1
|
Li J, Shao M, Liu H, Guo P, Liu F, Ma M, Li Q. Lithium Coupled with C6-Carboxyl Improves the Efficacy of Oligoguluronate in DSS-Induced Ulcerative Colitis in C57BL/6J Mice. Mar Drugs 2024; 22:573. [PMID: 39728147 DOI: 10.3390/md22120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Oligoguluronate lithium (OGLi) was prepared for the purpose of enhancing the anti-ulcerative colitis (UC) activities of OG, in which lithium (Li+) is coupled with the C6-carboxyl of G residue. The therapeutic effects of OGLi on dextran sulfate (DSS)-induced UC mice were investigated, and oligoguluronate sodium (OGNa) and lithium carbonate (LC) were used as contrasts. The effects of OGLi, OGNa and LC on the treatment of UC mice were studied by monitoring body weight change and evaluating colon length, the disease activity index (DAI), histopathological examination and gut microbiota regulation. The results showed that compared with OGNa and LC, OGLi significantly reduced the clinical symptoms and histopathological changes associated with UC in the acute model. It was worth noting that OGLi significantly changed the gut microbiota characteristics of the DSS-treated mice and corrected the typical dysbacteriosis of DSS-induced UC. This intervention resulted in increasing the abundance of norank_f_Muribaculaceae and Ileibacterium spp. while reducing the levels of Escherichia-Shigella spp. and Romboutsia spp. The OGLi could significantly increase the diversity of intestinal microorganisms in the short term. All of these discoveries demonstrate that lithium collaboratively enhances the anti-UC efficacy of OG, which will help to create OG-based drugs for the treatment of UC.
Collapse
Affiliation(s)
- Jiayi Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Shao
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Hao Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Peng Guo
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Fei Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Quancai Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
2
|
Tong XY, Norenberg MD, Paidas MJ, Shamaladevi N, Salgueiro L, Jaszberenyi M, John B, Hussain H, El Hiba O, Abdeljalil EG, Bilal EM, Natarajan S, Romaguera R, Papayan S, Carden AK, Ramamoorthy R, Elumalai N, Schally AV, Nithura J, Patrizio R, Jayakumar AR. Mechanism of Alzheimer type II astrocyte development in hepatic encephalopathy. Neurochem Int 2024; 180:105866. [PMID: 39369794 DOI: 10.1016/j.neuint.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Type C hepatic encephalopathy (Type C HE) is a major and complex neurological condition that occurs following chronic liver failure. The molecular basis of Type C HE remains elusive. Type C HE is characterized by mental confusion, cognitive and motor disturbances. The presence of Alzheimer type II astrocytes (AT2A) is the key histopathological finding observed in Type C HE. However, nothing is currently known regarding AT2A development and its involvement in cognitive, and motor deficits in Type C HE. We, therefore, examined in rats the mechanisms by which liver failure contributes to the progression of AT2A, and its role in the development of cognitive and motor deficits in thioacetamide (TAA) model of Type C HE. We and others earlier reported increased oxidative/nitrosative stress (ONS), JNK1/2, and cMyc activation in ammonia-treated astrocyte cultures, as well as in brains from chronic liver failure. We now found increased levels of astrocytic glia maturation factor (GMF, a factor strongly implicated in neuroinflammation), as well as various inflammatory factors (IL-1β, TNF-α, IL-6, MMP-3, COX2, CXCL1, and PGE2), and reduced levels of GFAP and increased levels of aggregated nuclear protein Lamin A/C in rat brain cortex post-chronic liver failure. We also found increased levels of GMF and inflammatory factors (MMP-3, COX2, CXCL1, and PGE2) in astrocytes post-ammonia treatment in vitro. Additionally, pharmacological inhibition of upstream signaling of GMF (ONS, JNK1/2, and cMyc) or GMF inhibitors W-7 and trifluoperazine significantly reduced the levels of inflammatory factors, the number of AT2A cells, as well as the cognitive and motor deficits in TAA-treated rats. Increased levels of GMF were also identified in human post-mortem brain sections. These findings strongly suggest that increased levels of astrocytic GMF due to elevated levels of ONS, JNK1/2, and cMyc and the subsequent inflammation contribute to the development of AT2A and the consequent cognitive, and motor deficits in chronic liver failure.
Collapse
Affiliation(s)
- Xiao Y Tong
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA; Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
| | | | - Luis Salgueiro
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA
| | - Miklos Jaszberenyi
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA; Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Binu John
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA
| | - Hussain Hussain
- Larkin Community Hospital, Department of Internal Medicine and Infectious Disease, Miami, FL, USA
| | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - El Got Abdeljalil
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - El-Mansoury Bilal
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - Sampath Natarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Rita Romaguera
- Pathology and Laboratory Medicine, Department of Veterans Affairs, Miami, FL, 33125, USA
| | - Stanislav Papayan
- Pathology and Laboratory Medicine, Department of Veterans Affairs, Miami, FL, 33125, USA
| | - Arianna K Carden
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Nila Elumalai
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Department of Veterans Affairs, Miami, FL, 33125, USA
| | | | - Rebecca Patrizio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA; General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA; Neuropathology Section, Veterans Affairs Medical Center, Miami, FL, USA; R&D Services and South Florida VA Foundation for Research and Education Inc, Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
3
|
Anderson BD, Sepulveda DE, Nachnani R, Cortez-Resendiz A, Coates MD, Beckett A, Bisanz JE, Kellogg JJ, Raup-Konsavage WM. High Cannabigerol Hemp Extract Moderates Colitis and Modulates the Microbiome in an Inflammatory Bowel Disease Model. J Pharmacol Exp Ther 2024; 390:331-341. [PMID: 39009468 PMCID: PMC11338277 DOI: 10.1124/jpet.124.002204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Cannabis sativa L. has a long history of medicinal use, particularly for gastrointestinal diseases. Patients with inflammatory bowel disease (IBD) report using cannabis to manage their symptoms, despite little data to support the use of cannabis or cannabis products to treat the disease. In this study, we use the well-described dextran sodium sulfate (DSS) model of colitis in mice to assess the impact of commercially available, noneuphorigenic, high cannabigerol (CBG) hemp extract (20 mg/mL cannabigerol, 20.7 mg/mL cannabidiol, 1 mg/mL cannabichromene) on IBD activity and the colonic microbiome. Mice were given 2% DSS in drinking water for 5 days, followed by 2 days of regular drinking water. Over the 7 days, mice were dosed daily with either high CBG hemp extract or matched vehicle control. Daily treatment with high CBG hemp extract dramatically reduces the severity of disease at the histological and organismal levels as measured by decreased disease activity index, increased colon length, and decreases in percent colon tissue damage. 16S rRNA gene sequencing of the fecal microbiota reveals high CBG hemp extract treatment results in alterations in the microbiota that may be beneficial for colitis. Finally, using metabolomic analysis of fecal pellets, we find that mice treated with high CBG hemp extract have a normalization of several metabolic pathways, including those involved in inflammation. Taken together, these data suggest that high CBG hemp extracts may offer a novel treatment option for patients. SIGNIFICANCE STATEMENT: Using the dextran sodium sulfate model of colitis, the authors show that treatment with high cannabigerol hemp extract reduces the severity of symptoms associated with colitis. Additionally, they show that treatment modulates both the fecal microbiota and metabolome with potential functional significance.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Diana E Sepulveda
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Rahul Nachnani
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Alonso Cortez-Resendiz
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Matthew D Coates
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Aviauna Beckett
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jordan E Bisanz
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joshua J Kellogg
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Wesley M Raup-Konsavage
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
4
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Mertens RT, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 2024; 187:2010-2028.e30. [PMID: 38569542 PMCID: PMC11017707 DOI: 10.1016/j.cell.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalind J Xu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Tooley
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030, USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Sanmarco
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Francisco J Quintana
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539701. [PMID: 37214800 PMCID: PMC10197602 DOI: 10.1101/2023.05.08.539701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- These authors contributed equally
| | - Kisha N. Sivanathan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- These authors contributed equally
| | - Aditya Misra
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Rosalind J. Xu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Joseph M. Rone
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Katherine Tooley
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030 USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Liliana Sanmarco
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Francisco J. Quintana
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Jeffrey R. Moffitt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
- Lead contact
| |
Collapse
|
6
|
Hao S, Jin Y, Yu Y, Wang J, Zou J, Wang Y. Identification of potential molecular mechanisms and candidate drugs for radiotherapy- and chemotherapy-induced mucositis. Support Care Cancer 2023; 31:223. [PMID: 36939936 DOI: 10.1007/s00520-023-07686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Radiotherapy-induced oral mucositis (RIOM) and chemotherapy-induced oral mucositis (CIOM) are common complications in cancer patients, leading to negative clinical manifestations, reduced quality of life, and unsatisfactory treatment outcomes. OBJECTIVE The present study aimed to identify potential molecular mechanisms and candidate drugs by data mining. METHODS We obtained a preliminary list of genes associated with RIOM and CIOM. In-depth information on these genes was explored by functional and enrichment analyses. Then, the drug-gene interaction database was used to determine the interaction of the final enriched gene list with known drugs and analyze the drug candidates. RESULTS AND CONCLUSION This study identified 21 hub genes that may play an important role in RIOM and CIOM, respectively. Through our data mining, bioinformatics survey, and candidate drug selection, TNF, IL-6, and TLR9 could play an important role in disease progression and treatment. In addition, eight candidate drugs (olokizumab, chloroquine, hydroxychloroquine, adalimumab, etanercept, golimumab, infliximab, and thalidomide) were selected by the drug-gene interaction literature search additionally, as candidates for treating RIOM and CIOM.
Collapse
Affiliation(s)
- Siyuan Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yixin Jin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yue Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jiantao Wang
- State Key Laboratory of Biotherapy and Department of Lung Cancer Center and Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, S. Renmin Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Yang Y, Hua Y, Chen W, Zheng H, Wu H, Qin S, Huang S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front Pharmacol 2022; 13:1037856. [PMID: 36532769 PMCID: PMC9748441 DOI: 10.3389/fphar.2022.1037856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
Evidence of the advantages of Coptidis Rhizoma (CR) for the treatment of ulcerative colitis (UC) is accumulating. However, research revealing the targets and molecular mechanisms of CR against UC is scarce. In this research, a bioinformatics analysis was performed to carry out the physicochemical properties and biological activities of phytochemicals in CR and analyze the binding activities, targets, biological functions and mechanisms of CR against UC. This research shows that the CR's key phytochemicals, which are named Coptisine, Berberrubine, Berlambine, Berberine, Epiberberine, Obacunone, Worenine, Quercetin, (R)-Canadine, Magnograndiolide, Palmatine and Moupinamide, have ideal physicochemical properties and bioactivity. A total of 1,904 potential phytochemical targets and 17,995 UC-related targets are identified, and we finally acquire 233 intersection targets between key phytochemicals and disease. A protein-protein interaction network of 233 common targets was constructed; and six hub targets were acquired with a degree greater than or equal to median, namely TP53, HSP90AA1, STAT3, ESR1, MYC, and RELA. The enrichment analysis suggested that the core targets may exert an impact on anti-inflammatory, immunoregulatory, anti-oxidant and anti-fibrosis functions mainly through the PI3K/ART signaling pathway, Th17 differentiation signaling pathway, inflammatory bowel disease signaling pathway, etcetera. Also, a molecular docking analysis shows that the key phytochemicals have strong affinity for binding to the core targets. Finally, the interaction network of CR, phytochemicals, targets, GO functions, KEGG pathways and UC is constructed. This study indicates that the key phytochemicals in CR have superior drug likeness and bioactivity, and the molecular mechanism of key phytochemicals against UC may be via the signaling pathway mentioned above. The potential and critical pharmacological mechanisms provide a direction for future research.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Haomeng Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shumin Qin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Yang Chunbo Academic Experience Inheritance Studio of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
9
|
Zhang Z, Xue Z, Yang H, Zhao F, Liu C, Chen J, Lu S, Zou Z, Zhou Y, Zhang X. Differential effects of EPA and DHA on DSS-induced colitis in mice and possible mechanisms involved. Food Funct 2021; 12:1803-1817. [PMID: 33523066 DOI: 10.1039/d0fo02308f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The anti-inflammatory effect of n-3 PUFAs has been widely documented. Emerging evidence suggests that the main component of n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may have differential effects in ulcerative colitis (UC). It was aimed to clarify their differential effects in UC. METHODS Eight-week-old male C57BL/6J mice were randomly divided into 7 groups, namely control, UC model, salicylazosulfapyridine (SASP), low-dose DHA, high-dose DHA, low-dose EPA, and high-dose EPA. DHA, EPA and SASP treatment groups were orally treated accordingly for 9 weeks. During the 5th to 9th week the control group was given distilled water, while other groups were given distilled water with 2% dextran sodium sulfate (DSS) to induce UC. Body weight loss, diarrhea, and stool bleeding were recorded to calculate the disease activity index (DAI). The level of tight junction proteins Claudin-1 and Occludin, and cytokines including TNF-α, IL-6, and IL-1β as well as inflammatory cell markers such as MPO, F4/80, and MCP-1 in the intestinal epithelium were measured using western blotting. Activation of IL-6/STAT3 and NLRP3/IL-1β inflammatory pathways was also assessed. Levels of proliferation-related proteins of the Wnt/β-catenin pathway with c-myc, Cyclin-D1, and PCNA were detected. RESULTS EPA, superior to DHA, significantly attenuated DSS-induced colitis evidenced by reduced DAI scores, cytokine production and inflammatory cell infiltration. Mechanically, EPA triggered a marked up-regulation of Claudin-1 and Occludin with down-regulation of their up-stream Akt and ERK. EPA also inhibited NLRP3/IL-1β and IL-6/STAT3 inflammatory pathways and up-regulated the Wnt/β-catenin pathway. CONCLUSIONS EPA is more suitable to be used for the treatment of UC than DHA.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China. and Department of Nutrition, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 Zhejiang, China
| | - Zhe Xue
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Haitao Yang
- Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, 315040 Zhejiang, China
| | - Feng Zhao
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Chundi Liu
- Central South University, Changsha, 410083 Hunan, China
| | - Jiahui Chen
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Songtao Lu
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Zuquan Zou
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Yuping Zhou
- Department of Gastroenterology, Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315040 Zhejiang, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| |
Collapse
|
10
|
The preconditioning of lithium promotes mesenchymal stem cell-based therapy for the degenerated intervertebral disc via upregulating cellular ROS. Stem Cell Res Ther 2021; 12:239. [PMID: 33853670 PMCID: PMC8048279 DOI: 10.1186/s13287-021-02306-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Abstract Adipose-derived stem cell (ADSC) is one of the most widely used candidate cell for intervertebral disc (IVD) degeneration-related disease. However, the poor survival and low differentiation efficacy in stressed host microenvironment limit the therapeutic effects of ADSC-based therapy. The preconditioning has been found effective to boost the proliferation and the functioning of stem cells in varying pathological condition. Lithium is a common anti-depression drug and has been proved effective to enhance stem cell functioning. In this study, the effects of preconditioning using LiCl on the cellular behavior of ADSC was investigated, and specially in a degenerative IVD-like condition. Method The cellular toxicity on rat ADSC was assessed by detecting lactate dehydrogenase (LDH) production after treatment with a varying concentration of lithium chloride (LiCl). The proliferative capacity of ADSC was determined by detecting Ki67 expression and the relative cell number of ADSC. Then, the preconditioned ADSC was challenged by a degenerative IVD-like condition. And the cell viability as well as the nucleus pulpous (NP) cell differentiation efficacy of preconditioned ADSC was evaluated by detecting the major marker expression and extracellular matrix (ECM) deposit. The therapeutic effects of preconditioned ADSC were evaluated using an IVD degeneration rat model, and the NP morphology and ECM content were assessed. Results A concentration range of 1–10 mmol/L of LiCl was applied in the following study, since a higher concentration of LiCl causes a major cell death (about 40%). The relative cell number was similar between preconditioned groups and the control group after preconditioning. The Ki67 expression was elevated after preconditioning. Consistently, the preconditioned ADSC showed stronger proliferation capacity. Besides, the preconditioned groups exhibit higher expression of NP markers than the control group after NP cell induction. Moreover, the preconditioning of LiCl reduced the cell death and promoted ECM deposits, when challenged with a degenerative IVD-like culture. Mechanically, the preconditioning of LiCl induced an increased cellular reactive oxidative species (ROS) level and activation of ERK1/2, which was found closely related to the enhanced cell survival and ECM deposits after preconditioning. The treatment with preconditioned ADSC showed better therapeutic effects than control ADSC transplantation, with better NP preservation and ECM deposits. Conclusion These results suggest that the preconditioning with a medium level of LiCl boosts the cell proliferation and differentiation efficacy under a normal or hostile culture condition via the activation of cellular ROS/ERK axis. It is a promising pre-treatment of ADSC to promote the cell functioning and the following regenerative capacity, with superior therapeutic effects than untreated ADSC transplantation.
Collapse
|
11
|
Zhu J, Zhang H, Li J, Zheng X, Jia X, Xie Q, Zheng L, Zhou X, Wang Y, Xu X. LiCl Promotes Recovery of Radiation-Induced Oral Mucositis and Dysgeusia. J Dent Res 2021; 100:754-763. [PMID: 33703950 DOI: 10.1177/0022034521994756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oral mucositis and taste dysfunction are frequently complained by patients with head and neck cancer receiving radiotherapy, challenging the clinical outcome of cancer treatment. Recent studies have indicated the protective role of Wnt/β-catenin signaling in radiation-induced oral mucositis (RIOM) and its pivotal role in the development and self-renewal of taste buds. The current study hypothesizes that lithium chloride (LiCl), a potent activator of the Wnt/β-catenin signaling pathway, can promote the postirradiation restoration of oral mucosa integrity and taste function. To validate this hypothesis, we established a RIOM mouse model and evaluated the treatment efficacy of LiCl on oral mucositis and taste dysfunction in comparison with keratinocyte growth factor (KGF), an agent approved by the US Food and Drug Administration for oral mucositis. The results showed that LiCl alleviated the weight loss and tongue ulceration of RIOM mice, promoted proliferation of basal epithelial cells, and inhibited epithelial-mesenchymal transition in tongue mucosa. More important, elevated taste bud renewal and dysgeusia recovery toward sweetness were observed in RIOM mice treated with LiCl as compared to those treated by KGF. Collectively, our data demonstrate that LiCl can mitigate oral mucositis and rescue taste alteration induced by irradiation, and activation of Wnt/β-catenin signaling may represent a promising therapy to improve the quality of life of patients receiving radiotherapy.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Xie
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - L Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Clinical Research Center for Oral Diseases of Sichuan Province, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Clinical Research Center for Oral Diseases of Sichuan Province, Chengdu, China
| |
Collapse
|
12
|
Ziv A, Werner L, Konnikova L, Awad A, Jeske T, Hastreiter M, Mitsialis V, Stauber T, Wall S, Kotlarz D, Klein C, Snapper SB, Tzfati Y, Weiss B, Somech R, Shouval DS. An RTEL1 Mutation Links to Infantile-Onset Ulcerative Colitis and Severe Immunodeficiency. J Clin Immunol 2020; 40:1010-1019. [PMID: 32710398 DOI: 10.1007/s10875-020-00829-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE More than 50 different monogenic disorders causing inflammatory bowel disease (IBD) have been identified. Our goal was to characterize the clinical phenotype, genetic workup, and immunologic alterations in an Ashkenazi Jewish patient that presented during infancy with ulcerative colitis and unique clinical manifestations. METHODS Immune workup and whole-exome sequencing were performed, along with Sanger sequencing for confirmation. Next-generation sequencing of the TCRB and IgH was conducted for immune repertoire analysis. Telomere length was evaluated by in-gel hybridization assay. Mass cytometry was performed on patient's peripheral blood mononuclear cells, and compared with control subjects and patients with UC. RESULTS The patient presented in infancy with failure to thrive and dysmorphic features, consistent with a diagnosis of dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Severe ulcerative colitis manifested in the first year of life and proceeded to the development of a primary immunodeficiency, presenting as Pneumocystis jiroveci pneumonia and hypogammaglobulinemia. Genetic studies identified a deleterious homozygous C.3791G>A missense mutation in the helicase regulator of telomere elongation 1 (RTEL1), leading to short telomeres in the index patient. Immune repertoire studies showed polyclonal T and B cell receptor distribution, while mass cytometry analysis demonstrated marked immunological alterations, including a predominance of naïve T cells, paucity of B cells, and a decrease in various innate immune subsets. CONCLUSIONS RTEL1 mutations are associated with significant alterations in immune landscape and can manifest with infantile-onset IBD. A high index of suspicion is required in Ashkenazi Jewish families where the carriage rate of the C.3791G>A variant is high.
Collapse
Affiliation(s)
- Alma Ziv
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tim Jeske
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Hastreiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tali Stauber
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sarah Wall
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Tristetraprolin targets Nos2 expression in the colonic epithelium. Sci Rep 2019; 9:14413. [PMID: 31595002 PMCID: PMC6783411 DOI: 10.1038/s41598-019-50957-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3′ untranslated regions (3′ UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3′ UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.
Collapse
|
14
|
Matthews SM, Eshelman MA, Berg AS, Koltun WA, Yochum GS. The Crohn's disease associated SNP rs6651252 impacts MYC gene expression in human colonic epithelial cells. PLoS One 2019; 14:e0212850. [PMID: 30794691 PMCID: PMC6386311 DOI: 10.1371/journal.pone.0212850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) is a debilitating inflammatory bowel disease (IBD) that arises from chronic inflammation in the gastrointestinal tract. Genome-wide association studies (GWAS) have identified over 200 single nucleotide polymorphisms (SNPs) that are associated with a predisposition for developing IBD. For the majority, the causal variant and target genes affected are unknown. Here, we investigated the CD-associated SNP rs6651252 that maps to a gene desert region on chromosome 8. We demonstrate that rs6651252 resides within a Wnt responsive DNA enhancer element (WRE) and that the disease associated allele augments binding of the TCF7L2 transcription factor to this region. Using CRISPR/Cas9 directed gene editing and epigenetic modulation, we find that the rs6651252 enhancer regulates expression of the c-MYC proto-oncogene (MYC). Furthermore, we found MYC transcript levels are elevated in patient-derived colonic segments harboring the disease-associated allele in comparison to those containing the ancestral allele. These results suggest that Wnt/MYC signaling contributes to CD pathogenesis and that patients harboring the disease-associated allele may benefit from therapies that target MYC or MYC-regulated genes.
Collapse
Affiliation(s)
- Stephen M. Matthews
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Melanie A. Eshelman
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Arthur S. Berg
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kawabata K, Kanmura S, Morinaga Y, Tanaka A, Makino T, Fujita T, Arima S, Sasaki F, Nasu Y, Tanoue S, Hashimoto S, Ido A. A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. Int J Mol Med 2018; 43:1487-1496. [PMID: 30628636 DOI: 10.3892/ijmm.2018.4040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 11/06/2022] Open
Abstract
Excessive fructose intake is a risk factor for gut symptoms in patients with inflammatory bowel disease, however, its effect on the intestinal tract has not been evaluated previously. The present study investigated the impact of a high‑fructose diet (HFD) on intestinal barrier function in mice with experimental colitis. C57/BL6 mice were provided with either a HFD or control diet and either plain drinking water or water containing 1% dextran sulfate sodium (DSS) for 2 weeks. The disease activity index (DAI), pathological scores and expression of inflammatory cytokines were compared among the groups, and the proportions of fecal bacteria in the colon were analyzed. The body weight and colon length were significantly decreased, and the DAI and pathological scores were significantly increased in the DSS/HFD‑treated mice compared with the non‑DSS‑treated and control diet mice. Regarding the expression of inflammatory cytokines, the levels of interleukin (IL)‑6, IL‑1β and tumor necrosis factor‑α were significantly increased, and the expression of the tight junction protein occludin was significantly decreased in the DSS/HFD‑treated mice. The total bacterial count was increased in the HFD mice. Taken together, these results indicate that an HFD resulted in the deterioration of intestinal barrier function and increased susceptibility to DSS‑induced colitis.
Collapse
Affiliation(s)
- Katsuto Kawabata
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Yuko Morinaga
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Akihito Tanaka
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Tomoaki Makino
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Toshihiro Fujita
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shiho Arima
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Yuichirou Nasu
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| |
Collapse
|
16
|
Raup-Konsavage WM, Johnson M, Legare CA, Yochum GS, Morgan DJ, Vrana KE. Synthetic Cannabinoid Activity Against Colorectal Cancer Cells. Cannabis Cannabinoid Res 2018; 3:272-281. [PMID: 30671539 PMCID: PMC6340378 DOI: 10.1089/can.2018.0065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, and new therapeutic strategies are still required. Here we screened a synthetic cannabinoid library to identify compounds that uniformly reduce the viability of seven CRC cell lines. Material and Methods: Seven distinct CRC cell lines were treated with 10 μM cannabinoid compounds (from a library of 370 molecules) for 48 h, and cell viability was subsequently measured with MTS assay. Dose–response curves were conducted for compounds that were found to reproducibly reduce cell viability of one or more cell lines. Results: We identified 10 compounds from the library that were able to reduce cell viability of CRC cell lines (with an IC50 ≤ 30 μM). Of these compounds, seven were specific for CRC cells, and six were effective in all CRC cell lines tested. Treatment with traditional phytocannabinoids (THC or CBD) was either ineffective or much less potent and only partially efficacious. Treatment with antagonists for the known cannabinoid receptors (alone or in combination) failed to block the activity of the most potent of identified compounds. Conclusion: We identified three families of cannabinoid compounds that reduce CRC cell viability through a noncanonical receptor mechanism. Future modification of these compounds may lead to the development of novel therapies to treat this disease.
Collapse
Affiliation(s)
- Wesley M Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Megan Johnson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher A Legare
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Daniel J Morgan
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
mTORC1 Prevents Epithelial Damage During Inflammation and Inhibits Colitis-Associated Colorectal Cancer Development. Transl Oncol 2018; 12:24-35. [PMID: 30265974 PMCID: PMC6161367 DOI: 10.1016/j.tranon.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Epithelial cells lining the intestinal mucosa constitute a selective-semipermeable barrier acting as first line of defense in the organism. The number of those cells remains constant during physiological conditions, but disruption of epithelial cell homeostasis has been observed in several pathologies. During colitis, epithelial cell proliferation decreases and cell death augments. The mechanism responsible for these changes remains unknown. Here, we show that the pro-inflammatory cytokine IFNγ contributes to the inhibition of epithelial cell proliferation in intestinal epithelial cells (IECs) by inducing the activation of mTORC1. Activation of mTORC1 in response to IFNγ was detected in IECs present along the crypt axis and in colonic macrophages. mTORC1 inhibition enhances cell proliferation, increases DNA damage in IEC. In macrophages, mTORC1 inhibition strongly reduces the expression of pro-inflammatory markers. As a consequence, mTORC1 inhibition exacerbated disease activity, increased mucosal damage, enhanced ulceration, augmented cell infiltration, decreased survival and stimulated tumor formation in a model of colorectal cancer CRC associated to colitis. Thus, our findings suggest that mTORC1 signaling downstream of IFNγ prevents epithelial DNA damage and cancer development during colitis.
Collapse
|
18
|
Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, Spagnoli A, Torquati A, Forsyth CB, Keshavarzian A, Sumner DR. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci 2018; 1442:48-60. [PMID: 30101565 DOI: 10.1111/nyas.13945] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Over the last two decades, it has become increasingly apparent that Wnt signaling plays a critical role in development and adult tissue homeostasis in multiple organs and in the pathogenesis of many diseases. In particular, a crucial role for Wnt signaling in bone development and bone tissue homeostasis has been well recognized. Numerous genome-wide association studies confirmed the importance of Wnt signaling in controlling bone mass. Moreover, ample evidence suggests that Wnt signaling is essential for kidney, intestine, and adipose tissue development and homeostasis. Recent emerging evidence demonstrates that Wnt signaling may play a fundamental role in the aging process of those organs. New discoveries show that bone is not only the major reservoir for calcium and phosphate storage, but also the largest organ with multiple functions, including mineral and energy metabolism. The interactions among bone, kidney, intestine, and adipose tissue are controlled and regulated by several endocrine signals, including FGF23, klotho, sclerostin, osteocalcin, vitamin D, and leptin. Since the aging process is characterized by structural and functional decline in almost all tissues and organs, understanding the Wnt signaling-related interactions among bone, kidney, intestine, and adipose tissue in aging may shed light on the pathogenesis of age-related diseases.
Collapse
Affiliation(s)
- Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Bing Shu
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Alan L Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois
| | - Changli Wei
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Anna Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Alfonso Torquati
- Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | | | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - D Rick Sumner
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
19
|
Zhang H, Song G, Zhang Z, Song H, Tang X, Deng A, Wang W, Wu L, Qin H. Colitis Is Effectively Ameliorated by (±)-8-Acetonyl-dihydrocoptisine via the XBP1-NF-κB Pathway. Front Pharmacol 2017; 8:619. [PMID: 28928666 PMCID: PMC5591823 DOI: 10.3389/fphar.2017.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) is a recurrent, chronic intestinal disease. Available treatments for UC are poor effective and/or cause severe adverse events. X-box binding protein 1 (XBP1) and nuclear factor-κB (NF-κB) have been reported to play important roles in UC. Specifically, deletion or downregulation of XBP1 leads to spontaneous enteritis and results in imbalanced secretion of NF-κB and other proinflammatory cytokines. (±)-8-acetonyl-dihydrocoptisine, i.e., (±)-8-ADC, is a monomer semi-synthesized from coptisine. In vitro, (±)-8-ADC activated the transcriptional activity of XBP1, inhibited expression of NF-κB, and reduced production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β), in lipopolysaccharide-stimulated IEC6 cells. Therefore, silencing XBP1 would reduce the inhibition effect of (±)-8-ADC on NF-κB expression and the cytokines secretion in vitro. In a dextran sulfate sodium-induced colitis mouse model, oral administration of (±)-8-ADC ameliorated weight loss and colon contracture, and decreased the average disease activity index score and pathological damage. Simultaneously, (±)-8-ADC also increased XBP1 expression, and decreased NF-κB expression and secretion of myeloperoxidase, TNF-α, IL-6 and IL-1β in the colon. Therefore, (±)-8-ADC may ameliorate UC via the XBP1-NF-κB pathway and should be considered as a therapeutic candidate for UC.
Collapse
Affiliation(s)
- HaiJing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - GuangMing Song
- Department of Pharmacology, Logistics University of PAPFTianjin, China
| | - ZhiHui Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - HuaChen Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - XiaoNan Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - AnJun Deng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - WenJie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - LianQiu Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - HaiLin Qin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
20
|
Liang X, Zhang P, Yan L, Fu Y, Peng F, Qu L, Shao M, Chen Y, Chen Z. LRSSL: predict and interpret drug–disease associations based on data integration using sparse subspace learning. Bioinformatics 2017; 33:1187-1196. [DOI: 10.1093/bioinformatics/btw770] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
|
21
|
Sipos F, Firneisz G, Műzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol 2016; 22:7938-7950. [PMID: 27672289 PMCID: PMC5028808 DOI: 10.3748/wjg.v22.i35.7938] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be selected for combined regiments. However, due to its context-dependent cellular function, it is clinically essential to consider which cytotoxic drugs are used in combination with c-MYC targeted agents in various tissues. Increasing our knowledge about MYC-dependent pathways might provide direction to novel anti-inflammatory and colorectal cancer therapies.
Collapse
|
22
|
|