1
|
Li J, Bi D, Nie Y, Wu H, Lei Y, Yu S, Rong H, Yang Y, Lei Z. Loperamide-induced constipation is associated with excessive accumulation of bile acids and cholesterol in the liver of mice; attenuation by hesperidin. Food Chem Toxicol 2025:115561. [PMID: 40389132 DOI: 10.1016/j.fct.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Loperamide, a widely used antidiarrheal agent, frequently induces constipation alongside other adverse effects. This study explored hesperidin's therapeutic potential in alleviating loperamide-induced constipation and its underlying mechanisms. Constipation models were established in HFD- or NFD-fed mice via loperamide administration (5 mg/kg/day). Hesperidin (100 mg/kg/day) significantly increased fecal weight and moisture in constipated mice. Biochemical analyses revealed elevated cholic acid/chenodeoxycholic acid ratios in serum and liver tissues of loperamide-treated HFD mice, indicating bile acids dysregulation. qRT-PCR and Western blot results demonstrated that hesperidin downregulated hepatic expression of cholesterol/bile acids biosynthesis genes (e.g., Hmgcr, Cyp7a1, Ch25h), which were overexpressed in constipated mice. Concurrently, hesperidin enhanced the expression of transporters (Abcg5, Abcb11, Abcc2) responsible for biliary cholesterol and bile acids efflux. Furthermore, hesperidin upregulated hepatic nuclear receptors (FXR/SHP), key regulators of bile acids homeostasis. Hesperidin alleviates loperamide-induced constipation through two parallel mechanisms: decreasing hepatic cholesterol accumulation and enhancing bile acids excretion. This dual action results from coordinated regulation of biosynthesis enzymes and transport proteins. This study highlights hesperidin's potential as an adjunct therapy to counteract loperamide-related constipation.
Collapse
Affiliation(s)
- Jiahui Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ya Nie
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Huijuan Wu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Yuting Lei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Siping Yu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Hedong Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, P.R. China.
| | - Zili Lei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
2
|
de Oliveira KM, Soares GM, da Silva Junior JA, Alves BL, Freitas IN, Bem KCP, Mousovich-Neto F, Ribeiro RA, Carneiro EM. Prolonged postweaning protein restriction induces gut dysbiosis and colonic dysfunction in male mice. Am J Physiol Endocrinol Metab 2025; 328:E599-E610. [PMID: 40019118 DOI: 10.1152/ajpendo.00229.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Insufficient or imbalanced protein can disrupt gut microbiota, potentially compromising gut barrier function and increasing health risks. Herein, we investigated the effects of protein restriction on cecal microbiota and colon morphofunction in male mice. From 30 to 120 days of age, C57Bl/6 mice were fed a control protein diet [14% protein, control (C) group] or a low-protein diet [6% protein, protein-restricted (R) group]. At the end of the experimental period, R mice exhibited typical features of undernutrition, such as reduced body weight, hypoalbuminemia, and hypoproteinemia. In addition, despite the hyperphagia displayed in the R group, these mice presented a decreased amount of excreted feces and less energy content in feces. Cecal microbiota analysis demonstrated that protein restriction led to reductions in Shannon and Simpson indices and, therefore, dysbiosis. This effect was accompanied by morphological modifications in the proximal colon of R mice, such as 1) reduction in the total area of neurons of myenteric plexus; 2) increased number of goblet cells, with mucin droplets less developed; 3) reductions in crypt depth and diameter; 4) decreases in gene expressions for mucins and in the tight junction proteins expression; 5) enhanced paracellular permeability and expression of pro-inflammatory cytokines (tumor necrosis factor α, toll-like receptor 4, interferon γ, interleukin 1β, and interleukin 6), decreased anti-inflammatory cytokines (interleukins 4 and 10) in the colon, and increased plasma LPS binding protein concentrations. Therefore, protein restriction induced gut dysbiosis and may result in structural and functional negative impacts on the proximal colon barrier against luminal bacteria.NEW & NOTEWORTHY Prolonged postweaning protein restriction induced gut dysbiosis and led to a reduced neuron area in the myenteric plexus, with increased but underdeveloped goblet cells. Protein restriction decreased colonic crypt depth and diameter, and increased paracellular permeability due to lower expression of mucin-related genes and tight junction proteins. The diminished barrier function resulted in systemic inflammation, evidenced by elevated plasma LPS-binding protein and pro-inflammatory markers in the colon.
Collapse
Affiliation(s)
- Kênia Moreno de Oliveira
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Joel Alves da Silva Junior
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Israelle Netto Freitas
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Kelly Cristina Pereira Bem
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Felippe Mousovich-Neto
- Departments of Pediatrics, Cell and Developmental Biology, Drukier Institute for Children's Health and Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States
| | - Rosane Aparecida Ribeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Irisarri A, Corral A, Perez-Salvador N, Bellver-Sanchis A, Ribalta-Vilella M, Bentanachs R, Alegret M, Laguna JC, Barroso E, Palomer X, Ortuño-Sahagún D, Vázquez-Carrera M, Pallàs M, Herrero L, Griñán-Ferré C. FTO inhibition mitigates high-fat diet-induced metabolic disturbances and cognitive decline in SAMP8 mice. Mol Med 2025; 31:73. [PMID: 39984825 PMCID: PMC11843768 DOI: 10.1186/s10020-025-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
This study investigated the effects of fat mass and obesity-associated (FTO) inhibition on cognitive function and metabolic parameters of senescence-accelerated mouse prone 8 (SAMP8) mice fed a high-fat diet (HFD). SAMP8 mice fed an HFD exhibited increased body weight, impaired glucose tolerance, and elevated serum leptin levels. In epididymal white adipose tissue (eWAT), pharmacological treatment with FB23, a well-established FTO inhibitor, increased leptin production and modulated genes involved in lipid metabolism (Cpt1a, Atgl, Hsl, Fas), oxidative stress (OS) (Bip, Edem), and inflammation (Mcp1, Tnfα). Expression of hepatic genes related to lipid metabolism (Cpt1a, Atgl, Mgl, Dgat2, Srebp, Plin2) and OS (catalase, Edem) were modulated by FB23, although hepatic steatosis remained unchanged. Remarkably, FB23 treatment increased m6A RNA methylation in the brain, accompanied by changes in N6-methyladenosine (m6A)-regulatory enzymes and modulation of neuroinflammatory markers (Il6, Mcp1, iNOS). FTO inhibition reduced the activity of matrix metalloproteases (Mmp2, Mmp9) and altered IGF1 signaling (Igf1, Pten). Notably, enhanced leptin signaling was observed through increased expression of immediate early genes (Arc, Fos) and the transcription factor Stat3. Improved synaptic plasticity was evident, as shown by increased levels of neurotrophic factors (Bdnf, Ngf) and restored neurite length and spine density. Consistent with these findings, behavioral tests demonstrated that FB23 treatment effectively rescued cognitive impairments in SAMP8 HFD mice. The novel object recognition test (NORT) and object location test (OLT) revealed that treated mice exhibited enhanced short- and long-term memory and spatial memory compared to the HFD control group. Additionally, the open field test showed a reduction in anxiety-like behavior after treatment with FB23. In conclusion, pharmacological FTO inhibition ameliorated HFD-induced metabolic disturbances and cognitive decline in SAMP8 mice. These results suggest that targeting FTO may be a promising therapeutic approach to counteract obesity-induced cognitive impairment and age-related neurodegeneration.
Collapse
Grants
- PID2021-122116OB-100 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PDC2022-133441-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2020-114953RB-C21 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2022-139016OA-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- CIBERDEM CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
- 2021 SGR 00357 the Government of Catalonia
- CB06/03/0001 CIBEROBN
- 2021SGR00367 Carlos III Health Institute project and the Government of Catalonia
- Producte 0092 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Llavor 005 and 007 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Departament d’Empresa i Coneixement de la Generalitat de Catalunya 2023
Collapse
Affiliation(s)
- Alba Irisarri
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Ana Corral
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Núria Perez-Salvador
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Marta Ribalta-Vilella
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain.
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Hu L, Huang X, Liu S, Fang L, Zhang J, Tang X. The impact of carbohydrate quality on gut health: Insights from the NHANES. PLoS One 2025; 20:e0315795. [PMID: 39946401 PMCID: PMC11825055 DOI: 10.1371/journal.pone.0315795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND High- and low-quality carbohydrate diets are linked to gut health. However, their specific relationship with constipation or diarrhea is unclear. This study uses 2005-2010 NHANES data to examine the relationship between carbohydrate quality and constipation and diarrhea, and to identify suitable populations for different carbohydrate diets. METHODS Chronic constipation was defined as BSFS types 1 and 2, and chronic diarrhea as types 6 and 7. Dietary intake data were provided by the FPED, using data from the NHANES database. Subjects recalled foods and beverages consumed in the past 24 hours, and intake was averaged and divided into quartiles (Q). After adjusting for covariates, associations between high- and low-quality carbohydrate diets and constipation or diarrhea were assessed using weighted RCS curves and multivariate logistic regression. Results were expressed as weighted ORs and 95% CIs, with subgroup analyses performed. RESULTS A total of 11,355 people participated, with 10,488 in the constipation group and 10,516 in the diarrhea group. Multiple regression showed that high-quality carbohydrates were negatively associated with constipation (OR: 0.852, 95% CI: 0.796-0.912, P = 0.0001). Low-quality carbohydrates were positively associated with constipation (OR: 1.010, 95% CI: 1.002-1.018, P = 0.0295). There was no significant direct association between carbohydrate quality and diarrhoea (P = 0.5189, P = 0.8278). Segmented regression results showed a non-significant association between low quality carbohydrate intake above 40.65 servings/day and constipation, while quality carbohydrate intake above 3.84 servings/day was not significantly associated with diarrhoea. Subgroup analyses showed differences in carbohydrate quality and constipation or diarrhoea across populations. CONCLUSIONS High-quality carbohydrates lowered constipation risk by 33.7% and reduced diarrhea risk with intake up to 3.84 servings/day. In contrast, low-quality carbohydrates increased constipation risk by 83.4%, with risk stabilizing beyond 40.65 servings/day. These effects varied across groups, suggesting that better carbohydrate quality supports gut health, especially in sensitive individuals.
Collapse
Affiliation(s)
- Lanshuo Hu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xuanchun Huang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Shan Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lihui Fang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Fang L, Yi X, Shen J, Deng N, Peng X. Gut-brain axis mediated by intestinal content microbiota was associated with Zhishi Daozhi decoction on constipation. Front Cell Infect Microbiol 2025; 15:1539277. [PMID: 39963403 PMCID: PMC11830728 DOI: 10.3389/fcimb.2025.1539277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Constipation is a common digestive system disorder, which is closely related to the intestinal flora. Zhishi Daozhi decoction (ZDD) is a traditional Chinese medicine prescription used to treat constipation caused by indigestion. This study is to evaluate the efficacy of ZDD in treating constipation and to elucidate the underlying mechanism. Methods In this study, Kunming mice were administered a high-protein diet (HFHPD) and loperamide hydrochloride injections to induce constipation. The mice then received varying doses (2.4, 4.7, and 9.4 mg/kg) of ZDD for seven days. Following the sampling process, we measured fecal microbial activity. The levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), and aquaporin-3 (AQP3) were quantified using enzyme-linked immunosorbent assay. Changes in the gut microbiota were evaluated through 16S rRNA gene sequencing. Additionally, we investigated the correlation between specific microbiota features and the levels of 5-HT, VIP, and AQP3. Results The fecal surface of the mice in the model group (CMM) was rough and dry. The stool of mice in the low-dose ZDD group (CLD), medium-dose ZDD group (CMD), and high-dose ZDD group (CHD) exhibited a smoother texture, closely resembling that of the normal group (CNM). 5-HT levels in the CMM group were significantly lower than in the CNM, CLD, and CHD. VIP levels in the CMD were lower than in the other four groups, and AQP3 levels in CMM showed a decreasing trend. The fecal microbial activity of the CMM group was significantly higher than that of the other groups. Diversity analysis indicated that CMD and CHD treatments were more effective in restoring the intestinal microbiota structure. Potential pathogenic bacteria, including Clostridium, Aerococcus, Jeotgalicoccus, and Staphylococcus were enriched in CMM. In contrast, beneficial bacteria such as Faecalibacterium, Bacillaceae, and Bacillus were more prevalent in the CLD, CMD, and CHD. Correlation analysis revealed that Streptococcus and Enterococcus were positively correlated with VIP, while Succinivibrio showed a negative correlation with 5-HT. Conclusions Constipation induced by HFHPD and loperamide hydrochloride disrupts the structure of the intestinal microbiota. ZDD appears to alleviate constipation, potentially through mechanisms linked to the brain-gut axis and its interaction with the intestinal microbiota. Among the treatment groups, the medium dose of ZDD demonstrated the most effective results.
Collapse
Affiliation(s)
- Leyao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Junxi Shen
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
7
|
Zhang Z, Bi C, Wu R, Qu M. Association of the newly proposed dietary index for gut microbiota and constipation: a cross-sectional study from NHANES. Front Nutr 2025; 12:1529373. [PMID: 39895839 PMCID: PMC11782033 DOI: 10.3389/fnut.2025.1529373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Objective The dietary index for gut microbiota. DI-GM is an innovative metric designed to capture the diversity of the gut microbiome, yet its association with constipation remains unstudied. Methods In this cross-sectional study, 11,405 adults aged 20 and older were selected from the National Health and Nutrition Examination Survey 2005-2010 for the sample. Constipation was defined as fewer than three defecation frequencies per week using bowel health questionnaire (BHQ). Fewer than three bowel movements per week were considered as constipation by Bowel Health Questionnaire (BHQ). DI-GM was derived from dietary recall data, including avocado, broccoli, chickpeas, coffee, cranberries, fermented dairy, fiber, green tea, soybean and whole grains as beneficial elements, red meat, processed meat, refined grains, and high fat as detrimental components. Multivariable weighted logistic was employed to investigate the association of DI-GM with constipation. Secondary analyses included subgroup analyses, restricted cubic spline (RCS), and multiple imputation. Results A higher DI-GM and beneficial gut microbiota score were associated with a lower prevalence of constipation (DI-GM: OR = 0.82, 95% CI = 0.75, 0.90; beneficial gut microbiota score: OR = 0.77, 95% CI = 0.67, 0.89). After grouping DI-GM, in the fully adjusted model, participants with DI-GM ≥ 6 were significantly negatively correlated with both the prevalence of constipation (OR = 0.48, 95% CI = 0.33, 0.71). RCS indicated a non-linear relationship between DI-GM and constipation. Subgroup analyses by age, sex and common complications showed no statistically significant interactions (p > 0.05). Conclusion The newly proposed DI-GM was inversely related with the prevalence of constipation. When treating patients with constipation, it is necessary for clinicians to provide timely and effective dietary interventions incorporating the DI-GM for patients with constipation to avoid further deterioration of the condition.
Collapse
Affiliation(s)
- Zhuhui Zhang
- Department of Anorectal Surgery, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlu Bi
- Department of Anorectal Surgery, Shenzhen Traditional Chinese Medicine Anorectal Hospital (Futian), Shenzhen, China
| | - Runsheng Wu
- Department of Urology, Shenzhen Pingle Orthopedics Hospital, Shenzhen, Guangdong, China
| | - Muwen Qu
- Department of Anorectal Surgery, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Liu TH, Chen GL, Lin CH, Tsai TY, Cheng MC. Lactobacillus plantarum TWK10 relieves loperamide-induced constipation in rats fed a high-fat diet via modulating enteric neurotransmitters, short-chain fatty acids and gut microbiota. Food Funct 2025; 16:181-194. [PMID: 39641806 DOI: 10.1039/d4fo02270j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Obesity and constipation can alter the intestinal microbiota composition, affecting intestinal barrier integrity, immune function, and metabolic processes. Numerous studies have suggested that Lactobacillus and Bifidobacterium could increase short-chain fatty acid (SCFA) production, thus improving the intestinal microbiota composition, mitigating obesity, and protecting the gastrointestinal tract. Therefore, in this study, we aimed to investigate the impact of Lactobacillus plantarum TWK10 (TWK10) on gut dysbiosis, obesity, and constipation induced by a high-fat diet and loperamide. Over a 5-week experimental period, rats were fed a high-fat diet and subsequently induced with gut dysbiosis and constipation using loperamide. Concurrently, rats were administered different doses of TWK10 or TWK10-fermented soy milk. Following administration of TWK10 or its fermented soy milk, the expression of adipocyte transcription factors such as PPARγ, C/EBPα, and C/EBPβ proteins and adipocyte size were significantly downregulated (p < 0.05). Regarding intestinal motility, compared to the high-fat diet-induced obesity and loperamide-induced constipation group (L), rats receiving TWK10 or its fermented soy milk exhibited regulation of gastrointestinal hormone levels such as gastrin (GT), somatostatin (Sst), calcitonin gene-related peptide (CGRP), and acetylcholinesterase (Ache) in serum. Additionally, there was a notable increase in the intestinal transit ratio, particularly in the 1X TWK10 group, in which it increased by 10.29% (p < 0.05). Furthermore, the consumption of TWK10 or its fermented soy milk significantly increased the number of goblet cells, as well as the thickness of the muscle and mucosal layers in the colon (p < 0.05). Analysis of SCFA content in fecal samples revealed a significant increase in SCFA concentrations, particularly acetic acid, following administration of both TWK10 and its fermented soy milk. Finally, TWK10 was found to modulate the composition of the intestinal microbiota and increase microbial diversity. In conclusion, TWK10 and its fermented soy milk effectively alleviated loperamide-induced constipation in rats fed a high-fat diet. These findings suggest that TWK10 and its fermented soy milk may potentially be functional foods for promoting intestinal health.
Collapse
Affiliation(s)
- Te-Hua Liu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Guan-Li Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chih-Hui Lin
- Department of Life Science, National Taitung University, No. 369, Sec. 2, University Rd, Taitung City 950309, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Meng-Chun Cheng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| |
Collapse
|
9
|
Wagai G, Togao M, Kurakawa T, Nishizaki H, Otsuka J, Ohta-Takada Y, Kurita A, Suzuki T, Kawakami K. CFP/Yit: An Inbred Mouse Strain with Slow Gastrointestinal Transit. Dig Dis Sci 2024; 69:2026-2043. [PMID: 38622463 PMCID: PMC11162387 DOI: 10.1007/s10620-024-08420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Gastrointestinal transit (GIT) is influenced by factors including diet, medications, genetics, and gut microbiota, with slow GIT potentially indicating a functional disorder linked to conditions, such as constipation. Although GIT studies have utilized various animal models, few effectively model spontaneous slow GIT. AIMS We aimed to characterize the GIT phenotype of CFP/Yit (CFP), an inbred mouse strain with suggested slow GIT. METHODS Female and male CFP mice were compared to Crl:CD1 (ICR) mice in GIT and assessed based on oral gavage of fluorescent-labeled 70-kDa dextran, feed intake, fecal amount, and fecal water content. Histopathological analysis of the colon and analysis of gut microbiota were conducted. RESULTS CFP mice exhibited a shorter small intestine and a 1.4-fold longer colon compared to ICR mice. The median whole-GIT time was 6.0-fold longer in CFP mice than in ICR mice. CFP mice demonstrated slower gastric and cecal transits than ICR mice, with a median colonic transit time of 4.1 h (2.9-fold longer). CFP mice exhibited lower daily feed intakes and fecal amounts. Fecal water content was lower in CFP mice, apparently attributed to the longer colon. Histopathological analysis showed no changes in CFP mice, including tumors or inflammation. Moreover, CFP mice had a higher Firmicutes/Bacteroidota ratio and a relative abundance of Erysipelotrichaceae in cecal and fecal contents. CONCLUSIONS This study indicates that CFP mice exhibit slow transit in the stomach, cecum, and colon. As a novel mouse model, CFP mice can contribute to the study of gastrointestinal physiology and disease.
Collapse
Affiliation(s)
- Gaku Wagai
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan.
| | - Masao Togao
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Takashi Kurakawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Haruka Nishizaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Jun Otsuka
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Yuki Ohta-Takada
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Akinobu Kurita
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Tomo Suzuki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Koji Kawakami
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| |
Collapse
|
10
|
Wang W, Chen H, Zhang W, Fan D, Deng J, Yang H. Ginsenoside Rk3 Ameliorates Obesity-Induced Colitis by Modulating Lipid Metabolism in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2997-3007. [PMID: 38300824 DOI: 10.1021/acs.jafc.3c08253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Lipid metabolism is closely related to obesity and its complications. Our previous study found that ginsenoside Rk3 (Rk3), a natural bioactive substance derived from ginseng, can effectively alleviate obesity-induced colitis, while its impact on the improvement of the lipid metabolism disorder remains unclear. Here, we demonstrated that Rk3 significantly alleviated inflammation, oxidative stress, and lipid dysregulation in high-fat diet-induced colitis C57BL/6 mice. The potential mechanism by which Rk3 mitigated colon inflammation in the context of obesity may involve the modulation of polyunsaturated fatty acid metabolism with specific attention to n-6 fatty acids, linoleic acid, and arachidonic acid. Rk3 intervention markedly reduced the production of pro-inflammatory factors (PGE2, PGD2, TXB2, HETE, and HODE) by inhibiting cyclooxygenase and lipoxygenase pathways, while enhancing the production of anti-inflammatory factors (EET and diHOME) via cytochrome P450 pathways. Our findings suggest that Rk3 is a potential anti-inflammatory natural drug that can improve obesity-induced intestinal inflammation by regulating lipid metabolism.
Collapse
Affiliation(s)
- Weimin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongwei Chen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Amin U, Huang D, Dhir A, Shindler AE, Franks AE, Thomas CJ. Effects of gastric bypass bariatric surgery on gut microbiota in patients with morbid obesity. Gut Microbes 2024; 16:2427312. [PMID: 39551972 PMCID: PMC11581163 DOI: 10.1080/19490976.2024.2427312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
The Western diet is associated with gastrointestinal dysbiosis, an active contributor to the pathophysiology of obesity and its comorbidities. Gastrointestinal dysbiosis is strongly linked to increased adiposity, low-grade inflammation, dyslipidaemia, and insulin resistance in individuals with morbid obesity. Bariatric bypass surgery remains the most effective treatment for achieving significant weight loss and alleviating obesity-related comorbidities. A growing body of evidence indicates that traditional Roux-en-Y Gastric Bypass (RYGB) improves the disrupted gut microbiota linked with obesity, potentially contributing to sustained weight loss and reduction of comorbidities. One Anastomosis Gastric Bypass (OAGB), a relatively new and technically simpler bariatric procedure, has shown both safety and efficacy in promoting weight loss and improving comorbidities. Few studies have investigated the impact of OAGB on gut microbiota. This review provides insights into the pathogenesis of obesity, current treatment strategies and our current understanding of the gut microbiota in health and disease, including modulating the gut microbiota as a promising and novel way to alleviate the burden of obesity and cardiometabolic conditions. By exploring the impact of gastric bypass surgery on gut microbiota-host interactions, we aim to shed light on this evolving field of research and uncover potential therapeutic targets for elevating outcomes in bariatric surgery.
Collapse
Affiliation(s)
- Urja Amin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, Victoria, Australia
| | - Dora Huang
- Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Body Genesis Institute, Bundoora, Victoria, Australia
| | - Arun Dhir
- Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Body Genesis Institute, Bundoora, Victoria, Australia
| | - Anya E Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Ashley E Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Colleen J Thomas
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, Victoria, Australia
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Liu J, Wang S, Yi R, Long X, Luo G, Zhao X, He Y. LimosiLactobacillus pentosus Isolated from Mustard Relieves Drug-induced Constipation in Mice Fed a High-fat Diet by Modulating Enteric Neurotransmitter Function. Probiotics Antimicrob Proteins 2023; 15:1371-1381. [PMID: 36083465 DOI: 10.1007/s12602-022-09991-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Functional constipation is one of the most common gastrointestinal disorders. Oxidative stress can aggravate organ dysfunction. Enteric neurotransmitters have significant effects on the regulation of the enteric nervous system and intestinal muscle contraction. Oxidative stress and reduced gastrointestinal motility are considered to be one of the main causes of constipation. This study aimed to investigate whether LimosiLactobacillus pentosus CQZC02 alleviated loperamide hydrochloride (Lop)-induced constipation in mice under high-fat diet (HFD) conditions and to elucidate the underlying mechanism, focusing on enteric neurotransmitters. Four-week-old female BALB/c mice were randomly divided into five groups: normal group (Nor), constipation model group (H-Lop), L. pentosus CQZC02 low-dose group (H-Lop + ZC02L), L. pentosus CQZC02 high-dose group (H-Lop + ZC02H), and LimosiLactobacillus bulgaricus control group (H-Lop + LB). The fecal weight, water content, and total gastrointestinal transit time were measured to determine whether the mice were constipated. Small bowel and colon tissue damage was assessed by hematoxylin and eosin staining, while the degree of damage was determined by double-blind scoring. The levels of serum oxidative stress markers malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase and neurotransmitters motilin, gastrin, substance P, endothelin, somatostatin, and vasoactive intestinal peptide were measured. The gene expression levels of endothelial nitric oxide synthase, inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor kappa-B, and cyclooxygenase-2 in small intestine tissue were calculated. The constipation symptoms of mice in H-Lop group were manifested by a variety of physiological indicators. In addition, compared with the H-Lop group, H-Lop + ZC02H could effectively relieve the symptoms of constipation in mice. In symptom characterization, the mice in the H-Lop + ZC02H group lost weight and increased feces and water content. In functional experiments, gastrointestinal motility was enhanced; the inflammation score of intestinal tissue was decreased, and gene expression levels were modulated; serum oxidative factor levels were modulated, and oxidative stress levels were decreased.
Collapse
Affiliation(s)
- Jia Liu
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China
| | - Shuaiqi Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Ruokun Yi
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China
| | - Xingyao Long
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China
| | - Guangli Luo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China.
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
13
|
Peng X, Yi X, Deng N, Liu J, Tan Z, Cai Y. Zhishi Daozhi decoction alleviates constipation induced by a high-fat and high-protein diet via regulating intestinal mucosal microbiota and oxidative stress. Front Microbiol 2023; 14:1214577. [PMID: 37789856 PMCID: PMC10544343 DOI: 10.3389/fmicb.2023.1214577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND A growing body of evidence has demonstrated that a high-fat and high-protein diet (HFHPD) causes constipation. This study focuses on understanding how the use of Zhishi Daozhi decoction (ZDD) affects the intricate balance of intestinal microorganisms. The insights gained from this investigation hold the potential to offer practical clinical approaches to mitigate the constipation-related issues associated with HFHPD. MATERIALS AND METHODS Mice were randomly divided into five groups: the normal (MN) group, the natural recovery (MR) group, the low-dose ZDD (MLD) group, the medium-dose ZDD (MMD) group, and the high-dose ZDD (MHD) group. After the constipation model was established by HFHPD combined with loperamide hydrochloride (LOP), different doses of ZDD were used for intervention. Subsequently, the contents of cholecystokinin (CCK) and calcitonin gene-related peptide (CGRP) in serum, superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were determined. The DNA of intestinal mucosa was extracted, and 16S rRNA amplicon sequencing was used to analyze the changes in intestinal mucosal microbiota. RESULTS After ZDD treatment, CCK content in MR group decreased and CGRP content increased, but the changes were not significant. In addition, the SOD content in MR group was significantly lower than in MLD, MMD, and MHD groups, and the MDA content in MR group was significantly higher than in MN, MLD, and MHD groups. Constipation modeling and the intervention of ZDD changed the structure of the intestinal mucosal microbiota. In the constipation induced by HFHPD, the relative abundance of pathogenic bacteria such as Aerococcus, Staphylococcus, Corynebacterium, Desulfovibrio, Clostridium, and Prevotella increased. After the intervention of ZDD, the relative abundance of these pathogenic bacteria decreased, and the relative abundance of Candidatus Arthromitus and the abundance of Tropane, piperidine, and pyridine alkaloid biosynthesis pathways increased in MHD group. CONCLUSION Constipation induced by HFHPD can increase pathogenic bacteria in the intestinal mucosa, while ZDD can effectively relieve constipation, reduce the relative abundance of pathogenic bacteria, and alleviate oxidative stress injury. In addition, high-dose ZDD can increase the abundance of beneficial bacteria, which is more conducive to the treatment of constipation.
Collapse
Affiliation(s)
- Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
14
|
Kumar V, Kumar V, Kondepudi KK, Chopra K, Bishnoi M. Capsazepine-Induced Altered Colonic Mucosal Health Limits Isomalto-oligosaccharide Action in High-Fat Diet-Fed C57BL/6J Mice. ACS Pharmacol Transl Sci 2023; 6:600-613. [PMID: 37082749 PMCID: PMC10111622 DOI: 10.1021/acsptsci.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 04/05/2023]
Abstract
The present study sought to understand the effects of a combination of altered colonic mucosal health (intrarectal capsazepine administration) and high-fat diet (HFD) administration in mice. Furthermore, we also studied whether this combination prevents protective actions of dietary prebiotic, isomaltooligosaccharides. We studied the alterations in intestinal permeability, histological and transcriptional changes, short-chain fatty acid (SCFA) concentrations, and gut microbial abundance. Capsazepine (CPZ) was administered rectally twice a day along with HFD feeding. Following confirmation of CPZ action (loss of TRPA1 and TRPV1-associated nocifensive behavior), the intrarectal dose of CPZ was reduced to once in 2 days up to 8 weeks. Simultaneous intrarectal administration of CPZ exacerbated the HFD (8 weeks feeding)-induced damage to mucosal lining, intestinal permeability, tight junction protein expression, SCFA levels, and gut bacterial abundances. This higher degree of mucosal damage and pathological alteration in colonic mucosa prevented the previously reported protective actions of isomaltooligosaccharides as a prebiotic in HFD-fed mice. Overall, we present evidence that colonic precondition (gut permeability and mucosal lining) is an important factor in determination of HFD-induced changes in the colon, and success of diet-associated interventions (dietary fibers, pre/probiotics, etc.) is dependent on it.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Vijay Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- Department
of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanwaljit Chopra
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
15
|
Han P, Yu Y, Zhang L, Ruan Z. Citrus peel ameliorates mucus barrier damage in HFD-fed mice. J Nutr Biochem 2023; 112:109206. [PMID: 36370925 DOI: 10.1016/j.jnutbio.2022.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/17/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Citrus peel is rich in bioactive components, especially polyphenols, which are considered to have great potential in the prevention of intestinal diseases. The intestinal mucus barrier is the first defense against the invasion of foreign substances. In this study, we aimed to explore the possibility and mechanism of citrus peel in alleviating the mucus barrier damage in high-fat-diet (HFD) mice. We found that citrus peel powder (CPP) supplementation effectively reduced body weight, fat weight, intestinal permeability, hyperlipidemia, and systemic inflammation in HFD-fed mice. In particular, CPP increased the number of goblet cells, the protein expression of Mucin-2 (Muc2), and the thickness of the mucus layer, thereby strengthening the colonic mucus barrier function. Moreover, CPP supplementation also reduced the expression of endoplasmic reticulum stress (ERS) proteins (GRP78 and CHOP) and increased the expression of T-synthase (O-glycosylation rate-limiting enzyme) and its chaperone protein (Cosmc) in the colon of HFD-fed mice, which suggested that CPP could improve the abnormal protein folding and O-glycosylation of Muc2 during processing and modification. In summary, our study indicates that CPP plays an effective role in relieving mucus barrier damage by improving the production and properties of Muc2, providing new perspectives on the development of CPP as a dietary supplement for strengthening the intestinal barrier.
Collapse
Affiliation(s)
- Peiheng Han
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China
| | - Yujuan Yu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China.
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China
| |
Collapse
|
16
|
Teeple K, Rajput P, Gonzalez M, Han-Hallett Y, Fernández-Juricic E, Casey T. High fat diet induces obesity, alters eating pattern and disrupts corticosterone circadian rhythms in female ICR mice. PLoS One 2023; 18:e0279209. [PMID: 36662804 PMCID: PMC9858401 DOI: 10.1371/journal.pone.0279209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 01/21/2023] Open
Abstract
Circadian, metabolic, and reproductive systems are inter-regulated. Excessive fatness and circadian disruption alter normal physiology and the endocrine milieu, including cortisol, the primary stress hormone. Our aim was to determine the effect feeding a high fat diet to female ICR mice had on diurnal feeding pattern, weight gain, body composition, hair corticosterone levels and circadian patterns of fecal corticosterone. Prepubertal (~35d of age) ICR mice were assigned to control (CON; 10% fat) or high fat (HF; 60% fat) diet and fed for 4 wk to achieve obesity under 12h light and 12h of dark. Feed intake was measured twice daily to determine diurnal intake. Mice were weighed weekly. After 4 wk on diets hair was collected to measure corticosterone, crown-rump length was measured to calculate body mass index (BMI), and body composition was measured with EchoMRI to determine percent fat. HF mice weighed more (P<0.05) after week two, BMI and percent body fat was greater (P<0.05) in HF than CON at the end of wk 4. HF mice consumed more during the day (P<0.05) than CON mice after 1 week on diets. Hair corticosterone was higher in HF mice than in CON (P<0.05). Fecal circadian sampling over 48hr demonstrated that HF mice had elevated basal corticosterone, attenuated circadian rhythms, and a shift in amplitude. High fat feeding for diet induced obesity alters circadian eating pattern and corticosterone rhythms, indicating a need to consider the impact of circadian system disruption on reproductive competence.
Collapse
Affiliation(s)
- Kelsey Teeple
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Prabha Rajput
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Maria Gonzalez
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yu Han-Hallett
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
17
|
Waseem MR, Shin A, Siwiec R, James-Stevenson T, Bohm M, Rogers N, Wo J, Waseem L, Gupta A, Jarrett M, Kadariya J, Xu H. Associations of Fecal Short Chain Fatty Acids With Colonic Transit, Fecal Bile Acid, and Food Intake in Irritable Bowel Syndrome. Clin Transl Gastroenterol 2023; 14:e00541. [PMID: 36227781 PMCID: PMC9875959 DOI: 10.14309/ctg.0000000000000541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Short-chain fatty acids (SCFAs) correlate with colonic transit time (CTT) and may influence irritable bowel syndrome (IBS) pathophysiology. However, the clinical significance of fecal SCFAs, relationships between SCFAs and other metabolites (bile acids [BAs]), and real-time diet effects on SCFAs in IBS are uncertain. The aim was to evaluate fecal SCFA associations with IBS phenotype and mechanisms and explore effects of real-time diet. METHODS We conducted a prospective observational study of fecal SCFA, BAs, and CTT in healthy controls (HCs) and participants with IBS. We compared study end points across groups, analyzed relationships between end points, and evaluated the discriminative ability of SCFAs. Diet effects were explored in participants with dietary data. RESULTS Among 21 HCs and 43 participants with IBS, fecal SCFAs (total, individual) were inversely correlated with overall (all P < 0.01) and segmental (all P < 0.05) CTT; similar associations were observed within HC and IBS groups. The acetate-to-butyrate ratio correlated with slower overall and left CTT in all and in HCs (both P < 0.01). SCFAs (total, acetate) correlated with BAs (total, % primary) in all participants and in those with IBS with diarrhea. Logistic regression analyses demonstrated associations of acetate with slower transit (odds ratio = 0.988, P = 0.002) and BA diarrhea (BAD; odds ratio = 1.014, P = 0.001). Acetate accurately predicted delayed CTT (area under the receiving operating characteristic curve = 0.84) and BAD (area under the receiver operating characteristic curve = 0.79). Adjusting for diet strengthened correlations of total SCFAs with overall CTT ( R = [-0.46], P = 0.04) and SCFAs with transverse CTT (all P < 0.05). DISCUSSION Fecal SCFAs correlate with CTT and fecal BAs and reliably exclude delayed CTT and BAD. Accounting for diet strengthens SCFA associations with transit.
Collapse
Affiliation(s)
- Mohammed Rayyan Waseem
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert Siwiec
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Toyia James-Stevenson
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew Bohm
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas Rogers
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John Wo
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lina Waseem
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anita Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Megan Jarrett
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jhalka Kadariya
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Huiping Xu
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Kim JE, Seol A, Choi YJ, Lee SJ, Jin YJ, Roh YJ, Song HJ, Hong JT, Hwang DY. Similarities and differences in constipation phenotypes between Lep knockout mice and high fat diet-induced obesity mice. PLoS One 2022; 17:e0276445. [PMID: 36548335 PMCID: PMC9778951 DOI: 10.1371/journal.pone.0276445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas9-mediated leptin (Lep) knockout (KO) mice exhibited prominent phenotypes for constipation, even though they were not compared with other model animals. This study compared the stool excretion, gastrointestinal motility, histological structure, mucin secretion, and enteric nerve function in Lep KO and high fat diet (HFD)-treated mice to determine if there were differences in their phenotypes for constipation. Most obesity phenotypes, including fat weight, adipocyte size, expression of lipolytic proteins (HSL, perilipin, and ATGL), and glucose concentrations, were detected similarly in the Lep KO and HFD-treated mice. They showed a similar decrease in the excretion parameters, including the stool number, weight, and water content, while the same pattern was detected in the gastrointestinal motility and intestinal length. A similar decrease in the mucosal layer thickness, muscle thickness, ability for mucin secretion, and expression of water channel (aquaporin 3 and 8) genes was detected in the mid-colon of the Lep KO and HFD-treated mice, but the alteration rate in some levels was greater in the HFD-treated group than the Lep KO mice. On the other hand, the levels of c-kit, nNOS, NSE, and PGP9.5 expression for the enteric neurons and intestitial cells of Cajal (ICC) were remarkably lower in the mid-colon of the HFD-treated mice than in the Lep KO mice, but the level of most proteins in both groups remained lower than those in the control group. A similar alteration pattern in the expression of muscarinic acetylcholine receptors (mAChRs) and serotonin receptors was detected in the Lep KO and HFD-treated mice. These results suggest that most phenotypes for obesity-induced constipation were similarly detected in the Lep KO and HFD-treated mice, but there was a difference in the regulatory function of the enteric nervous system (ENS).
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
- Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang, Korea
- * E-mail:
| |
Collapse
|
19
|
Valdes J, Gagné-Sansfaçon J, Reyes V, Armas A, Marrero G, Moyo-Muamba M, Ramanathan S, Perreault N, Ilangumaran S, Rivard N, Fortier LC, Menendez A. Defects in the expression of colonic host defense factors associate with barrier dysfunction induced by a high-fat/high-cholesterol diet. Anat Rec (Hoboken) 2022; 306:1165-1183. [PMID: 36196983 DOI: 10.1002/ar.25083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022]
Abstract
The effect of Western diets in the gastrointestinal system is largely mediated by their ability to promote alterations in the immunity and physiology of the intestinal epithelium, and to affect the composition of the commensal microbiota. To investigate the response of the colonic epithelium to high-fat/high-cholesterol diets (HFHCDs), we evaluated the synthesis of host defense factors involved in the maintenance of the colonic homeostasis. C57BL/6 mice were fed an HFHCD for 3 weeks and their colons were evaluated for histopathology, gene expression, and microbiota composition. In addition, intestinal permeability and susceptibility to Citrobacter rodentium were also studied. HFHCD caused colonic hyperplasia, loss of goblet cells, thinning of the mucus layer, moderate changes in the composition of the intestinal microbiota, and an increase in intestinal permeability. Gene expression analyses revealed significant drops in the transcript levels of Muc1, Muc2, Agr2, Atoh1, Spdef, Ang4, Camp, Tff3, Dmbt1, Fcgbp, Saa3, and Retnlb. The goblet cell granules of HFHCD-fed mice were devoid of Relmβ and Tff3, indicating defective production of those two factors critical for intestinal epithelial defense and homeostasis. In correspondence with these defects, colonic bacteria were in close contact with, and invading the epithelium. Fecal shedding of C. rodentium showed an increased bacterial burden in HFHCD-fed animals accompanied by increased epithelial damage. Collectively, our results show that HFHCD perturbs the synthesis of colonic host defense factors, which associate with alterations in the commensal microbiota, the integrity of the intestinal barrier, and the host's susceptibility to enteric infections.
Collapse
Affiliation(s)
- Jennifer Valdes
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jessica Gagné-Sansfaçon
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anny Armas
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gisela Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mitterrand Moyo-Muamba
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
20
|
Feng C, Li A, Yin C, Wang S, Jin W, Liu Y, Huo T, Jiang H. Realgar Alleviated Neuroinflammation Induced by High Protein and High Calorie Diet in Rats via the Microbiota-Gut-Brain Axis. Nutrients 2022; 14:nu14193958. [PMID: 36235611 PMCID: PMC9572528 DOI: 10.3390/nu14193958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Gastrointestinal heat retention syndrome (GHRS) often occurs in adolescents, resulting into nervous system injury. Realgar, an arsenic mineral with neuroprotective effect, has been widely used to treat GHRS. However, its mechanism of action remains unknown. Methods: A GHRS rat model was established using a high protein and high calorie diet. We performed macroscopic characterization by assessing bowel sounds, hot/cold preference, anal temperature, and fecal features. Atomic fluorescence spectroscopy was employed to evaluate brain arsenic level while hippocampal ultrastructural changes were analyzed using transmission electron microscopy. In addition, inflammatory cytokines and BBB breakdown were analyzed by western blotting, immunofluorescence assays, and immunohistochemistry staining. We also evaluated hippocampal metabolites by LC-MS while fecal microorganisms were assessed by 16S rDNA sequencing. Results: Our data showed that the high protein and high calorie diet induced GHRS. The rat model depicted decreased bowel sounds, increased fecal characteristics score, preference for low temperature zone, and increased anal temperature. In addition, there was increase in inflammatory factors IL-6, Iba-1, and NF-κB p65 as well as reduced BBB structural protein Claudin-5 and Occludin. The data also showed appearance of hippocampus metabolites disorder and fecal microbial imbalance. Realgar treatment conferred a neuroprotective effect by inhibiting GHRS-specific characteristics, neuroinflammatory response, BBB impairment, metabolites disorder, and microbial imbalance in the GHRS rat model. Conclusion: Taken together, our analysis demonstrated that realgar confers a neuroprotective effect in GHRS rats through modulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Chenhui Yin
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Siying Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Weiyuan Jin
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yi Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Correspondence:
| |
Collapse
|
21
|
Si-Wu Water Extracts Protect against Colonic Mucus Barrier Damage by Regulating Muc2 Mucin Expression in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11162499. [PMID: 36010498 PMCID: PMC9407452 DOI: 10.3390/foods11162499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) could cause gut barrier damage. The herbs in si-wu (SW) include dang gui (Angelica sinensis (Oliv.) Diels), shu di huang (the processed root of Rehmannia glutinosa Libosch.), chuan xiong (rhizome of Ligusticum chuanxiong Hort.), and bai shao (the root of Paeonia lactiflora f. pilosella (Nakai) Kitag.). Si-wu water extracts (SWE) have been used to treat blood deficiency. Components of one herb from SW have been reported to have anti-inflammatory and anti-obesity activities. However, there have been no reports about the effects of SWE on gut barrier damage. Therefore, the aim of the study was to explore the effect of SWE on gut barrier damage. In this study, we found that SWE effectively controlled body weight, liver weight, and feed efficiency, as well as decreased the serum TC level in HFD-fed mice. Moreover, SWE and rosiglitazone (Ros, positive control) increased the colonic alkaline phosphatase (ALP) level, down-regulated serum pro-inflammatory cytokine levels, and reduced intestinal permeability. In addition, SWE increased goblet cell numbers and mucus layer thickness to strengthen the mucus barrier. After supplementation with SWE and rosiglitazone, the protein expression of CHOP and GRP78 displayed a decrease, which improved the endoplasmic reticulum (ER) stress condition. Meanwhile, the increase in Cosmc and C1GALT1 improved the O-glycosylation process for correct protein folding. These results collectively demonstrated that SWE improved the mucus barrier, focusing on Muc2 mucin expression, in a prolonged high-fat diet, and provides evidence for the potential of SWE in the treatment of intestinal disease-associated mucus barrier damage.
Collapse
|
22
|
Choi SI, Kim N, Nam RH, Park JH, Nho H, Yu JE, Song CH, Lee SM, Lee DH. Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fischer-344 Rats. J Cancer Prev 2021; 26:277-288. [PMID: 35047454 PMCID: PMC8749319 DOI: 10.15430/jcp.2021.26.4.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022] Open
Abstract
The gut microbiota interacts with the host gut environment, which is influenced by such factors as sex, age, and host diet. These factors induce changes in the microbial composition. The aim of this study was to identify differences in the gut microbiome of Fisher-344 (F344) rats fed a high-fat diet (HFD), depending on their age and sex. Fecal microbiomes from 6-, 31-, and 74-week-old, and 2-year-old both male and female rats (corresponding to 5-, 30-, 60-, and 80-year-old humans) were analyzed using 16S rRNA gene sequencing, phylogenetic investigation of communities by reconstruction of unobserved states, and enterotype (E) assessment. Moreover, the effect of an HFD on colonic epithelial cells was measured using real-time quantitative PCR. Alpha diversity decreased in the HFD group regardless of age and sex. Based on the enterotype clustering of the whole fecal microbiome, clusters from male rats were divided into E1 and E2 enterotypes, while clusters from female rats were divided into E1, E2, and E3 enterotypes. The female E3 group showed a significantly high abundance in the Ruminococcus genus and expression of Tlr2 mRNA, which may reflect compensation to the HFD. Moreover, the female E3 group showed a lower ratio of opportunistic pathogenic strains to commensal strains compared to the female E2 group. Administration of an HFD influenced the rat fecal microbiota in all assessed age groups, which could be further differentiated by sex. In particular, female rats showed a compensatory enterotype response to an HFD compared to male rats.
Collapse
Affiliation(s)
- Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Heewon Nho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Eun Yu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Gut Microbiota and Dietary Factors as Modulators of the Mucus Layer in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms221910224. [PMID: 34638564 PMCID: PMC8508624 DOI: 10.3390/ijms221910224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanisms lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.
Collapse
|
24
|
Jaber A, Hemmer S, Klotz R, Ferbert T, Hensel C, Eisner C, Ryang YM, Obid P, Friedrich K, Pepke W, Akbar M. Bowel dysfunction after elective spinal surgery: etiology, diagnostics and management based on the medical literature and experience in a university hospital. DER ORTHOPADE 2021; 50:425-434. [PMID: 33185695 DOI: 10.1007/s00132-020-04034-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bowel dysfunction after spinal surgery is often underestimated and if not treated in a timely manner can lead to undesirable surgical interventions or fatal complications. The current medical literature primarily focuses on bowel dysfunction as a result of spinal injury. OBJECTIVE The purpose of this review is to explore this topic in evaluating current evidence regarding the causes of acute bowel dysfunction after elective spinal surgery, primarily the thoracolumbar spine. Since available evidence for recommendations of treatment is scarce, an interdisciplinary management approach for treatment of bowel dysfunction following spinal surgery is also formulated. MATERIAL AND METHODS An extensive literature search was carried out on PubMed. Keywords that were used in the search included bowel dysfunction, obstruction, postoperative ileus, spinal surgery, spinal fusion, constipation, opioid-induced constipation, colonic pseudo-obstruction, ischemic colitis, immobility-induced bowel changes, epidural anesthesia and diet. Relevant studies were chosen and included in the review. The treatment approach used in the spine center of a university hospital was included. RESULTS Current research mainly focuses on investigating the nature and symptomatology of chronic bowel dysfunction after spinal cord injury. Emphasis on the acute phase of bowel dysfunction in patients after elective spinal surgery is lacking. The comorbidities that exacerbate bowel dysfunction postoperatively are well-defined. There has been refinement and expansion of the pharmacological and nonpharmacological treatment that could be implemented. Enough evidence exists to provide sufficient care. CONCLUSION Management of acute bowel dysfunction after spinal surgery requires a comprehensive and individualized approach, encompassing comorbidities, behavioral changes, medications and surgery. Close supervision and timely treatment could minimize further complications. Research is required to identify patients who are at a higher risk of developing bowel dysfunction after specific spinal procedures.
Collapse
Affiliation(s)
- A Jaber
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - S Hemmer
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - R Klotz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - T Ferbert
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - C Hensel
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - C Eisner
- Department of Anesthesiology and Critical Care Medicine, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Y M Ryang
- Department of Neurosurgery, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - P Obid
- Spinal Surgery and Scoliosis Centre, Asklepios Paulinen Clinic, Geisenheimer Straße 10, 65197, Wiesbaden, Germany
| | - K Friedrich
- Department of Internal Medicine IV, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - W Pepke
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - M Akbar
- MEOCLINIC GmbH, Friedrichstraße 71, 10117, Berlin, Germany.
| |
Collapse
|
25
|
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, Donovan C, Forster SC, Yang IA, Keely S, Mann ER, El Omar EM, Belz GT, Hansbro PM. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021; 76:714-734. [PMID: 32762040 DOI: 10.1111/all.14548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Collapse
Affiliation(s)
- Charlotte A. Alemao
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Kurtis F. Budden
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Saima F. Rehman
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Jacqueline E. Marshall
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Chantal Donovan
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Samuel C. Forster
- Department of Molecular and Translational Sciences Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Monash University Clayton VIC Australia
| | - Ian A. Yang
- Thoracic Program The Prince Charles Hospital Metro North Hospital and Health Service Brisbane QLD Australia
- Faculty of Medicine UQ Thoracic Research Centre The University of Queensland Brisbane QLD Australia
| | - Simon Keely
- Hunter Medical Research Institute Priority Research Centre for Digestive Health and Neurogastroenterology University of Newcastle New Lambton Heights NSW Australia
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
- Faculty of Biology Medicine and Health Manchester Collaborative Centre for Inflammation Research Manchester Academic Health Science Centre University of Manchester Manchester UK
| | - Emad M. El Omar
- St George & Sutherland Clinical School Microbiome Research Centre University of New South Wales Sydney NSW Australia
| | - Gabrielle T. Belz
- Diamantina Institute University of Queensland Woolloongabba QLD Australia
- Department of Medical Biology Walter and Eliza Hall Institute of Medical Research University of Melbourne Parkville VIC Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
26
|
Molecular Characterization of Constipation Disease as Novel Phenotypes in CRISPR-Cas9-Generated Leptin Knockout Mice with Obesity. Int J Mol Sci 2020; 21:ijms21249464. [PMID: 33322729 PMCID: PMC7763920 DOI: 10.3390/ijms21249464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: We characterized a novel animal model with obesity-induced constipation because constipation is rarely known in genetically engineered mice (GEM); (2) Methods: The changes in the constipation parameters and mechanisms were analyzed in CRISPR-Cas9-mediated leptin (Lep) knockout (KO) mice from eight to 24 weeks; (3) Results: Significant constipation phenotypes were observed in the Lep KO mice since 16 weeks old. These mice showed a significant decrease in the gastrointestinal motility, mucosal layer thickness and ability for mucin secretion as well as the abnormal ultrastructure of Lieberkühn crypts in the transverse colon. The density or function of the enteric neurons, intestinal Cajal cells (ICC), smooth muscle cells, and the concentration of gastrointestinal (GI) hormones for the GI motility were remarkably changed in Lep KO mice. The downstream signaling pathway of muscarinic acetylcholine receptors (mAChRs) were activated in Lep KO mice, while the expression of adipogenesis-regulating genes were alternatively reduced in the transverse colon of the same mice; (4) Conclusions: These results provide the first strong evidence that Lep KO mice can represent constipation successfully through dysregulation of the GI motility mediated by myenteric neurons, ICC, and smooth muscle cells in the transverse colon during an abnormal function of the lipid metabolism.
Collapse
|
27
|
Jiang H, Horiuchi Y, Hironao KY, Kitakaze T, Yamashita Y, Ashida H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J Clin Biochem Nutr 2020; 67:74-83. [PMID: 32801472 PMCID: PMC7417802 DOI: 10.3164/jcbn.20-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Quercetin and its glycosides possess various health beneficial functions, but comparative study of them on energy metabolism in different tissues are not well studied. In this study, we investigated AMP-activated protein kinase regulated glucose metabolism in the skeletal muscle and lipid metabolism in the white adipose tissue and liver to compare the effectiveness of quercetin and its glycosides, namely isoquercitrin, rutin, and enzymatically modified isoquercitrin, in male ICR mice. The mice were fed a standard or high-fat diet supplemented with 0.1% quercetin and its glycosides for 13 weeks. Quercetin glycosides, but not quercetin, decreased body weight gain and fat accumulation in the mesenteric adipose tissue in high-fat groups. All compounds decreased high-fat diet-increased plasma glucose and insulin levels. Moreover, all compounds significantly increased AMP-activated protein kinase phosphorylation in either standard or high-fat diet-fed mice in all tissues tested. As its downstream events, all compounds induced glucose transporter 4 translocation in the muscle. In the white adipose tissue and liver, all compounds increased lipogenesis while decreased lipolysis. Moreover, all compounds increased browning markers and decreased differentiation markers in adipose tissue. Therefore, quercetin and its glycosides are promising food components for prevention of adiposity and hyperglycemia through modulating AMP-activated protein kinase-driven pathways.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuko Horiuchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ken-Yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
28
|
Naito Y, Ushiroda C, Mizushima K, Inoue R, Yasukawa Z, Abe A, Takagi T. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. J Clin Biochem Nutr 2020; 67:2-9. [PMID: 32801462 PMCID: PMC7417793 DOI: 10.3164/jcbn.20-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. Recent reports have indicated the crucial role of gut microbiota and their metabolites in the progression of NAFLD. In the present review, we demonstrated the influence of oral administration of (-)-epigallocatechin-3-gallate (EGCG) on the gut microbiota, serum bile acid profile, and gene expression in the liver in mice fed a high-fat diet (HFD). EGCG significantly inhibited the increase in histological fatty deposit and triglyceride accumulation in the liver induced by HFD, and improved intestinal dysbiosis. One of important findings is that the abundance of Proteobacteria and Defferibacteres phylums increased markedly in the HFD group, and this increase was significantly suppressed in the EGCG group. Interestingly, taurine-conjugated cholic acid (TCA) increased in the HFD group, like the mirror image against a marked decrease in the cholic acid (CA) value, and this increase was markedly inhibited in the EGCG group. TCA is not a simple serum biomarker for liver injury but TCA may be a causal factor to disturb lipid metabolism. The distribution of correlation coefficients by Heatmap analysis showed that the abundance of Akkermansia and Parabacteroides genus showed a positive correlation with CA and a negative correlation with TCA, and significantly increased in the EGCG group as compared with the HFD group. In addition, nutrigenomics approaches demonstrated that sirtuin signaling, EIF2 pathway and circadian clock are involved in the anti-steatotic effects of EGCG. In the present paper, we summarized recent update data of EGCG function focusing on intestinal microbiota and their interaction with host cells.
Collapse
Affiliation(s)
- Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.,Department of Endoscopy and Ultrasound Medicine, University Hospital, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Zenta Yasukawa
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.,Department for Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
29
|
Mu J, Zhao X, Zalan Z, Hegyi F, Takács K, Du M. Lactobacillus plantarum KFY02 enhances the relieving effect of gardenoside on montmorillonite induced constipation in mice. RSC Adv 2020; 10:10368-10381. [PMID: 35498605 PMCID: PMC9050385 DOI: 10.1039/c9ra10446a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Lactobacillus plantarum KFY02 (KFY02), isolated from naturally fermented milk yoghurt in Korla, Xinjiang, Northwest of China, showed gardenoside action for the intestinal regulation of constipated mice. Comparatively, the effects of KFY02 (0.5 × 108 CFU kg-1, by body weight (BW)), gardenoside (50 mg kg-1, BW), and KFY02 (0.5 × 108 CFU kg-1, BW) + gardenoside (50 mg kg-1, BW) on intestinal regulation in mice with montmorillonite-induced constipation were also studied. Enzyme linked immunoassay, hemotoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) assay and high performance liquid chromatography (HPLC) analysis were used for the study. Compared with the model group, KFY02 + genipin (combined group) increased the propelling rate of activated carbon in the small intestines of mice and accelerated the discharge of the first black stool in mice. At the same time, the combination group reduced the levels of motilin (MTL), substance P (SP) and endothelin-1 (ET-1) in the serum, and increased the somatostatin (SS), vasoactive intestinal peptide (VIP), acetylcholinesterase (AchE) and gastrin (Gastrin) levels in the serum, which made these parameters close to those of the normal group. Using qPCR analysis, it was observed that the combined group up-regulated the mRNA expression of endothelial nitric oxide synthase (eNOS), stem cell factor (SCF), stem cell factor receptor (c-Kit), glutathione (GSH), catalase and manganese-superoxide dismutase (Mn-SOD) and down-regulated the expression of inducible nitric oxide synthase (iNOS) and transient receptor potential vanilloid receptor 1 (TRPV1). The combination increased the Bacteroides and Akkermansia abundances and decreased the Firmicutes abundance in the feces of the constipated mice and decreased the Firmicutes/Bacteroides ratio. The expression of the above genes was similar to that of the normal group. The results indicate that KFY02 produced β-glucosidase to hydrolyze the gardenoside glycosidic bond to produce genipin and can effectively promote the regulation of gastrointestinal hormones and intestinal peristalsis and reduce oxidative tissue damage in constipated mice. This study also confirmed that KFY02 has similar relieving effects to gardenoside for constipation in mice.
Collapse
Affiliation(s)
- Jianfei Mu
- College of Food Science, Southwest University Chongqing 400715 China +86-23-68250478
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Zsolt Zalan
- National Agricultural Research and Innovation Center, Food Science Research Institute Budapest H-1022 Hungary
| | - Ferenc Hegyi
- National Agricultural Research and Innovation Center, Food Science Research Institute Budapest H-1022 Hungary
| | - Krisztina Takács
- National Agricultural Research and Innovation Center, Food Science Research Institute Budapest H-1022 Hungary
| | - Muying Du
- College of Food Science, Southwest University Chongqing 400715 China +86-23-68250478
- Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University Chongqing 400715 China
| |
Collapse
|