1
|
Ming X, Gao S, Sun J, Zhang N, Guo R, Feng X, Luan X, Xing H, Jiao Y, Guo F. Regulation of the MCHergic Neural Circuit to Dorsal Raphe Nucleus on Emotion-Related Behaviors and Intestinal Dysfunction in Mice Model of Irritable Bowel Syndrome with Diarrhea. Neuroendocrinology 2024; 114:605-622. [PMID: 38547853 DOI: 10.1159/000538582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.
Collapse
Affiliation(s)
- Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinqiu Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xufei Feng
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Han Xing
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yang Jiao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Xia Y, Tan W, Yuan F, Lin M, Luo H. Luteolin Attenuates Oxidative Stress and Colonic Hypermobility in Water Avoidance Stress Rats by Activating the Nrf2 Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300126. [PMID: 38037466 DOI: 10.1002/mnfr.202300126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Indexed: 12/02/2023]
Abstract
SCOPE Irritable bowel syndrome (IBS) is an intestinal disorder, whose symptoms can be alleviated by certain dietary phytochemicals. This study explores the role and potential mechanisms of a natural flavonoid luteolin (LUT) in alleviating the excessive motility of colonic smooth muscles and reducing oxidative stress in IBS with diarrhea (IBS-D) rats. METHODS AND RESULTS LUT reduces excessive intestinal motility and lowers reactive oxygen species (ROS) levels in a water avoidance stress (WAS) rat model. Moreover, LUT increases the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), activates the nuclear translocation of Nrf2, and greatly reduces the hydrogen peroxide (H2 O2 )-induced oxidative damage in intestinal epithelial cells. CONCLUSIONS LUT, a phyto-active component, protects against excessive intestinal motility and diarrhea by regulating the Nrf2 signaling pathway and effectively reduces oxidative stress damage in the colon.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fangting Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Quan X, Chen W, Liang C, Jia Y, Wang Y, Luo H, Wang J. Downregulation of BDNF-TrkB signaling may contribute to the colonic motility disorders in mice with streptozocin-induced diabetes. Neurogastroenterol Motil 2023; 35:e14647. [PMID: 37417388 DOI: 10.1111/nmo.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/04/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) acts as a neuromodulator to regulate gut motility, but the role of BDNF in diabetes-related dysmotility is uncertain. The aim of this study was to investigate the possible involvement of BDNF and its receptor TrkB in the colonic hypomotility of mice with streptozotocin (STZ)-induced diabetes. METHODS A single intraperitoneal injection of STZ was used to establish a type 1 diabetes model. An organ bath system was applied to observe the contractile activities of colonic muscle strips. Immunofluorescence and western blotting were performed to evaluate the expression of BDNF and TrkB in the colon. ELISA was used to detect BDNF and SP levels in the serum and colon. The patch-clamp technique was applied to record the currents of L-type calcium channels and large conductance Ca2+ -activated K+ channels on smooth muscle cells. KEY RESULTS Compared with healthy controls, diabetic mice showed attenuated colonic muscle contraction (p < 0.001), which was partly reversed by BDNF supplementation. TrkB protein expression was significantly reduced in diabetic mice (p < 0.05). In addition, both BDNF and substance P (SP) levels were decreased, and exogenous administration of BDNF increased SP levels in diabetic mice (p < 0.05). Both the TrkB antagonist and the TrkB antibody inhibited the spontaneous contraction of colonic muscle strips (p < 0.01). Moreover, the BDNF-TrkB signaling system enhanced SP-induced muscle contraction. CONCLUSIONS Downregulation of BDNF/TrkB signaling and reduced SP release from the colon may contribute to the colonic hypomotility associated with type 1 diabetes. Brain-derived neurotrophic factor supplementation may have therapeutic potential for diabetes-related constipation.
Collapse
Affiliation(s)
- Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunni Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Jia
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yonghua Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Lobo B, Tramullas M, Finger BC, Lomasney KW, Beltran C, Clarke G, Santos J, Hyland NP, Dinan TG, Cryan JF. The Stressed Gut: Region-specific Immune and Neuroplasticity Changes in Response to Chronic Psychosocial Stress. J Neurogastroenterol Motil 2023; 29:72-84. [PMID: 36606438 PMCID: PMC9837549 DOI: 10.5056/jnm22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Background/Aims Chronic psychological stress affects gastrointestinal physiology which may underpin alterations in the immune response and epithelial transport, both functions are partly regulated by enteric nervous system. However, its effects on enteric neuroplasticity are still unclear. This study aims to investigate the effects of chronic unpredictable psychological stress on intestinal motility and prominent markers of enteric function. Methods Adult male C57BL/6J mice were exposed to 19 day of unpredictable stress protocol schedule of social defeat and overcrowding. We investigated the effects on plasma corticosterone, food intake, and body weight. In vivo gastrointestinal motility was assessed by fecal pellet output and by whole-gastrointestinal transit (using the carmine red method). Tissue monoamine level, neural and glial markers, neurotrophic factors, monoamine signaling, and Toll-like receptor expression in the proximal and distal colon, and terminal ileum were also assessed. Results Following chronic unpredictable psychological stress, stressed mice showed increased food intake and body weight gain (P < 0.001), and reduced corticosterone levels (P < 0.05) compared to control mice. Stressed mice had reduced stool output without differences in water content, and showed a delayed gastrointestinal transit compared to control mice (P < 0.05). Stressed mice exhibited decreased mRNA expression of tyrosine hydroxylase (Th), brain-derived neurotrophic factor (Bdnf) and glial cell-derived neurotrophic factor (Gdnf), as well as Toll-like receptor 2 (Tlr2) compared to control (P < 0.05), only proximal colon. These molecular changes in proximal colon were associated with higher levels of monoamines in tissue. Conclusion Unpredictable psychological chronic stress induces region-specific impairment in monoamine levels and neuroplasticity markers that may relate to delayed intestinal transit.
Collapse
Affiliation(s)
- Beatriz Lobo
- APC Microbiome Ireland, University College Cork, Ireland,Digestive System Research Unit, Laboratory of Neuro-Immuno-Gastroenterology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain,Department of Gastroenterology, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron Barcelona, Spain,Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Correspondence: Beatriz Lobo, PhD, MD, Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit. Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain, Tel: +34-93-489-4035, E-mail:
| | - Mónica Tramullas
- APC Microbiome Ireland, University College Cork, Ireland,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain (Current address)
| | - Beate-C Finger
- APC Microbiome Ireland, University College Cork, Ireland
| | - Kevin W Lomasney
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Anatomy and Neuroscience, University College Cork, Ireland
| | - Caroll Beltran
- APC Microbiome Ireland, University College Cork, Ireland,Laboratory of Immunogastroenterology, Gastroenterology Unit, Hospital Clinico Universidad de Chile, Faculty of Medicine Universidad de Chile, Santiago, Chile
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland
| | - Javier Santos
- Digestive System Research Unit, Laboratory of Neuro-Immuno-Gastroenterology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain,Department of Gastroenterology, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron Barcelona, Spain,Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Physiology, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Anatomy and Neuroscience, University College Cork, Ireland,John F Cryan, PhD, Department of Anatomy and Neuroscience, University College Cork, room 3.86 Western Gateway Building, Ireland, Fax: +353-0214205497, E-mail:
| |
Collapse
|
5
|
Electroacupuncture and Moxibustion Modulate the BDNF and TrkB Expression in the Colon and Dorsal Root Ganglia of IBS Rats with Visceral Hypersensitivity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8137244. [PMID: 34621325 DOI: 10.1155/2021/8137244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Objective To evaluate the effects of electroacupuncture and moxibustion on brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) protein and mRNA expressions in the colon and dorsal root ganglia of IBS rats with visceral hypersensitivity and to explore their underlying therapeutic mechanisms. Method Forty Sprague Dawley rats were randomly divided into normal, model, model + mild moxibustion (MM), model + electroacupuncture (EA), and model + pinaverium bromide (PB) groups, with eight rats in each group. Chronic visceral hypersensitive IBS rat models were established by colorectal distension (CRD) with mustard oil clyster. Rats in the MM and EA groups, respectively, received moxibustion and electroacupuncture treatments on the Tianshu (ST25) and Shangjuxu (ST37) acupoints once daily for 7 days, and rats in the PB group received pinaverium bromide by oral gavage once daily for 7 consecutive days. After treatment, rats underwent abdominal withdrawal reflex (AWR) scoring under CRD and colon histopathological examination. Immunohistochemistry and real-time quantitative PCR (RT-qPCR) were used to study the protein and mRNA expressions of BDNF and TrkB in the rat colon and dorsal root ganglia. Results Compared with the normal group, AWR scores and body weight were clearly increased in the model group rats (both P < 0.01). The body weights were significantly elevated (P < 0.01, P < 0.05), but the AWR scores were reduced (P < 0.05, P < 0.01), after electroacupuncture and mild moxibustion treatment. Compared with levels in normal rats, BDNF and TrkB protein and mRNA expressions were significantly elevated in the IBS model rats (P < 0.01) but were downregulated after mild moxibustion, electroacupuncture, and Western medicine treatment (P < 0.01). Conclusion Electroacupuncture and moxibustion improved visceral hypersensitivity of IBS rats possibly by reducing BDNF and TrkB protein and mRNA expressions in the colon and dorsal root ganglia.
Collapse
|
6
|
Yang G, Bai C, Liu T, He J, Gu X. The effect of Raphanus sativus L. seeds on regulation of intestinal motility in rats consuming a high-calorie diet. Biomed Pharmacother 2021; 140:111705. [PMID: 34118598 DOI: 10.1016/j.biopha.2021.111705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the effects of a short-term high-calorie diet and the regulation mechanism of Raphanus sativus L. seeds (RSL seeds) on the intestinal motility of young rats. METHODS We fed 20 Specific Pathogen Free (SPF) 4-week-old male Sprague-Dawley (SD) rats special high-calorie diet for 3 days and then randomized them to a high-calorie diet group (HCG, 10 rats) and an RSL seeds treatment group (TG, 10 rats). Ten rats of the same age served as the control group (CG). HCG and TG rats continued to be fed high-calorie feed. All of the rats were weighed every 2 days. After 3 days of treatment, the effects of RSL seeds on the regulation of intestinal motility in rats consuming a high-calorie diet were examined. RESULTS After 3 days of consuming a high-calorie diet, body weight was significantly lower in the HCG group than in the control group, and body weight of the HCG group increased slowly with time. Serum substance P (SP) and ghrelin levels were significantly lower, while the nitric oxide (NO) level was significantly higher. There were no differences in hematoxylin-eosin (HE) staining of colon sections between the groups. The expression levels of Cx43 and BDNF protein and mRNA in colon tissue were significantly lower in the HCG group. There were no significant differences in body weight between the CG and TG groups. Serum SP and ghrelin indexes in TG group were higher than those in the HCG group, and the NO index was significantly decreased. The expression levels of Cx43 and BDNF proteins and mRNA in the colon tissue were also significantly greater. CONCLUSION Consumption of a short-term high-calorie diet may result in intestinal motility dysfunction and reduced intestinal motility. RSL seeds may improve the intestinal motility by regulating the secretion of gastrointestinal motility hormones and the expression of intestinal motility-related proteins, such as Cx43 and BDNF.
Collapse
Affiliation(s)
- Guannan Yang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, PR China
| | - Chen Bai
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, PR China
| | - Tiegang Liu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jianzhen He
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xiaohong Gu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
7
|
Ren H, Yuan F, Tan W, Ding Y, An P, Luo H. Effect of Evodiamine on Rat Colonic Hypermotility Induced by Water Avoidance Stress and the Underlying Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:441-452. [PMID: 33603336 PMCID: PMC7882800 DOI: 10.2147/dddt.s298954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022]
Abstract
Background and Aim EVO is a natural alkaloid that reportedly has potential value in regulating gastrointestinal motility, but this conclusion remains controversial, and the molecular mechanism is unclear. In this study, we aimed to explore the effect of short-chain fatty acids on rat colonic hypermotility induced by water avoidance stress and the underlying mechanism. Methods We constructed a hypermotile rat model by chronic water avoidance stress, and Western blot was used to detect the protein level of nNOS in colon tissue. The organ bath and multichannel physiological signal acquisition systems were used to examine the spontaneous contractions of smooth muscle strips. The whole-cell patch-clamp technique was used to investigate L-type voltage-dependent calcium and BKCa channel currents in colonic smooth muscle cells. Results EVO inhibited the spontaneous contractions of colonic smooth muscle strips in a dose-dependent manner. Moreover, EVO decreased the fecal output induced by chronic water avoidance stress. TTX did not block the inhibitory effect of EVO on spontaneous colon contractions, while L-NNA, a selective nNOS synthase inhibitor, did partially abolish this inhibitory effect. The protein expression of nNOS in the colon tissues of rats administered EVO was significantly increased compared to that in control rats. EVO reversibly inhibited the L-type calcium channel current without changing the steady-state activation or inactivation in colonic smooth muscle cells. EVO significantly inhibited the BKCa current but did not change the shape of the I-V curves. Conclusion EVO inhibits gastrointestinal motility by inhibiting L-type calcium and BKCa channels in colonic smooth muscle cells and indirectly interacting with nNOS.
Collapse
Affiliation(s)
- HaiXia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - FangTing Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - YiJuan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ping An
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - HeSheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
8
|
Abstract
Beyond their well-known role in embryonic development of the central and peripheral nervous system, neurotrophins, particularly nerve growth factor and brain-derived neurotrophic factor, exert an essential role in pain production and sensitization. This has mainly been studied within the framework of somatic pain, and even antibodies (tanezumab and fasinumab) have recently been developed for their use in chronic somatic painful conditions, such as osteoarthritis or low back pain. However, data suggest that neurotrophins also exert an important role in the occurrence of visceral pain and visceral sensitization. Visceral pain is a distressing symptom that prompts many consultations and is typically encountered in both 'organic' (generally inflammatory) and 'functional' (displaying no obvious structural changes in routine clinical evaluations) disorders of the gut, such as inflammatory bowel disease and irritable bowel syndrome, respectively. The present review provides a summary of neurotrophins as a molecular family and their role in pain in general and addresses recent investigations of the involvement of nerve growth factor and brain-derived neurotrophic factor in visceral pain, particularly that associated with inflammatory bowel disease and irritable bowel syndrome.
Collapse
|
9
|
Bistoletti M, Caputi V, Baranzini N, Marchesi N, Filpa V, Marsilio I, Cerantola S, Terova G, Baj A, Grimaldi A, Pascale A, Frigo G, Crema F, Giron MC, Giaroni C. Antibiotic treatment-induced dysbiosis differently affects BDNF and TrkB expression in the brain and in the gut of juvenile mice. PLoS One 2019; 14:e0212856. [PMID: 30794676 PMCID: PMC6386304 DOI: 10.1371/journal.pone.0212856] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Antibiotic use during adolescence may result in dysbiosis-induced neuronal vulnerability both in the enteric nervous system (ENS) and central nervous system (CNS) contributing to the onset of chronic gastrointestinal disorders, such as irritable bowel syndrome (IBS), showing significant psychiatric comorbidity. Intestinal microbiota alterations during adolescence influence the expression of molecular factors involved in neuronal development in both the ENS and CNS. In this study, we have evaluated the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TrkB) in juvenile mice ENS and CNS, after a 2-week antibiotic (ABX) treatment. In both mucosa and mucosa-deprived whole-wall small intestine segments of ABX-treated animals, BDNF and TrKB mRNA and protein levels significantly increased. In longitudinal muscle-myenteric plexus preparations of ABX-treated mice the percentage of myenteric neurons staining for BDNF and TrkB was significantly higher than in controls. After ABX treatment, a consistent population of BDNF- and TrkB-immunoreactive neurons costained with SP and CGRP, suggesting up-regulation of BDNF signaling in both motor and sensory myenteric neurons. BDNF and TrkB protein levels were downregulated in the hippocampus and remained unchanged in the prefrontal cortex of ABX-treated animals. Immunostaining for BDNF and TrkB decreased in the hippocampus CA3 and dentate gyrus subregions, respectively, and remained unchanged in the prefrontal cortex. These data suggest that dysbiosis differentially influences the expression of BDNF-TrkB in the juvenile mice ENS and CNS. Such changes may potentially contribute later to the development of functional gut disorders, such as IBS, showing psychiatric comorbidity.
Collapse
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Viviana Filpa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alessia Pascale
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
10
|
Riezzo G, Chimienti G, Orlando A, D'Attoma B, Clemente C, Russo F. Effects of long-term administration of Lactobacillus reuteri DSM-17938 on circulating levels of 5-HT and BDNF in adults with functional constipation. Benef Microbes 2018; 10:137-147. [PMID: 30574801 DOI: 10.3920/bm2018.0050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulated evidence shows that some probiotic strains ameliorate functional constipation (FC) via the modulation of specific gastrointestinal peptide pathways. The aims of this study were to investigate: (1) the effects of long-term administration of Lactobacillus reuteri (LR) DSM 17938 on the serum levels of serotonin (5-HT) and brain-derived neurotrophic factor (BDNF); (2) the possible link between 5-HT, BDNF, and specific constipation-related symptoms; (3) whether genetic variability at the 5-HTT gene-linked polymorphic region (5-HTTLPR) and BDNF Val66Met loci could be associated with serum 5-HT and BDNF variations. LR DSM 17938 was administered to 56 FC patients for 105 days in a randomised, double-blind manner. The fasting blood samples were collected during the randomisation visit (V1), at day 15 (induction period, V2), day 60 (intermediate evaluation, V3), and day 105 (V4) and the Constipaq questionnaire (the sum of Constipation Scoring System (CSS) and patient assessment constipation quality of life (PAC-QoL)) was administered. A group of healthy subjects was enrolled as controls (HC). At V1, the mean serum 5-HT level in the whole patient group was significantly higher (P=0.027) than in HC subjects, while serum BDNF did not. At the end of probiotic administration (V4), 5-HT and BDNF levels were significantly lower than the initial values (V1) (P=0.008 and P=0.015, respectively). 5-HT and BDNF serum concentration were significantly associated (r=0.355; P=0.007). Neither 5-HT nor BDNF serum levels correlated with the CSS item scores and with the PAC-QoL. Lastly, the regression analysis demonstrated that the presence of the S allele of the 5-HTTLPR accounted for the reduction in the 5-HT concentration at V4. In conclusion, the long-term administration of LR DSM 17938 demonstrated that such a probiotic strain could improve FC by affecting 5-HT and BDNF serum concentrations.
Collapse
Affiliation(s)
- G Riezzo
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - G Chimienti
- 2 Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70100 Bari, Italy
| | - A Orlando
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - B D'Attoma
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - C Clemente
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - F Russo
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| |
Collapse
|
11
|
Ren HX, Tang QC, Yan L, Xia H, Luo HS. Evodiamine inhibits gastrointestinal motility via CCK and CCK1 receptor in water-avoidence stress rat model. Life Sci 2018; 209:210-216. [PMID: 30086275 DOI: 10.1016/j.lfs.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/08/2023]
Abstract
AIM Evodiamine (EVO) has been reported to play an important role in regulating gastrointestinal motility, but the evidence is insufficient, and the mechanism remains unknown. The aim of this study is to investigate the possible role of EVO in stress-induced colonic hypermotility and the potential mechanisms via both in vivo and in vitro investigations. METHODS Male Sprague-Dawley rats were exposed to water avoidance stress (WAS) for 1 h or sham WAS daily for 10 consecutive days to construct the rat model. The colonic contractile activity was studied in an organ bath system. The serum CCK-8 level was detected using an enzyme immunoassay kit, and gastrointestinal transit was detected by intragastric administration of India ink. RESULTS WAS induced gastrointestinal hypermotility in male rats. EVO significantly inhibited the contractile activity of colonic muscle strips; this effect was not blocked by TTX and the CCK1 receptor antagonist devazepide. Chronic WAS induced a slight but nonsignificant increase in the serum CCK-8 level, while EVO elevated the serum CCK-8 level in the WAS rats in a dose-dependent manner. Exogenous CCK-8 significantly inhibited the contractile activity of the colonic muscle strips; this effect was not blocked by TTX but was completely blocked by devazepide. Both EVO and CCK-8 inhibited gastrointestinal transit, and the effect of EVO could be partially blocked by devazepide. SIGNIFICANCE EVO can reverse stress-induced gastrointestinal hypermotility. This effect may partially occur as a result of promoting the release of CCK and then activating the CCK1 receptor instead of directly activating the CCK1 receptor.
Collapse
Affiliation(s)
- H X Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, China
| | - Q C Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, China
| | - L Yan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, China
| | - H Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, 430060, China
| | - H S Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, 430060, China.
| |
Collapse
|
12
|
Zhang Y, Wang C, Zhang L. The potential role of thyrotropin-releasing hormone in colonic dysmotility induced by water avoidance stress in rats. Neuropeptides 2018; 70:47-54. [PMID: 29803395 DOI: 10.1016/j.npep.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study sought to investigate the effect and underlying mechanism of thyrotrophin releasing hormone (TRH) on colonic contractile disorders induced by chronic water avoidance stress (WAS). METHODS Male SD rats were exposed to daily 1-h WAS or sham WAS for 10 consecutive days. The presence of TRH in the serum and colonic mucosa were determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to detect the expression of TRH receptor 1 (TRH-R1). The contractions of proximal colonic smooth muscle were studied in an organ bath system. The whole-cell patch-clamp technique was used to record the currents of both L-type calcium currents (ICa,L) and large conductance Ca2+-activated K+ (BKCa) channels in colonic smooth muscle cells (SMCs) isolated from adult rats. RESULTS Enzyme immunoassay revealed that TRH was present in both serum and colonic mucosa and that this expression increased in the WAS group. Immunohistochemistry revealed that the TRH-R1 level increased in colons devoid of mucosa and submucosa from the stressed rats as compared with the control group. TRH increased the spontaneous contractions of the longitudinal muscle and circular muscle strips in a dose-dependent manner in vitro. The effect was also confirmed in an vivo experiment, where an intraperitoneal injection of TRH in rats significantly increased fecal pellet output during a 24-h period as compared with the control group. Furthermore, intraperitoneal injection of a non-specific TRH receptor antagonist, chlordiazepoxide and a TRH-R1 antibody, partially decreased the fecal pellets of WAS rats during the 10-day stress period. Furthermore, TRH increased the peak current of L-type channels in colonic smooth muscle cells (SMCs) at a membrane potential of 0 mV, while the current of large conductance Ca2+-activated K+ (BKCa) channels was not changed following the addition of TRH. CONCLUSION TRH may be involved in the dysmotility induced by chronic stress and may have some potential clinical therapeutic use in regulating gut motility.
Collapse
Affiliation(s)
- Yanzhen Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chunfeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
Sha H, Tong X, Zhao J. Abnormal expressions of AGEs, TGF-β1, BDNF and their receptors in diabetic rat colon-Associations with colonic morphometric and biomechanical remodeling. Sci Rep 2018; 8:9437. [PMID: 29930382 PMCID: PMC6013484 DOI: 10.1038/s41598-018-27787-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Present study aims to investigate the role of AGEs, TGF-β1, BDNF and their receptors on diabetes-induced colon remodeling. Diabetes was induced by a single tail vein injection 40 mg/kg of STZ. The parameters of morphometric and biomechanical properties of colonic segments were obtained from diabetic and normal rats. The expressions of AGE, RAGE, TGF- β1, TGF- β1 receptor, BDNF and TrkB were immunohistochemically detected in different layers of the colon. The expressions of AGE, RAGE, TGF-β1 and TGF- β1 receptor were increased whereas BDNF and TrkB were decreased in the diabetic colon (P < 0.05, P < 0.01). AGE, RAGE and TGF-β1 receptor expressions were positively correlated whereas the BDNF expression was negatively correlated with most of the morphometry and biomechanical parameters (P < 0.05, P < 0.01, P < 0.001). AGE, TGF- β1 and BDNF in different layers correlated with their receptors RAGE, TGF- β1 receptor and TrkB respectively. STZ-induced diabetes up-regulated the expression of AGE, RAGE, TGF- β1 and TGF- β1 receptors and down-regulated BDNF and TrkB in different layers of diabetic colon mainly due to hyperglycemia. Such changes maybe important for diabetes-induced colon remodeling, however it is needed to further perform mechanistic experiments in order to study causality or approaches that explain the relevance of the molecular pathways.
Collapse
Affiliation(s)
- Hong Sha
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jingbo Zhao
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
14
|
AL-QUDAH M, SHAMMALA DA, AL-DWAIRI A, AL-SHBOUL O, MUSTAFA AG. Dextran Sodium Sulphate (DSS)-Induced Colitis Alters the Expression of Neurotrophins in Smooth Muscle Cells of Rat Colon. Physiol Res 2017; 66:1009-1020. [DOI: 10.33549/physiolres.933465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins are present in the gastrointestinal tract where they participate in the survival and growth of enteric neurons, augmentation of enteric circuits, elevation of colonic myoelectrical activity and also in different aspects of colitis. Previous studies largely focused on the role of neural and mucosal neurotrophins in gut inflammation. The expression of neurotrophins in colonic smooth muscle cells (SMCs) and the interactions of this potential source with colitis has not been studied in the gut. The expression of NGF, BDNF, NT-3 and NT-4 in SMCs from longitudinal and circular muscle layers of rat colon from normal and dextran sodium sulphate (DSS)-induced colitis rats was measured by ELISA. NGF, BDNF, NT-3 and NT-4 are differentially expressed in both longitudinal and circular SMCs, where the expressions of BDNF and NT-4 proteins were greater in SMCs from the longitudinal muscle layer than from the circular muscle layer, while NGF protein expression was greater in circular SMCs and NT-3 expression was equal in cells from both muscle layers. Induction of colitis with DSS significantly alters neurotrophins expression pattern in colonic SMCs. NGF levels upregulated in circular SMCs. BDNF level was increased in DSS-induced colitis in longitudinal SMCs. NGF, NT-3 and NT-4 levels were downregulated in longitudinal SMCs of DSS-induced colitis rats' colon. Disturbances of neurotrophins expression in SMCs resulted from colitis might account for the structural and functional changes in inflammatory bowel disease (IBD) such as loss of innervation and characteristic hypercontractility of longitudinal muscle in IBD.
Collapse
Affiliation(s)
- M. AL-QUDAH
- Department of Physiology, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
15
|
Tsigaridas A, Papanikolaou IS, Vaiopoulou A, Anagnostopoulos AK, Viazis N, Karamanolis G, Karamanolis DG, Tsangaris GT, Mantzaris GJ, Gazouli M. Proteomics and irritable bowel syndrome. Expert Rev Proteomics 2017; 14:461-468. [PMID: 28395553 DOI: 10.1080/14789450.2017.1317600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal disease that according to Rome IV criteria is subdivided into four subtypes. The pathophysiology of this disease is not well understood due to numerous factors playing multiple roles in disease development, such as diet, stress and hormones. IBS has a variety of symptoms and overlaps with many other gastrointestinal and non-gastrointestinal diseases. Area covered: This review aims to present an overview of implementation of proteomics in experimental studies in the field of IBS. Expert commentary: Proteomics is commonly used for biomarker discovery in and has also been extensively used in IBS research. The necessity of a sensitive and specific biomarker for IBS is apparent, but despite the intensive research performed in this field, an appropriate biomarker is not yet available.
Collapse
Affiliation(s)
| | - Ioannis S Papanikolaou
- b Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Anna Vaiopoulou
- c Department of Basic Medical Sciences, Laboratory of Biology Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | | | - Nikos Viazis
- a Gastroenterology Unit , Evangelismos Hospital , Athens , Greece
| | - George Karamanolis
- e Gastroenterology Unit, 2nd Department of Surgery, 'Aretaieio' University Hospital, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | | | - George T Tsangaris
- d Proteomics Research Unit , Biomedical Research Foundation of the Academy of Athens (IIBEAA) , Athens , Greece
| | | | - Maria Gazouli
- c Department of Basic Medical Sciences, Laboratory of Biology Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
16
|
Bathina S, Srinivas N, Das UN. BDNF protects pancreatic β cells (RIN5F) against cytotoxic action of alloxan, streptozotocin, doxorubicin and benzo(a)pyrene in vitro. Metabolism 2016; 65:667-684. [PMID: 27085775 DOI: 10.1016/j.metabol.2016.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The study was conducted to observe whether brain-derived neurotrophic factor (BDNF) has cytoprotective actions against alloxan (AL), streptozotocin (STZ), doxorubicin (DB) and benzo(a)pyrene (BP) compounds in vitro that may account for its beneficial action in diabetes mellitus. MATERIALS AND METHODS This in vitro study was performed using rat insulinoma (RIN5F) cells. Possible cytoprotective action of BDNF (using pre-treatment, simultaneous and post-treatment schedules of RIN5F cells with BDNF) against the four chemicals tested was evaluated using MTT and apoptosis assays. Possible mechanism of cytoprotective action of BDNF was assessed by measuring BCl2/IKB-β/Pdx mRNA transcripts and anti-oxidant levels in RIN5F cells. Effect of alloxan, STZ, doxorubicin and BP on the production of BDNF by RIN5F cells was also studied. RESULTS Results of the present study revealed that BDNF in the doses (100ng>50ng>10ng/ml) has significant cytoprotection (P<0.001, P<0.01) on cytotoxic action of AL, STZ, DB and BP against rat insulinoma RIN5F (5×10(4) cells/100μl) cells in vitro. It was observed that AL, STZ, DB and BP inhibited BDNF production significantly (P<0.001) in a dose-dependent manner by RIN5F cells (0.5×10(6) cells/500μl) in vitro, while BDNF not only prevented apoptosis induced by these four chemicals but also significantly increased (P<0.001) BCl2/IKB-β/Pdx mRNA transcripts and restored anti-oxidant levels (P<0.01) in RIN5F cells to normal. DISCUSSION These results suggest that BDNF has potent cytoprotective actions, restores anti-oxidant defenses to normal and thus, prevents apoptosis and preserves insulin secreting capacity of β cells. In addition, BDNF enhanced viability of RIN 5F in vitro. Thus, BDNF not only has anti-diabetic actions but also preserves pancreatic β cells integrity and enhances their viability. These results imply that BDNF functions as an endogenous cytoprotective molecule that may explain its beneficial actions in some neurological conditions as well.
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India
| | - Nanduri Srinivas
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Undurti N Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India; UND Life Sciences, 2020 S 360th St, #K-202, Federal Way, WA 98003, USA
| |
Collapse
|
17
|
Liang C, Xu B. Advances in understanding role of brain-derived neurotrophic factor in physiological and pathological processes in the intestinal tract. Shijie Huaren Xiaohua Zazhi 2015; 23:5649-5654. [DOI: 10.11569/wcjd.v23.i35.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotrophic factor is a kind of neurotrophic substance. In recent years, besides the central nervous system, brain-derived neurotrophic factor was also found to be expressed abundantly in the gastrointestinal tract, and it plays an important role in the development of the enteric nervous system and in regulating intestinal motility and visceral sensitivity. In this article, we review the role of brain-derived neurotrophic factor in the intestinal tract, and discuss its possible role in the pathogenesis of irritable bowel syndrome, with an aim to provide new ideas for clinical treatment of gastrointestinal diseases.
Collapse
|
18
|
Lee YT, Hu LY, Shen CC, Huang MW, Tsai SJ, Yang AC, Hu CK, Perng CL, Huang YS, Hung JH. Risk of Psychiatric Disorders following Irritable Bowel Syndrome: A Nationwide Population-Based Cohort Study. PLoS One 2015. [PMID: 26222511 PMCID: PMC4519183 DOI: 10.1371/journal.pone.0133283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is the most common functional gastrointestinal (GI) disorder observed in patients who visit general practitioners for GI-related complaints. A high prevalence of psychiatric comorbidities, particularly anxiety and depressive disorders, has been reported in patients with IBS. However, a clear temporal relationship between IBS and psychiatric disorders has not been well established. Objective We explored the relationship between IBS and the subsequent development of psychiatric disorders including schizophrenia, bipolar disorder, depressive disorder, anxiety disorder, and sleep disorder. Methods We selected patients who were diagnosed with IBS caused by gastroenteritis, according to the data in the Taiwan National Health Insurance Research Database. A comparison cohort was formed of patients without IBS who were matched according to age and sex. The incidence rate and the hazard ratios (HRs) of subsequent new-onset psychiatric disorders were calculated for both cohorts, based on psychiatrist diagnoses. Results The IBS cohort consisted of 4689 patients, and the comparison cohort comprised 18756 matched control patients without IBS. The risks of depressive disorder (HR = 2.71, 95% confidence interval [CI] = 2.30–3.19), anxiety disorder (HR = 2.89, 95% CI = 2.42–3.46), sleep disorder (HR = 2.47, 95% CI = 2.02–3.02), and bipolar disorder (HR = 2.44, 95% CI = 1.34–4.46) were higher in the IBS cohort than in the comparison cohort. In addition, the incidence of newly diagnosed depressive disorder, anxiety disorder, and sleep disorder remained significantly increased in all of the stratified follow-up durations (0–1, 1–5, ≥5 y). Conclusions IBS may increase the risk of subsequent depressive disorder, anxiety disorder, sleep disorder, and bipolar disorder. The risk ratios are highest for these disorders within 1 year of IBS diagnosis, but the risk remains statistically significant for more than 5 years. Clinicians should pay particular attention to psychiatric comorbidities in IBS patients.
Collapse
Affiliation(s)
- Yao-Tung Lee
- Department of Psychiatry, Taipei Medical University, Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Che Shen
- Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
- Department of information magagement, National Chung-Cheng University, Chiayi, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Min-Wei Huang
- Bali Psychiatric Center, Ministry of Health and Welfare, New Taipei, Taiwan
| | - Shih-Jen Tsai
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Albert C. Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Kuo Hu
- Division of Neurosurgery, Department of surgery, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
| | - Chin-Lin Perng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Shin Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Hsiu Hung
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|