrovascular component of SSc.
Collapse
Affiliation(s)
- Alessandra Bitto
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gian Luca Bagnato
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gabriele Pizzino
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | | | - Natasha Irrera
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Letteria Minutoli
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Giuseppina Russo
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Francesco Squadrito
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Antonino Saitta
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gian Filippo Bagnato
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Domenica Altavilla
- c Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences , University of Messina , Messina , Italy
| |
Collapse
|
34
|
Abstract
Introduction The present review serves to provide a concise overview of the current knowledge on therapeutic strategies with regard to fibrostenotic lesions in Crohn's disease. Methods A literature search was performed focusing on the last 5 years, and current concepts of pathophysiology, epidemiology, and treatment have been summarized. Results Fibrostenotic lesions in Crohn's disease are currently considered to be a consequence of the chronic inflammatory nature of the disease. Hence, therapeutic strategies are limited to the concept that early treatment of the inflammatory lesions can prevent structural changes, and to various endoscopic and surgical approaches. Direct targeting of the fibrostenotic lesion itself has not been the focus until now. This review will provide an overview of the pathophysiology and epidemiology of fibrostenotic lesions including current therapeutic approaches. Since research with regard to other organ systems and fibrosis is far more advanced, current strategies from available studies in these areas will be discussed. The results and the potential impact for Crohn's disease will be considered. Conclusion The vision of these approaches is to reverse structural changes and restore normal function.
Collapse
Affiliation(s)
- Britta Siegmund
- Medical Department (Gastroenterology, Infectious Diseases, Rheumatology), Charité - University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
35
|
Khalil D, Boktor M, Mortensen EM, Frei CR, Mansi I. Comparison of frequency of inflammatory bowel disease and noninfectious gastroenteritis among statin users versus nonusers. Am J Cardiol 2015; 115:1396-401. [PMID: 25784517 DOI: 10.1016/j.amjcard.2015.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
Conflicting data exist regarding the effects of statin therapy on the prevalence of inflammatory bowel diseases. We aimed to examine the association of statin therapy with diagnoses of inflammatory bowel diseases and noninfectious gastroenteritis. This is a retrospective study using data of a military health care system from October 1, 2003, to March 1, 2012. Based on medication fills during fiscal year 2005, patients were divided into: (1) statin users (received at least 90-day supply of statin) and (2) nonusers (never received a statin). A propensity score-matched cohort of statin users and nonusers was created using 80 variables. Primary analysis examined the risks of being diagnosed with inflammatory bowel diseases and noninfectious gastroenteritis between statin users and nonusers in the propensity score-matched cohort. Secondary analyses examined the risk of outcomes in the whole cohort and in patients with no comorbidities according to Charlson Comorbidity Index. Of 43,438 patients meeting study criteria (13,626 statin users and 29,812 nonusers), we propensity score matched 6,342 statin users with 6,342 nonusers. For our primary analysis, 93 statin users and 92 nonusers were diagnosed with inflammatory bowel diseases (odds ratio = 1.01, 95% confidence interval = 0.76 to 1.35), and 632 statin users and 619 nonusers were diagnosed of noninfectious gastroenteritis (odds ratio = 1.02, 95% confidence interval = 0.91 to 1.15). In conclusion, the risks of inflammatory bowel diseases and noninfectious gastroenteritis among statin users and nonusers are similar after adjusting for other potential confounding factors.
Collapse
|
36
|
Singh S, Kullo IJ, Pardi DS, Loftus EV. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat Rev Gastroenterol Hepatol 2015; 12:26-35. [PMID: 25446727 DOI: 10.1038/nrgastro.2014.202] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IBD is an established risk factor for venous thromboembolism. In the past few years, studies have suggested that patients with IBD might also be at an increased risk of coronary heart disease and stroke. The increased risk is thought to be similar to the level of risk seen in patients with other chronic systemic inflammatory diseases such as rheumatoid arthritis. The risk of developing these conditions is particularly increased in young adults with IBD, and more so in women than in men. Conventional cardiovascular risk factors are not over-represented in patients with IBD, so the increased risk could be attributable to inflammation-mediated atherosclerosis. Patients with IBD often have premature atherosclerosis and have biochemical and genetic markers similar to those seen in patients with atherosclerotic cardiovascular disease. The role of chronic inflammation in IBD-associated cardiovascular disease merits further evaluation. Particular attention should be given to the increased risk observed during periods of increased disease activity and potential modification of the risk by immunosuppressive and biologic therapies for IBD that can modify the disease activity. In addition, preclinical studies suggest that cardiovascular medications such as statins and angiotensin-converting enzyme inhibitors might also favourably modify IBD disease activity, which warrants further evaluation.
Collapse
Affiliation(s)
- Siddharth Singh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Iftikhar J Kullo
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Darrell S Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Bettenworth D, Rieder F. Medical therapy of stricturing Crohn's disease: what the gut can learn from other organs - a systematic review. FIBROGENESIS & TISSUE REPAIR 2014; 7:5. [PMID: 24678903 PMCID: PMC4230721 DOI: 10.1186/1755-1536-7-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
Crohn’s disease (CD) is a chronic remitting and relapsing disease. Fibrostenosing complications such as intestinal strictures, stenosis and ultimately obstruction are some of its most common long-term complications. Despite recent advances in the pathophysiological understanding of CD and a significant improvement of anti-inflammatory therapeutics, medical therapy for stricturing CD is still inadequate. No specific anti-fibrotic therapy exists and the incidence rate of strictures has essentially remained unchanged. Therefore, the current therapy of established fibrotic strictures comprises mainly endoscopic dilation as well as surgical approaches. However, these treatment options are associated with major complications as well as high recurrence rates. Thus, a specific anti-fibrotic therapy for CD is urgently needed. Importantly, there is now a growing body of evidence for prevention as well as effective medical treatment of fibrotic diseases of other organs such as the skin, lung, kidney and liver. In face of the similarity of molecular mechanisms of fibrogenesis across these organs, translation of therapeutic approaches from other fibrotic diseases to the intestine appears to be a promising treatment strategy. In particular transforming growth factor beta (TGF-β) neutralization, selective tyrosine kinase inhibitors, blockade of components of the renin-angiotensin system, IL-13 inhibitors and mammalian target of rapamycin (mTOR) inhibitors have emerged as potential drug candidates for anti-fibrotic therapy and may retard progression or even reverse established intestinal fibrosis. However, major challenges have to be overcome in the translation of novel anti-fibrotics into intestinal fibrosis therapy, such as the development of appropriate biomarkers that predict the development and accurately monitor therapeutic responses. Future clinical studies are a prerequisite to evaluate the optimal timing for anti-fibrotic treatment approaches, to elucidate the best routes of application, and to evaluate the potential of drug candidates to reach the ultimate goal: the prevention or reversal of established fibrosis and strictures in CD patients.
Collapse
Affiliation(s)
| | - Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Pathobiology, Lerner Research Institute, NC22, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Mun JH, Kim YM, Kim BS, Kim JH, Kim MB, Ko HC. Simvastatin inhibits transforming growth factor-β1-induced expression of type I collagen, CTGF, and α-SMA in keloid fibroblasts. Wound Repair Regen 2013; 22:125-33. [PMID: 24471776 DOI: 10.1111/wrr.12136] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/24/2013] [Indexed: 01/01/2023]
Abstract
Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor, is used to reduce cholesterol levels. Accumulating evidence has revealed the immunomodulatory and anti-inflammatory effects of simvastatin that prevent cardiovascular diseases. In addition, the beneficial effects of statins on fibrosis of various organs have been reported. However, the functional effect of statins on dermal fibrosis of keloids has not yet been explored. The objective of this study was to determine whether simvastatin could affect dermal fibrosis associated with keloids. We examined the effect of simvastatin on transforming growth factor (TGF)-β1-induced production of type I collagen, connective tissue growth factor (CTGF or CCN2), and α-smooth muscle actin (α-SMA). Keloid fibroblasts were cultured and exposed to different concentrations of simvastatin in the presence of TGF-β1, and the effects of simvastatin on TGF-β1-induced collagen and CTGF production in keloid fibroblasts were determined. The type I collagen, CTGF, and α-SMA expression levels and the Smad2 and Smad3 phosphorylation levels were assessed by Western blotting. The effect of simvastatin on cell viability was evaluated by assessing the colorimetric conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Simvastatin suppressed TGF-β1-induced type I collagen, CTGF, and α-SMA production in a concentration-dependent manner. The TGF-β1-induced Smad2 and Smad3 phosphorylation levels were abrogated by simvastatin pretreatment. The inhibition of type I collagen, CTGF, and α-SMA expression by simvastatin was reversed by geranylgeranyl pyrophosphate, suggesting that the simvastatin-induced cellular responses were due to inhibition of small GTPase Rho involvement. A RhoA activation assay showed that preincubation with simvastatin significantly blocked TGF-β1-induced RhoA activation. The Rho-associated coiled kinase inhibitor Y27632 abrogated TGF-β1-induced production of type I collagen, CTGF, and α-SMA. However, Y27632 had no significant effect on TGF-β1-induced phosphorylation of Smad2 and Smad3. In conclusion, the present study suggests that simvastatin is an effective inhibitor of TGF-β1-induced type I collagen, CTGF, and α-SMA production in keloid fibroblasts.
Collapse
Affiliation(s)
- Je-Ho Mun
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Zhang X, Zhang C, Shen S, Xia YJ, Yi L, Gao Q, Wang Y. Dehydroepiandrosterone induces ovarian and uterine hyperfibrosis in female rats. Hum Reprod 2013; 28:3074-3085. [PMID: 23980058 DOI: 10.1093/humrep/det341] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do dehydroepiandrosterone (DHEA)-treated rats with polycystic ovary syndrome (PCOS) demonstrate a high level of fibrosis in ovarian and uterine tissues? SUMMARY ANSWER DHEA induces ovarian and uterine hyperfibrosis in rats, probably involving a transforming growth factor-β (TGF-β)-dependent mechanism. WHAT IS KNOWN ALREADY Chronic inflammation is the typical cause of fibrosis and is involved in the pathophysiological process of PCOS. Patients with PCOS are reported to have a higher serum level of TGF-β, a well-characterized key pro-fibrotic factor. Fibrillin-3, a protein capable of interacting with TGF-β, has been reported to be partially responsible for the fetal origin of PCOS. STUDY DESIGN, SIZE, DURATION Female Sprague-Dawley rats were treated with a vehicle control or DHEA for 35 days, with subsequent analyses of changes in morphology and gene expression in ovarian and uterine tissues. Rescue groups treated with metformin or simvastatin and their corresponding controls were also analyzed. A total of 80 rats were included. PARTICIPANTS/MATERIALS, SETTING, METHODS The PCOS model was induced by daily administration of DHEA s.c. to 3-week-old female rats, and the rescue groups were injected daily with either metformin or simvastatin in addition to DHEA. Serum steroid hormone levels were measured by enzyme-linked immunosorbent assay. Samples were stained with hematoxylin and eosin for histological morphology, and Sirius Red and immunohistochemistry for revealing collagens. The expression of fibrosis-related genes was analyzed both at mRNA (real-time RT-PCR) and protein (western blot) levels. MAIN RESULTS AND THE ROLE OF CHANCE DHEA-induced rats with PCOS exhibited significantly higher levels of fibrosis (collagen IV) in both ovarian and uterine tissues. In ovarian tissue, the expression of connective tissue growth factor (CTGF) increased following DHEA treatment at both mRNA and protein levels (P < 0.05, P < 0.001 versus controls, respectively). Similar results versus controls were obtained at a protein level for TGF-β (P < 0.01) and mRNA level for fibronectin (P < 0.05) and angiotensin-II (P < 0.05). Likewise, in uterine tissue, the protein levels of both CTGF and TGF-β were higher than controls following DHEA treatment (P < 0.05). Treatment with either metformin or simvastatin attenuated the fibrosis progression induced by DHEA exposure, as evidenced by a reduction of TGF-β, plus CTGF or not, in both ovarian and uterine tissues. LIMITATIONS, REASONS FOR CAUTION The particular mechanism involved in the DHEA-induced fibrosis was not fully revealed. WIDER IMPLICATIONS OF THE FINDINGS Ovarian and uterine hyperfibrosis may occur in patients with PCOS and result in anovulation or other PCOS-related phenotypes. Anti-fibrotic therapy, for example metformin treatment, may be beneficial for patients with PCOS. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (81170541) and the Natural Basic Research Program of China (973 program 2010CB945103). The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Xinlin Zhang
- Center for Translational Medicine & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Inhibitory effects of simvastatin on staphylococcus aureus lipoteichoic acid-induced inflammation in human alveolar macrophages. Clin Exp Med 2013; 14:151-60. [DOI: 10.1007/s10238-013-0231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/15/2013] [Indexed: 01/14/2023]
|
41
|
Zhang J, Osawa S, Takayanagi Y, Ikuma M, Yamada T, Sugimoto M, Furuta T, Miyajima H, Sugimoto K. Statins directly suppress cytokine production in murine intraepithelial lymphocytes. Cytokine 2013; 61:540-545. [PMID: 23290865 DOI: 10.1016/j.cyto.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 11/26/2012] [Accepted: 12/06/2012] [Indexed: 01/02/2023]
Abstract
Statins, inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are known not only as cholesterol-lowering agents but also as anti-inflammatory mediators. However, their regulatory effect on intestinal mucosal immunity remains unclear. The present study examined the possible direct effects of statin on intestinal intraepithelial lymphocytes (IELs), the front line cells of the intestinal mucosal immune system. Murine IELs were isolated from the small intestines of C57BL/6 mice. IELs activated with anti-CD3/CD28 monoclonal antibodies produced interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and IL-4 in significant numbers; however, they did not produce IL-5. Both simvastatin and lovastatin suppressed IEL production of IFN-γ, TNF-α, IL-2, and IL-4 in a dose-dependent manner, whereas 48-h treatment with high concentrations (5 × 10(-5)M) of simvastatin and lovastatin did not affect the number of IELs. The suppressive effect of the simvastatin was significantly restored by the addition of mevalonate, farnesyl pyrophosphate ammonium salt, and geranylgeranyl pyrophosphate ammonium salt, which are downstream metabolites of HMG-CoA. These findings suggest that statins have direct suppressive effects on the production of T helper 1-cytokines and IL-4 in IELs; these effects are associated with inhibition of the mevalonate pathway to some extent.
Collapse
Affiliation(s)
- Jiong Zhang
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol 2012; 303:G786-801. [PMID: 22878121 PMCID: PMC4073977 DOI: 10.1152/ajpgi.00059.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis is a serious condition complicating chronic inflammatory processes affecting the intestinal tract. Advances in this field that rely on human studies have been slow and seriously restricted by practical and logistic reasons. As a consequence, well-characterized animal models of intestinal fibrosis have emerged as logical and essential systems to better define and understand the pathophysiology of fibrosis. In point of fact, animal models allow the execution of mechanistic studies as well as the implementation of clinical trials with novel, pathophysiology-based therapeutic approaches. This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms. Currently available models will be classified into seven categories: spontaneous, gene-targeted, chemical-, immune-, bacteria-, and radiation-induced as well as postoperative fibrosis. Each model will be discussed in regard to its potential to create research opportunities to gain insights into the mechanisms of intestinal fibrosis and stricture formation and assist in the development of effective and specific antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Sean Kessler
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio;
| | - Miquel Sans
- 3Service of Gastroenterology, Centro Medico Teknon, Barcelona, Spain
| | - Claudio Fiocchi
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|