1
|
Zununi Vahed S, Hejazian SM, Bakari WN, Landon R, Gueguen V, Meddahi-Pellé A, Anagnostou F, Barzegari A, Pavon-Djavid G. Milking mesenchymal stem cells: Updated protocols for cell lysate, secretome, and exosome extraction, and comparative analysis of their therapeutic potential. Methods 2025; 238:40-60. [PMID: 40058715 DOI: 10.1016/j.ymeth.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025] Open
Abstract
The potential of the cell lysate, secretome, and extracellular vesicles (EVs) of mesenchymal stem cells (MSCs) to modulate the immune response and promote tissue regeneration has positioned them as a promising option for cell-free therapy. Currently, many clinical trials in stem cells-derived EVs and secretome are in progress various diseases and sometimes the results are failing. The major challenge on this roadmap is the lack of a standard extraction method for exosome, secretome, and lysate. The most optimal method for obtaining the secretome of MSCs for clinical utilization involves a comprehensive approach that includes non-destructive collection methods, time optimization, multiple collection rounds, optimization of culture conditions, and quality control measures. Further research and clinical studies are warranted to validate and refine these methods for safe and effective utilization of the MSC exosome, secretome, and lysate in various clinical applications. To address these challenges, it is imperative to establish a standardized and unified methodology to ensure reliable evaluation of these extractions in clinical trials. This review seeks to outline the pros and cons of methods for the preparation of MSCs-derived exosome, and secretome/lysate, and comparative analysis of their therapeutic potential.
Collapse
Affiliation(s)
| | | | - William Ndjidda Bakari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France; Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Rebecca Landon
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Fani Anagnostou
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France.
| |
Collapse
|
2
|
Yang M, Xu W, Yue C, Li R, Huang X, Yan Y, Yan Q, Liu S, Liu Y, Li Q. Adipose-derived stem cells promote the recovery of intestinal barrier function by inhibiting the p38 MAPK signaling pathway. Eur J Histochem 2025; 69:4158. [PMID: 39836101 PMCID: PMC11788713 DOI: 10.4081/ejh.2025.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage. The expression of inflammatory cytokines (TNF-α, HMGB1, IL-1β and IL-6), antioxidant enzymes (iNOS, SOD and CAT), and oxidative products (MDA and 8-iso-PGF2α) was detected using ELISA kits and related reagent kits. Apoptosis-related proteins (Bcl-2, Bax, Caspase-3 and Caspase-9), tight junction proteins (ZO-1, Occludin, E-cadherin, and Claudin-1) and p38 MAPK pathway-associated protein were detected by Western blotting. In addition, cell viability and apoptosis was determined by a CCK-8 kit and flow cytometry, respectively. Cell permeability was assayed by the transepithelial electrical resistance value and FITC-dextran concentration. The homing effect of ADSCs was detected by fluorescence labeling, and intestinal barrier tissue was observed by HE staining. After ADSC treatment, the level of phosphorylated p38 MAPK protein decreased, the expression of inflammatory factors, oxidative stress and cell apoptosis decreased, the expression of tight junction proteins increased, and cell permeability decreased in Caco-2 cells stimulated with LPS. In rats, ADSCs are directionally recruited to damaged intestinal tissue. ADSCs significantly decreased the levels of D-lactate, diamine oxidase (DAO) and FITC-dextran induced by LPS. ADSCs promoted tight junction proteins and inhibited oxidative stress in intestinal tissue. These effects were reversed after the use of a p38 MAPK activator. ADSCs can be directionally recruited to intestinal tissue, upregulate tight junction proteins, and reduce apoptosis and oxidative stress by inhibiting the p38MAPK signaling pathway. This study provides novel insights into the treatment of intestinal injury.
Collapse
Affiliation(s)
- Mei Yang
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Wangbin Xu
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaofu Yue
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Rong Li
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Xian Huang
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Yongjun Yan
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Qinyong Yan
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Shisheng Liu
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Yuan Liu
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| | - Qiaolin Li
- Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing
| |
Collapse
|
3
|
Jafar H, Alqudah D, Rahmeh R, Al-Hattab D, Ahmed K, Rayyan R, Abusneinah A, Rasheed M, Rayyan Y, Awidi A. Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients. Stem Cells Dev 2024; 33:645-651. [PMID: 39446772 DOI: 10.1089/scd.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by periods of flare-ups and remission. It is likely to be an autoimmune in origin, presenting persistent therapeutic challenges despite current therapies. This study aims to investigate the potential of umbilical cord mesenchymal stromal cells (UCMSCs) in treating ulcerative colitis (UC). This study is a prospective phase 1 pilot, open-label, single-arm, and single-center study. UCMSCs were cultured under current Good Manufacturing Practice (cGMP) conditions and intravenously administered to six patients with UC. Safety and efficacy were evaluated using the Mayo Score/Disease Activity Index. Among the six enrolled adult patients, five completed long-term follow-ups. All exhibited at diagnosis active UC confirmed through comprehensive assessment methods. Each patient received three injections intravenously 2 weeks apart with a dose of 100 million UCMSC each. No significant short-term or intermediate-term adverse events were detected post-UCMSC administration. Long-term follow-up at 12 and 24 months showed sustained safety and no adverse events. Notably, three out of five patients achieved a Mayo score of 0 for UC, maintained at both 12 and 24 months, indicating a highly significant response (P < 0.001). This study demonstrates the safety and potential efficacy of UCMSCs in active UC. However, larger trials are warranted to validate these preliminary findings and to establish the role of UCMSC therapy as an option for managing UC.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dana Alqudah
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dana Al-Hattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Electrical and Mathematical Sciences and Engineering Department, King Abdulla University of Science and Technology, Thuwal, ThuwalSaudi Arabia
| | - Khalid Ahmed
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Rama Rayyan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Awni Abusneinah
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Mohammad Rasheed
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Yaser Rayyan
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
4
|
Opretzka LCF, Pinto CD, Santos JRDJ, de Lima AA, Soares MBP, Villarreal CF. Mesenchymal stem cell-derived cell-free technologies: a patent landscape. Biotechnol Lett 2024; 46:907-924. [PMID: 38900338 DOI: 10.1007/s10529-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research. This review performed a search on Derwent World Patents Index™ and retrieved 269 patent families related to the MSC-derived cell-free products. Analysis reveals an exponential increase in patents from the mid-2010s, primarily focusing on exosomes. The patent's contents offer a great diversity of applications and associated technologies by using the products as medicinal agents or drug delivery systems. Nevertheless, numerous application branches remain unexplored, suggesting vast potential for cell-free technologies alone or combined with other approaches.
Collapse
Affiliation(s)
| | - Cláudio Damasceno Pinto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
| | | | - Alyne Almeida de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
- Institute of Advanced Systems in Health, SENAI CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Cristiane Flora Villarreal
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil.
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
5
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Tangporncharoen R, Silathapanasakul A, Tragoonlugkana P, Pruksapong C, Tawonsawatruk T, Supokawej A. The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis. J Orthop Surg Res 2024; 19:255. [PMID: 38650022 PMCID: PMC11034088 DOI: 10.1186/s13018-024-04747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.
Collapse
Affiliation(s)
- Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atiruj Silathapanasakul
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Pramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
7
|
Liu Y, Xiong W, Li J, Feng H, Jing S, Liu Y, Zhou H, Li D, Fu D, Xu C, He Y, Ye Q. Application of dental pulp stem cells for bone regeneration. Front Med (Lausanne) 2024; 11:1339573. [PMID: 38487022 PMCID: PMC10938947 DOI: 10.3389/fmed.2024.1339573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Bone defects resulting from severe trauma, tumors, inflammation, and other factors are increasingly prevalent. Stem cell-based therapies have emerged as a promising alternative. Dental pulp stem cells (DPSCs), sourced from dental pulp, have garnered significant attention owing to their ready accessibility and minimal collection-associated risks. Ongoing investigations into DPSCs have revealed their potential to undergo osteogenic differentiation and their capacity to secrete a diverse array of ontogenetic components, such as extracellular vesicles and cell lysates. This comprehensive review article aims to provide an in-depth analysis of DPSCs and their secretory components, emphasizing extraction techniques and utilization while elucidating the intricate mechanisms governing bone regeneration. Furthermore, we explore the merits and demerits of cell and cell-free therapeutic modalities, as well as discuss the potential prospects, opportunities, and inherent challenges associated with DPSC therapy and cell-free therapies in the context of bone regeneration.
Collapse
Affiliation(s)
- Ye Liu
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Junyi Li
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Huixian Feng
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghao Liu
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Duan Li
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
He Y, Li R, She W, Ai Y, Li K, Kumeria T, Jiang Z, Shao Q, Zou C, Albashari AA, Duan X, Ye Q. Inhibitory effects of the nanoscale lysate derived from xenogenic dental pulp stem cells in lung cancer models. J Nanobiotechnology 2023; 21:488. [PMID: 38105218 PMCID: PMC10726628 DOI: 10.1186/s12951-023-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Lung cancer is a highly prevalent malignancy and has the highest mortality rate among all tumors due to lymph node metastasis. Bone marrow and umbilical cord-derived mesenchymal stem cells (MSCs) have demonstrated tumor-suppressive effects on lung cancer. This study investigated the effects of DPSC lysate on proliferation, apoptosis, migration and invasion of cancer cells were studied in vivo and in vitro. METHODS The proliferation, apoptosis, and migration/metastasis were evaluated by cell counting kit-8 assay, Annexin-V and propidium iodide staining, and the transwell assay, respectively. The expression levels of apoptosis-, cell cycle-, migration-, and adhesion-related mRNA and proteins were measured by qRT-PCR and western blot. The level and mRNA expression of tumor markers carcino embryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma (SCC) were measured by Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. Finally, a tumor-bearing mouse model was constructed to observe the tumor-suppressive effect of DPSC lysate after intraperitoneal injection. RESULTS DPSC lysate decreased the viability of A549 cells and induced apoptosis in lung cancer cells. Western blot confirmed that levels of Caspase-3, Bax, and Bad were increased, and Bcl-2 protein levels were decreased in A549 cells treated with DPSC lysate. In addition, DPSC lysate inhibited the migration and invasion of A549 cells; downregulated key genes of the cell cycle, migration, and adhesion; and significantly suppressed tumor markers. Xenograft results showed that DPSC lysate inhibited tumor growth and reduced tumor weight. CONCLUSIONS DPSC lysate inhibited proliferation, invasion, and metastasis; promoted apoptosis in lung cancer cells; and suppressed tumor growth- potentially providing a cell-based alternative therapy for lung cancer treatment.
Collapse
Affiliation(s)
- Yan He
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 460030, Hubei, China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China
| | - Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
| | - Wenting She
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Kesheng Li
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 460030, Hubei, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ziran Jiang
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Qing Shao
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Chen Zou
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China.
| | | | - Xingxiang Duan
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China.
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. BIOLOGY 2023; 12:biology12020305. [PMID: 36829582 PMCID: PMC9953449 DOI: 10.3390/biology12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Radiotherapy is a standard treatment for head and neck cancer patients worldwide. However, millions of patients who received radiotherapy consequently suffer from xerostomia because of irreversible damage to salivary glands (SGs) caused by irradiation (IR). Current treatments for IR-induced SG hypofunction only provide temporary symptom alleviation but do not repair the damaged SG, thus resulting in limited treatment efficacy. Therefore, there has recently been a growing interest in regenerative treatments, such as cell-free therapies. This review aims to summarize cell-free therapies for IR-induced SG, with a particular emphasis on utilizing diverse cell extract (CE) administrations. Cell extract is a group of heterogeneous mixtures containing multifunctional inter-cellular molecules. This review discusses the current knowledge of CE's components and efficacy. We propose optimal approaches to improve cell extract treatment from multiple perspectives (e.g., delivery routes, preparation methods, and other details regarding CE administration). In addition, the advantages and limitations of CE treatment are systematically discussed by comparing it to other cell-free (such as conditioned media and exosomes) and cell-based therapies. Although a comprehensive identification of the bioactive factors within CEs and their mechanisms of action have yet to be fully understood, we propose cell extract therapy as an effective, practical, user-friendly, and safe option to conventional therapies in IR-induced SG.
Collapse
|
10
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang Z, Zhang X, Qi L, Feng W, Gu Y, Ding Y. Olfactory mucosa tissue-derived mesenchymal stem cells lysate ameliorates LPS-induced acute liver injury in mice. BMC Pulm Med 2022; 22:414. [DOI: 10.1186/s12890-022-02204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Acute liver injury (ALI) induced by sepsis seriously endangers the health of human beings every year. Mesenchymal stem cells (MSCs) lysate containing various regulators had a positive effect on anti-inflammation, hoping to provide a promising strategy in ALI.
Methods
Olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) were extracted and identified. The collected OM-MSCs were prepared after repeated freeze–thaw in phosphate buffer solution (PBS). Then, OM-MSCs lysate was filtered for future experiments. To understand the composes of OM-MSCs clearly, we detected the components of OM-MSCs lysate by western blotting. In vitro, OM-MSCs lysate was applied to evaluate the effects on normal human liver cells (LO-2) under stimulation of LPS. Lipopolysaccharide (LPS) was also injected intraperitoneally to build ALI model in mice. We further assessed the anti-inflammatory capacity of OM-MSCs lysate on ALI in vivo by aminotransferase determination, pathology observation, and immunohistochemical staining. Moreover, the immunoblot technique was performed to recognize the changes in inflammatory factors and related proteins.
Results
In this study, we found that OM-MSCs lysate could protect structure effectively, improve the plasma aminotransferases, diminish inflammation by releasing interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). A significant decrease in tumor necrosis factor-α (TNF-α) also occurred under the treatment of OM-MSCs lysate. In addition, trophic factors originating from OM-MSCs lysate provided a supportive micro-environment for liver recovery. Especially, up-expression of vascular endothelial growth factor (VEGF) in vivo revealed that OM-MSCs might have a great potential for healing.
Conclusions
Our results demonstrated that OM-MSCs lysate could alleviate LPS-induced ALI via decreasing inflammatory cytokines and promoting recovery.
Collapse
|
12
|
Luo Y, Li Z, Wang X, Wang J, Duan X, Li R, Peng Y, Ye Q, He Y. Characteristics of culture-condition stimulated exosomes or their loaded hydrogels in comparison with other extracellular vesicles or MSC lysates. Front Bioeng Biotechnol 2022; 10:1016833. [PMID: 36185445 PMCID: PMC9523448 DOI: 10.3389/fbioe.2022.1016833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, it has become popular to study the use of extracellular vesicles (EVs) secreted by stem cells to repair damaged tissues or lost cells. Various cell types and physiological fluids release EVs, and they play an important role in cell-to-cell communication. Moreover, EVs have been implicated in important processes, such as immune responses, homeostasis maintenance, coagulation, inflammation, cancer progression, angiogenesis, and antigen presentation. Thus, EVs participate in both physiological and pathological progression. The main classes of EVs include exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Exosomes, which carry a mass of signal molecules such as RNA, DNA, proteins, and lipids, are the most important of these EVs subsets. Currently, exosomes are generating substantial interest in the scientific community. Exosomes loaded hydrogels or under different cultural environments exhibit different properties and functions. Therefore, the exosomes obtained from different sources and conditions are worth reviewing. More importantly, no review article has compared the different EVs, such as exosomes, MVs, ApoBDs, and mesenchymal stem cell (MSC) lysates, which are special soluble substances. The differentiation between EVs and MSC lysates is a logical approach. Accordingly, this review provides an update on the latest progress in studying the roles of culture-condition stimulated exosomes or their loaded hydrogels and the differentiation between exosomes, MVs, ApoBDs, and MSC lysates. Published studies were retrieved from the PubMed® database for review.
Collapse
Affiliation(s)
- Yu Luo
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Li
- Department of Orthodontics, School and Hospital of Stomatology, Nanchang University, Nanchang, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruohan Li
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youjian Peng
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Nanchang University, Nanchang, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
13
|
Wang Y, Wen R, Liu D, Zhang C, Wang ZA, Du Y. Exploring Effects of Chitosan Oligosaccharides on the DSS-Induced Intestinal Barrier Impairment In Vitro and In Vivo. Molecules 2021; 26:2199. [PMID: 33920375 PMCID: PMC8070450 DOI: 10.3390/molecules26082199] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal barrier dysfunction is an essential pathological change in inflammatory bowel disease (IBD). The mucus layer and the intestinal epithelial tight junction act together to maintain barrier integrity. Studies showed that chitosan oligosaccharide (COS) had a positive effect on gut health, effectively protecting the intestinal barrier in IBD. However, these studies usually focused on its impact on the intestinal epithelial tight junction. The influence of COS on the intestinal mucus layer is still poorly understood. In this study, we explored the effect of COS on intestinal mucus in vitro using human colonic mucus-secreted HT-29 cells. COS relieved DSS (dextran sulfate sodium)-induced mucus defects. Additionally, the structural characteristics of COS greatly influenced this activity. Finally, we evaluated the protective effect of COS on intestinal barrier function in mice with DSS-induced colitis. The results indicated that COS could manipulate intestinal mucus production, which likely contributed to its intestinal protective effects.
Collapse
Affiliation(s)
- Yujie Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.W.); (R.W.); (D.L.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Wen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.W.); (R.W.); (D.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.W.); (R.W.); (D.L.)
| | - Chen Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.W.); (R.W.); (D.L.)
| | - Zhuo A. Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.W.); (R.W.); (D.L.)
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.W.); (R.W.); (D.L.)
| |
Collapse
|
14
|
Gudiño V, Salas A. Promise of Mesenchymal Stem Cell Lysates in IBD Therapy: Are the Parts Greater than the Whole? Dig Dis Sci 2021; 66:932-934. [PMID: 32691380 DOI: 10.1007/s10620-020-06473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Victoria Gudiño
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Instituto de Investigaciones Biomédicas August Pi i Sunyer, CIBER-EHD, Rosselló 149-153, 08036, Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Instituto de Investigaciones Biomédicas August Pi i Sunyer, CIBER-EHD, Rosselló 149-153, 08036, Barcelona, Spain.
| |
Collapse
|
15
|
Hosseini-Asl SK, Mehrabani D, Karimi-Busheri F. Therapeutic Effect of Mesenchymal Stem Cells in Ulcerative Colitis: A Review on Achievements and Challenges. J Clin Med 2020; 9:E3922. [PMID: 33287220 PMCID: PMC7761671 DOI: 10.3390/jcm9123922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemiology of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), still shows an increasing trend in Asia and Iran. Despite an improvement in the treatment landscape focused on symptomatic control, long-term colectomies have not decreased over the last 10-year period. Thus, novel therapies are urgently needed in clinics to supplement the existing treatments. Mesenchymal stem cells (MSCs) are multipotent adult stem cells with immunosuppressive effects, targeting IBD as a new treatment strategy. They have recently received global attention for their use in cell transplantation due to their easy expansion and wide range of activities to be engrafted, and because they are home to the mucosa of the intestine. Moreover, MSCs are able to differentiate into epithelial and other cells that can directly promote repair in the mucosal damages in UC. It seems that there is a need to deepen our understanding to target MSCs as a promising treatment option for UC patients who are refractory to conventional therapies. Here, we overviewed the therapeutic effects of MSCs in UC and discussed the achievements and challenges in the cell transplantation of UC.
Collapse
Affiliation(s)
- Seyed-Kazem Hosseini-Asl
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|