1
|
Pliatsika D, Blatter C, Riedl R. Targeted protein degradation: current molecular targets, localization, and strategies. Drug Discov Today 2024; 29:104178. [PMID: 39276920 DOI: 10.1016/j.drudis.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Targeted protein degradation (TPD) has revolutionized drug discovery by selectively eliminating specific proteins within and outside the cellular context. Over the past two decades, TPD has expanded its focus beyond well-established targets, exploring diverse proteins beyond cancer-related ones. This evolution extends the potential of TPD to various diseases. Notably, TPD can target proteins at demanding locations, such as the extracellular matrix (ECM) and cellular membranes, presenting both opportunities and challenges for future research. In this review, we comprehensively examine the exciting opportunities in the burgeoning field of TPD, highlighting different targets, their cellular environment, and innovative strategies for modern drug discovery.
Collapse
Affiliation(s)
- Dimanthi Pliatsika
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland
| | - Cindy Blatter
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland.
| |
Collapse
|
2
|
Setia N, Almuqdadi HTA, Abid M. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders. Eur J Med Chem 2024; 265:116041. [PMID: 38199162 DOI: 10.1016/j.ejmech.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The scientific community has shown considerable interest in proteolysis-targeting chimeras (PROTACs) in the last decade, indicating their remarkable potential as a means of achieving targeted protein degradation (TPD). Not only are PROTACs seen as valuable tools in molecular biology but their emergence as a modality for drug discovery has also garnered significant attention. PROTACs bind to E3 ligases and target proteins through respective ligands connected via a linker to induce proteasome-mediated protein degradation. The discovery of small molecule ligands for E3 ligases has led to the prevalent use of various E3 ligases in PROTAC design. Furthermore, the incorporation of different types of linkers has proven beneficial in enhancing the efficacy of PROTACs. By far more than 3300 PROTACs have been reported in the literature. Notably, Von Hippel-Lindau (VHL)-based PROTACs have surfaced as a propitious strategy for targeting proteins, even encompassing those that were previously considered non-druggable. VHL is extensively utilized as an E3 ligase in the advancement of PROTACs owing to its widespread expression in various tissues and well-documented binders. Here, we review the discovery of VHL ligands, the types of linkers employed to develop VHL-based PROTACs, and their subsequent modulation to design advanced non-conventional degraders to target various disease-causing proteins. Furthermore, we provide an overview of other E3 ligases recruited in the field of PROTAC technology.
Collapse
Affiliation(s)
- Nisha Setia
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
3
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
4
|
Wang A, Luo X, Wang Y, Meng X, Lu Z, Yang Y. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. J Med Chem 2022; 65:12460-12481. [PMID: 36070471 DOI: 10.1021/acs.jmedchem.2c01164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) with high mortality has seriously threatened men's health. Bifunctional agents simultaneously degrade and antagonize androgen receptor (AR), display robust AR signaling pathway blockade, and show the therapeutic prospect for mCRPC. Herein, systemic structural modifications on the C-3, C-6, and C-17 positions of galeterone led to the discovery of 67-b with the dual functions of AR antagonism and degradation. In vitro, 67-b exhibited excellent antiproliferative activity and potent AR degradation activity in different PCa cells (LNCaP and 22RV1), as well as outstanding antagonistic activity against wild-type and mutant (W741L, T877A, and F876L) ARs. In vivo, 67-b effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited tumor regression in the enzalutamide-resistant (c4-2b-ENZ) xenograft model. These results confirmed 67-b to be a promising AR degrader and antagonist for the treatment of mCRPC patients.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xianggang Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yawan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
6
|
Christenson M, Song CS, Liu YG, Chatterjee B. Precision Targets for Intercepting the Lethal Progression of Prostate Cancer: Potential Avenues for Personalized Therapy. Cancers (Basel) 2022; 14:892. [PMID: 35205640 PMCID: PMC8870390 DOI: 10.3390/cancers14040892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Organ-confined prostate cancer of low-grade histopathology is managed with radiation, surgery, active surveillance, or watchful waiting and exhibits a 5-year overall survival (OS) of 95%, while metastatic prostate cancer (PCa) is incurable, holding a 5-year OS of 30%. Treatment options for advanced PCa-metastatic and non-metastatic-include hormone therapy that inactivates androgen receptor (AR) signaling, chemotherapy and genome-targeted therapy entailing synthetic lethality of tumor cells exhibiting aberrant DNA damage response, and immune checkpoint inhibition (ICI), which suppresses tumors with genomic microsatellite instability and/or deficient mismatch repair. Cancer genome sequencing uncovered novel somatic and germline mutations, while mechanistic studies are revealing their pathological consequences. A microRNA has shown biomarker potential for stratifying patients who may benefit from angiogenesis inhibition prior to ICI. A 22-gene expression signature may select high-risk localized PCa, which would not additionally benefit from post-radiation hormone therapy. We present an up-to-date review of the molecular and therapeutic aspects of PCa, highlight genomic alterations leading to AR upregulation and discuss AR-degrading molecules as promising anti-AR therapeutics. New biomarkers and druggable targets are shaping innovative intervention strategies against high-risk localized and metastatic PCa, including AR-independent small cell-neuroendocrine carcinoma, while presenting individualized treatment opportunities through improved design and precision targeting.
Collapse
Affiliation(s)
| | | | | | - Bandana Chatterjee
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.C.); (C.-S.S.); (Y.-G.L.)
| |
Collapse
|
7
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
8
|
Barghout SH. Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anticancer Agents Med Chem 2021; 21:214-230. [PMID: 32275492 DOI: 10.2174/1871520620666200410082652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Drug discovery in the scope of cancer therapy has been focused on conventional agents that nonselectively induce DNA damage or selectively inhibit the activity of key oncogenic molecules without affecting their protein levels. An emerging therapeutic strategy that garnered attention in recent years is the induction of Targeted Protein Degradation (TPD) of cellular targets by hijacking the intracellular proteolysis machinery. This novel approach offers several advantages over conventional inhibitors and introduces a paradigm shift in several pharmacological aspects of drug therapy. While TPD has been found to be the major mode of action of clinically approved anticancer agents such as fulvestrant and thalidomide, recent years have witnessed systematic endeavors to expand the repertoire of proteins amenable to therapeutic ablation by TPD. Such endeavors have led to three major classes of agents that induce protein degradation, including molecular glues, Proteolysis Targeting Chimeras (PROTACs) and Hydrophobic Tag (HyT)-based degraders. Here, we briefly highlight agents in these classes and key advances made in the field with a focus on clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
10
|
Current Status and Future Perspectives of Androgen Receptor Inhibition Therapy for Prostate Cancer: A Comprehensive Review. Biomolecules 2021; 11:biom11040492. [PMID: 33805919 PMCID: PMC8064397 DOI: 10.3390/biom11040492] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is one of the main components in the development and progression of prostate cancer (PCa), and treatment strategies are mostly directed toward manipulation of the AR pathway. In the metastatic setting, androgen deprivation therapy (ADT) is the foundation of treatment in patients with hormone-sensitive prostate cancer (HSPC). However, treatment response is short-lived, and the majority of patients ultimately progress to castration-resistant prostate cancer (CRPC). Surmountable data from clinical trials have shown that the maintenance of AR signaling in the castration environment is accountable for disease progression. Study results indicate multiple factors and survival pathways involved in PCa. Based on these findings, the alternative molecular pathways involved in PCa progression can be manipulated to improve current regimens and develop novel treatment modalities in the management of CRPC. In this review, the interaction between AR signaling and other molecular pathways involved in tumor pathogenesis and its clinical implications in metastasis and advanced disease will be discussed, along with a thorough overview of current and ongoing novel treatments for AR signaling inhibition.
Collapse
|
11
|
An Overview of Next-Generation Androgen Receptor-Targeted Therapeutics in Development for the Treatment of Prostate Cancer. Int J Mol Sci 2021; 22:ijms22042124. [PMID: 33672769 PMCID: PMC7924596 DOI: 10.3390/ijms22042124] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional endocrine therapy for prostate cancer (PCa) has been directed at suppression of the androgen receptor (AR) signaling axis since Huggins et al. discovered that diethylstilbestrol (DES; an estrogen) produced chemical castration and PCa tumor regression. Androgen deprivation therapy (ADT) still remains the first-line PCa therapy. Insufficiency of ADT over time leads to castration-resistant PCa (CRPC) in which the AR axis is still active, despite castrate levels of circulating androgens. Despite the approval and use of multiple generations of competitive AR antagonists (antiandrogens), antiandrogen resistance emerges rapidly in CRPC due to several mechanisms, mostly converging in the AR axis. Recent evidence from multiple groups have defined noncompetitive or noncanonical direct binding sites on AR that can be targeted to inhibit the AR axis. This review discusses new developments in the PCa treatment paradigm that includes the next-generation molecules to noncanonical sites, proteolysis targeting chimera (PROTAC), or noncanonical N-terminal domain (NTD)-binding of selective AR degraders (SARDs). A few lead compounds targeting each of these novel noncanonical sites or with SARD activity are discussed. Many of these ligands are still in preclinical development, and a few early clinical leads have emerged, but successful late-stage clinical data are still lacking. The breadth and diversity of targets provide hope that optimized noncanonical inhibitors and/or SARDs will be able to overcome antiandrogen-resistant CRPC.
Collapse
|
12
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
13
|
Management of men with metastatic castration-resistant prostate cancer following potent androgen receptor inhibition: a review of novel investigational therapies. Prostate Cancer Prostatic Dis 2020; 24:301-309. [PMID: 33168966 DOI: 10.1038/s41391-020-00299-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Androgen-targeted therapy and chemotherapy are currently the mainstay of treatment in metastatic castration resistant prostate cancer (mCRPC). When progression occurs despite these therapeutic strategies, additional FDA-approved treatment options are lacking. However, there is a vast amount of emerging data surrounding novel investigational therapies in this space. METHODS We reviewed and summarized the body of literature surrounding the current treatment options for mCRPC. Medline and Pubmed as well as abstracts from international congresses were utilized to gather relevant literature surrounding investigational treatment of mCRPC. We highlight the results of recent trials investigating the use of novel strategies to treat mCRPC. RESULTS Androgen-targeted therapy and chemotherapy will remain foundational in the treatment of mCRPC. However, heavily pretreated patients who have developed resistance may benefit from novel therapeutic strategies. The use of poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPi) has now gained FDA approval for patients with homologous recombination repair (HRR) gene mutations. Novel androgen receptor (AR) degraders and the use of radioligand therapy (RLT) with Lu-PSMA-617 (Lu-PSMA) are under investigation. Immune-directed therapies, including programmed death (PD-1) inhibition, bi-specific T-cell engager (BiTE) technology, and chimeric antigen receptor (CAR) T-cell therapy, have shown promise in early phase trials. Further understanding of resistance mechanisms has led to additional therapeutic targets, including targeting the PI3K-Akt-mTOR pathway and enhancer of zester homolog 2 (EZH2). CONCLUSIONS Based on our review of the literature, exciting new therapeutic strategies exist for the treatment of mCRPC. In particular, PARPi, AR degraders, PSMA-targeted therapies, immune-directed therapies, and agents targeting resistance mechanisms as monotherapy or in combination could improve patient outcomes. Additional data from randomized trials are necessary to understand the efficacy and tolerability of these treatment strategies.
Collapse
|
14
|
Badal S, Aiken W, Morrison B, Valentine H, Bryan S, Gachi A, Ragin C. Disparities in prostate cancer incidence and mortality rates: Solvable or not? Prostate 2020; 80:3-16. [PMID: 31702061 PMCID: PMC8378246 DOI: 10.1002/pros.23923] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is recognized as a disease possessing not only great variation in its geographic and racial distribution but also tremendous variation in its potential to cause morbidity and death and it, therefore, ought not to be considered a homogenous disease entity. Morbidity and death from PCa are disproportionately higher in men of African ancestry (MAA) who are generally observed to have more aggressive disease and worse outcomes following treatment compared to men of European ancestry (MEA). The higher rates of PCa among MAA relative to MEA appear to be multifactorial and related to inherent differences in biological aggressiveness; a continued lack of awareness of the disease and methods of prevention; a lower prevalence of screen-detected PCa; comparatively lower access to quality healthcare as well as systemic and institutionalized disparities in the administration of optimal care to MAA in developed countries such as the United States of America where high-quality care is available. Even when access to quality healthcare is assured in equal access settings, it appears that MAA still have worse outcomes after PCa treatment stage-for-stage and grade-for-grade compared to MEA, suggesting that, inherent racial, ethnic and biological differences are paramount in predicting poor outcomes. This review has explored the different contributing factors to the current disparities in PCa incidence and mortality rates with emphasis on the incongruence in how research has been conducted in understanding the disease towards developing therapies.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - William Aiken
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Belinda Morrison
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Sophia Bryan
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Andrew Gachi
- Department of pathology, Aga Khan University Hospital, 3 Avenue, Parklands, Nairobi, Kenya
| | - Camille Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- African Caribbean Cancer Consortium
| |
Collapse
|
15
|
Saranyutanon S, Srivastava SK, Pai S, Singh S, Singh AP. Therapies Targeted to Androgen Receptor Signaling Axis in Prostate Cancer: Progress, Challenges, and Hope. Cancers (Basel) 2019; 12:cancers12010051. [PMID: 31877956 PMCID: PMC7016833 DOI: 10.3390/cancers12010051] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the mostly commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer-related death affecting men in the United States. Moreover, it disproportionately affects the men of African origin, who exhibit significantly greater incidence and mortality as compared to the men of European origin. Since androgens play an important role in the growth of normal prostate and prostate tumors, targeting of androgen signaling has remained a mainstay for the treatment of aggressive prostate cancer. Over the years, multiple approaches have been evaluated to effectively target the androgen signaling pathway that include direct targeting of the androgens, androgen receptor (AR), AR co-regulators or other alternate mechanisms that impact the outcome of androgen signaling. Several of these approaches are currently in clinical practice, while some are still pending further development and clinical evaluation. This remarkable progress has resulted from extensive laboratory, pre-clinical and clinical efforts, and mechanistic learnings from the therapeutic success and failures. In this review, we describe the importance of androgen signaling in prostate cancer biology and advances made over the years to effectively target this signaling pathway. We also discuss emerging data on the resistance pathways associated with the failure of various androgen signaling- targeted therapies and potential of this knowledge for translation into future therapies for prostate cancer.
Collapse
Affiliation(s)
- Sirin Saranyutanon
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Correspondence: (S.K.S.); (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.)
| | - Sachin Pai
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA;
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (S.K.S.); (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.)
| |
Collapse
|
16
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
17
|
Naito M, Ohoka N, Shibata N, Tsukumo Y. Targeted Protein Degradation by Chimeric Small Molecules, PROTACs and SNIPERs. Front Chem 2019; 7:849. [PMID: 31921772 PMCID: PMC6914816 DOI: 10.3389/fchem.2019.00849] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Technologies that induce targeted protein degradation by small molecules have been developed recently. Chimeric small molecules such as Proteolysis Targeting Chimeras (PROTACs) and Specific and Non-genetic IAP-dependent Protein Erasers (SNIPERs), and E3 modulators such as thalidomides, hijack the cellular machinery for ubiquitylation, and the ubiquitylated proteins are subjected to proteasomal degradation. This has motivated drug development in industry and academia because "undruggable targets" can now be degraded by targeted protein degradation.
Collapse
Affiliation(s)
- Mikihiko Naito
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Nobumichi Ohoka
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Norihito Shibata
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshinori Tsukumo
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
18
|
Feng Q, He B. Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer. Front Oncol 2019; 9:858. [PMID: 31552182 PMCID: PMC6738163 DOI: 10.3389/fonc.2019.00858] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.
Collapse
Affiliation(s)
- Qin Feng
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
| | - Bin He
- Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
19
|
Beretta GL, Zaffaroni N. Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Front Chem 2019; 7:369. [PMID: 31192191 PMCID: PMC6546842 DOI: 10.3389/fchem.2019.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.
Collapse
Affiliation(s)
- Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
20
|
Dellis AE, Papatsoris AG. Perspectives on the current and emerging chemical androgen receptor antagonists for the treatment of prostate cancer. Expert Opin Pharmacother 2018; 20:163-172. [PMID: 30462924 DOI: 10.1080/14656566.2018.1548611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Prostate cancer is the most common cancer in men. Regardless of the initial treatment of localized disease, almost all patients develop castration resistant prostate cancer (CRPC). A better understanding of the molecular mechanisms behind castration resistance has led to the approval of novel oral androgen receptor (AR) antagonists, such as enzalutamide and apalutamide. Indeed, research has accelerated with numerous agents being studied for the management of CRPC. Areas covered: Herein, the authors present currently used and emerging AR antagonists for the treatment of CRPC. Emerging agents include darolutamide, EZN-4176, AZD-3514, and AZD-5312, apatorsen, galeterone, ODM-2014, TRC-253, BMS-641988, and proxalutamide. Expert opinion: Further understanding of the mechanisms leading to castration resistance in prostate cancer can reveal potential targets for the development of novel AR antagonists. Current novel agents are associated with modest clinical and survival benefit, while acquired resistance and safety issues are under continuous evaluation. The combination of AR antagonists used and ideal sequencing strategies are key tasks ahead, along with the investigation of molecular biomarkers for future personalized targeted therapies. In the future, the challenge will be to determine an AR antagonist with the best combination of outcome and tolerability.
Collapse
Affiliation(s)
- Athanasios E Dellis
- a 2nd Department of Surgery, Aretaieion Academic Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece.,b 1st Department of Urology, Laikon General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasios G Papatsoris
- c 2nd Department of Urology, Sismanogleion General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
21
|
Min A, Jang H, Kim S, Lee KH, Kim DK, Suh KJ, Yang Y, Elvin P, O'Connor MJ, Im SA. Androgen Receptor Inhibitor Enhances the Antitumor Effect of PARP Inhibitor in Breast Cancer Cells by Modulating DNA Damage Response. Mol Cancer Ther 2018; 17:2507-2518. [PMID: 30232143 DOI: 10.1158/1535-7163.mct-18-0234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is expressed in 60%-70% of breast cancers regardless of estrogen receptor status, and has been proposed as a therapeutic target in breast cancers that retain AR. In this study, the authors aimed to investigate a new treatment strategy using a novel AR inhibitor AZD3514 in breast cancer. AZD3514 alone had a minimal antiproliferative effect on most breast cancer cell lines irrespective of AR expression level, but it downregulated the expressions of DNA damage response (DDR) molecules, including ATM and chk2, which resulted in the accumulation of damaged DNA in some breast cancer cells. Furthermore, AZD3514 enhanced cellular sensitivity to a PARP inhibitor olaparib by blocking the DDR pathway in breast cancer cells. Furthermore, the downregulation of NKX3.1 expression in MDA-MB-468 cells by AZD3514 occurred in parallel with the suppression of ATM-chk2 axis activation, and the suppression of NKX3.1 by AZD3514 was found to result from AZD3514-induced TOPORS upregulation and a resultant increase in NKX3.1 degradation. The study shows posttranslational regulation of NKX3.1 via TOPORS upregulation by AZD3514-induced ATM inactivation-increased olaparib sensitivity in AR-positive and TOPORS-expressing breast cancer cells, and suggests the antitumor effect of AZD3514/olaparib cotreatment is caused by compromised DDR activity in breast cancer cell lines and in a xenograft model. These results provide a rationale for future clinical trials of olaparib/AR inhibitor combination treatment in breast cancer.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | - Koung Jin Suh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Yaewon Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Chungbuk University Hospital, Cheong-Ju, Korea
| | - Paul Elvin
- Oncology IMED, AstraZeneca UK Ltd., Cambridge, United Kingdom
| | - Mark J O'Connor
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca UK Ltd., Cambridge, United Kingdom
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Dalal K, Morin H, Ban F, Shepherd A, Fernandez M, Tam KJ, Li H, LeBlanc E, Lack N, Prinz H, Rennie PS, Cherkasov A. Small molecule-induced degradation of the full length and V7 truncated variant forms of human androgen receptor. Eur J Med Chem 2018; 157:1164-1173. [PMID: 30193215 DOI: 10.1016/j.ejmech.2018.08.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
The androgen receptor (AR) is a hormone-activated transcription factor that regulates the development and progression of prostate cancer (PCa) and represents one of the most well-established drug targets. Currently clinically approved small molecule inhibitors of AR, such as enzalutamide, are built upon a common chemical scaffold that interacts with the AR by the same mechanism of action. These inhibitors eventually fail due to the emergence of drug-resistance in the form of AR mutations and expression of truncated AR splice variants (e.g. AR-V7) that are constitutively active, signalling the progression of the castration-resistant state of the disease. The urgent need therefore continues for novel classes of AR inhibitors that can overcome drug resistance, especially since AR signalling remains important even in late-stage advanced PCa. Previously, we identified a collection of 10-benzylidene-10H-anthracen-9-ones that effectively inhibit AR transcriptional activity, induce AR degradation and display some ability to block recruitment of hormones to the receptor. In the current work, we extended the analysis of the lead compounds, and used methods of both ligand- and structure-based drug design to develop a panel of novel 10-benzylidene-10H-anthracen-9-one derivatives capable of suppressing transcriptional activity and protein expression levels of both full length- and AR-V7 truncated forms of human androgen receptor. Importantly, the developed compounds efficiently inhibited the growth of AR-V7 dependent prostate cancer cell-lines which are completely resistant to all current anti-androgens.
Collapse
Affiliation(s)
- Kush Dalal
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Helene Morin
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Ashley Shepherd
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Michael Fernandez
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Kevin J Tam
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Huifang Li
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Eric LeBlanc
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Nathan Lack
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Helge Prinz
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| | - Paul S Rennie
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada.
| |
Collapse
|
23
|
Wiedemann B, Weisner J, Rauh D. Chemical modulation of transcription factors. MEDCHEMCOMM 2018; 9:1249-1272. [PMID: 30151079 PMCID: PMC6097187 DOI: 10.1039/c8md00273h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) constitute a diverse class of sequence-specific DNA-binding proteins, which are key to the modulation of gene expression. TFs have been associated with human diseases, including cancer, Alzheimer's and other neurodegenerative diseases, which makes this class of proteins attractive targets for chemical biology and medicinal chemistry research. Since TFs lack a common binding site or structural similarity, the development of small molecules to efficiently modulate TF biology in cells and in vivo is a challenging task. This review highlights various strategies that are currently being explored for the identification and development of modulators of Myc, p53, Stat, Nrf2, CREB, ER, AR, HIF, NF-κB, and BET proteins.
Collapse
Affiliation(s)
- Bianca Wiedemann
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| | - Jörn Weisner
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| | - Daniel Rauh
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| |
Collapse
|
24
|
Maximov PY, Abderrahman B, Curpan RF, Hawsawi YM, Fan P, Jordan VC. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R83-R113. [PMID: 29162647 PMCID: PMC5771961 DOI: 10.1530/erc-17-0416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Prostate and breast cancer are the two cancers with the highest incidence in men and women, respectively. Here, we focus on the known biology of acquired resistance to antihormone therapy of prostate and breast cancer and compare laboratory and clinical similarities in the evolution of the disease. Laboratory studies and clinical observations in prostate and breast cancer demonstrate that cell selection pathways occur during acquired resistance to antihormonal therapy. Following sex steroid deprivation, both prostate and breast cancer models show an initial increased acquired sensitivity to the growth potential of sex steroids. Subsequently, prostate and breast cancer cells either become dependent upon the antihormone treatment or grow spontaneously in the absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers apoptosis. We draw parallels between acquired resistance in prostate and breast cancer to sex steroid deprivation. Clinical observations and patient trials confirm the veracity of the laboratory studies. We consider therapeutic strategies to increase response rates in clinical trials of metastatic disease that can subsequently be applied as a preemptive salvage adjuvant therapy. The goal of future advances is to enhance response rates and deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has the potential to control recurrence, reduce hospitalization, reduce healthcare costs and maintain a healthier population that contributes to society.
Collapse
Affiliation(s)
- Philipp Y Maximov
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - Balkees Abderrahman
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | | | - Yousef M Hawsawi
- Department of GeneticsKing Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ping Fan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - V Craig Jordan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| |
Collapse
|
25
|
Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, Fidock M, Hamrén B, Johnson A, March RE, Matcham J, Mettetal J, Nicholls DJ, Platz S, Rees S, Snowden MA, Pangalos MN. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 2018; 17:167-181. [DOI: 10.1038/nrd.2017.244] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Androgen Receptor and Beyond, Targeting Androgen Signaling in Castration-Resistant Prostate Cancer. Cancer J 2017; 22:326-329. [PMID: 27749325 DOI: 10.1097/ppo.0000000000000214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of metastatic castration-resistant prostate cancer (mCRPC) signals the terminal disease phase. The preceding hormone-dependent disease setting is effectively managed with androgen deprivation therapy. This foundation of treatment has a high rate of biochemical and clinical response and meaningful clinical benefit but is finite in duration as most cancers will progress to castration resistance. Historically, treatment for mCRPC entailed androgen receptor (AR) inhibitors (nilutamide, flutamide, bicalutamide), nonspecific steroidal biosynthesis inhibitors (ketoconazole, itraconazole), steroids (prednisone, diethylstilbesterol, dexamethasone), or palliative chemotherapy (mitoxantrone, estramustine), but none of these strategies impacted survival. Docetaxel was the first agent to demonstrate a survival improvement in this population, and other therapies followed (cabazitaxel, sipuleucel-T and radium-223). Understanding how prostate cancer cells grow in a systemic androgen-deprived environment further changed this clinical landscape. Deciphering what steroidogenic enzymes are overactive and required for testosterone/dihydrotestosterone synthesis has yielded therapies directed toward both adrenal and tumor-derived androgens. All androgens normally act through AR, and this fact remains true in mCRPC. The cancer accomplishes this by overexpressing the receptor (by genomic copy-number gains or RNA amplification), mutating it directly to lose its selectivity for testosterone/dihydrotestosterone, or selecting for splice variants that do not require ligand at all. These resistance mechanisms result in persistent AR-mediated signaling. Through this understanding, drugs targeting non-ligand-binding aspects of AR functioning (e.g., nuclear translocation, cofactor recruitment) have been developed. Finally, how AR interacts with other signaling pathway is being explored, and new combinations of targets to test are being proposed. Multiple compounds remain in various stages of clinical development based on targeting these resistance pathways, and hopefully, they will further the armamentarium for mCRPC. This review visits these mechanisms of resistance, how they are targeted, and remaining challenges in implementing these therapies into clinical practice among the other approved treatments.
Collapse
|
27
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
28
|
Targeted protein knockdown using small molecule degraders. Curr Opin Chem Biol 2017; 39:46-53. [PMID: 28605671 DOI: 10.1016/j.cbpa.2017.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
Small molecule probes of biological systems have traditionally been designed to bind to and inhibit the active sites of their protein targets. While this class of pharmacological agents has been broadened by the development of a small number of allosteric and protein-protein interaction (PPI) inhibitors, conventional drug design still excludes 'undruggable' proteins that are neither enzymes nor receptors. Recent years have seen the emergence of new classes of small molecules that can target hitherto undruggable proteins by recruiting the cellular proteostasis machinery to selectively tag them for degradation. These molecules, especially the class known as Proteolysis Targeting Chimera (PROTACs), represent a paradigm shift in chemical genetics, but their most tantalizing potential is as novel therapeutic agents. This review briefly summarizes the preclinical development of small molecule-based protein degraders, and describes the recent improvements in the technology that have positioned PROTACs on the cusp of entering the clinic.
Collapse
|
29
|
Monaghan AE, McEwan IJ. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target. Asian J Androl 2017; 18:687-94. [PMID: 27212126 PMCID: PMC5000789 DOI: 10.4103/1008-682x.181081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.
Collapse
Affiliation(s)
- Amy E Monaghan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
30
|
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Collapse
Affiliation(s)
| | - Craig M. Crews
- Departments of Molecular, Cellular & Developmental Biology; Chemistry; Pharmacology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
31
|
Abstract
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of disease-relevant proteins. Here, we review recent advances in the use of small molecules to degrade proteins in a selective manner. First, we highlight all-small-molecule techniques with direct clinical application. Second, we describe techniques that may find broader acceptance in the biomedical research community that require little or no synthetic chemistry. In addition to serving as innovative research tools, these new approaches to control intracellular protein levels offer the potential to develop novel therapeutics targeting proteins that are not currently pharmaceutically vulnerable.
Collapse
Affiliation(s)
- Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| |
Collapse
|
32
|
Continual reassessment method for dose escalation clinical trials in oncology: a comparison of prior skeleton approaches using AZD3514 data. BMC Cancer 2016; 16:703. [PMID: 27581751 PMCID: PMC5007718 DOI: 10.1186/s12885-016-2702-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background The continual reassessment method (CRM) requires an underlying model of the dose-toxicity relationship (“prior skeleton”) and there is limited guidance of what this should be when little is known about this association. In this manuscript the impact of applying the CRM with different prior skeleton approaches and the 3 + 3 method are compared in terms of ability to determine the true maximum tolerated dose (MTD) and number of patients allocated to sub-optimal and toxic doses. Methods Post-hoc dose-escalation analyses on real-life clinical trial data on an early oncology compound (AZD3514), using the 3 + 3 method and CRM using six different prior skeleton approaches. Results All methods correctly identified the true MTD. The 3 + 3 method allocated six patients to both sub-optimal and toxic doses. All CRM approaches allocated four patients to sub-optimal doses. No patients were allocated to toxic doses from sigmoidal, two from conservative and five from other approaches. Conclusions Prior skeletons for the CRM for phase 1 clinical trials are proposed in this manuscript and applied to a real clinical trial dataset. Highly accurate initial skeleton estimates may not be essential to determine the true MTD, and, as expected, all CRM methods out-performed the 3 + 3 method. There were differences in performance between skeletons. The choice of skeleton should depend on whether minimizing the number of patients allocated to suboptimal or toxic doses is more important. Trial registration NCT01162395, Trial date of first registration: July 13, 2010. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2702-6) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Mistry HB, Fabre MA, Young J, Clack G, Dickinson PA. Systems Pharmacology Modeling of Prostate-Specific Antigen in Patients With Prostate Cancer Treated With an Androgen Receptor Antagonist and Down-Regulator. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:258-63. [PMID: 27299938 PMCID: PMC4879474 DOI: 10.1002/psp4.12066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
First‐in‐human (FIH) studies with AZD3514, a selective androgen receptor (AR) down‐regulator, showed decreases of >30% in the prostate‐specific antigen (PSA) in some patients. A modeling approach was adopted to understand these observations and define the optimum clinical use hypothesis for AZD3514 for clinical testing. Initial empirical modeling showed that only baseline PSA correlated significantly with this biological response, whereas drug concentration did not. To identify the mechanistic cause of this observation, a mechanism‐based model was first developed, which described the effects of AZD3514 on AR protein and PSA mRNA levels in LNCaP cells with and without dihydrotestosterone (DHT). Second, the mechanism‐based model was linked to a population pharmacokinetic (PK) model; PSA effects of clinical doses were subsequently simulated under different clinical conditions. This model was used to adjust the design of the ongoing clinical FIH study and direct the backup program.
Collapse
Affiliation(s)
- H B Mistry
- Manchester Pharmacy School, The University of Manchester, UK
| | - M-A Fabre
- Quantitiative Clinical Pharmacology, AstraZeneca, Alderley Park, UK
| | - J Young
- Goosebrook Associates Ltd, The BioHub at Alderley Park Alderley Edge, UK
| | - G Clack
- Early Clinical Development, AstraZeneca, Alderley Park, UK
| | - P A Dickinson
- Seda Pharmaceutical Development Services, The BioHub at Alderley Park Alderley Edge, UK
| |
Collapse
|
34
|
Teply BA, Antonarakis ES. Novel mechanism-based therapeutics for androgen axis blockade in castration-resistant prostate cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:279-90. [PMID: 26978733 PMCID: PMC4896735 DOI: 10.1097/med.0000000000000254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Understanding the mechanisms by which castration-resistant prostate cancer (CRPC) progresses provides an opportunity to identify novel therapeutic strategies to treat this disease. This understanding has led to approaches to attack prostate cancer's androgen axis in unique ways. This review will examine the classes of novel therapies for androgen axis blockade in CRPC, with a particular focus on the unique characteristics of drugs in various stages of clinical development. RECENT FINDINGS The success of abiraterone and enzalutamide has stimulated multiple investigations into novel approaches to attack the androgen-signaling pathway. Drugs under development include cytochrome P17 inhibitors with 17,20-lyase specificity, androgen receptor antagonists that are active against mutated and constitutively active splice variant forms of the protein, androgen receptor degraders, and bromodomain/bromodomain extra-terminal inhibitors that prevent chromatin binding of activated receptors. The clinical development of several of these experimental agents is reviewed. SUMMARY Given the unique mechanisms of action for drugs in development, and the possibility that the novel agents may be active in the setting of common resistance mechanisms, treatment options for patients are likely to expand greatly in the coming years. Future studies should prioritize combinations of agents with unique mechanisms of action to optimize outcomes for patients, and should rely on precision-medicine approaches to target known molecular alterations.
Collapse
Affiliation(s)
| | - Emmanuel S. Antonarakis
- Corresponding author: Emmanuel S. Antonarakis, M.D., Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB1–1M45, Baltimore, MD 21287; tel 443-287-0553; fax 410-614-8397;
| |
Collapse
|
35
|
Yoo S, Choi SY, You D, Kim CS. New drugs in prostate cancer. Prostate Int 2016; 4:37-42. [PMID: 27358841 PMCID: PMC4916061 DOI: 10.1016/j.prnil.2016.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/21/2023] Open
Abstract
The standard primary treatment for advanced prostate cancer has been hormonal therapy since the 1940s. However, prostate cancer inevitably progresses to castration-resistant prostate cancer (CRPC) after a median duration of 18 months of androgen deprivation therapy. In patients with CRPC, docetaxel has been regarded as the standard treatment. However, survival advantages of docetaxel over other treatments are slim, and the need for new agents persists. In recent years, novel agents, including abiraterone, enzalutamide, cabazitaxel, radium-223, and sipuleucel-T, have been approved for the treatment of CRPC, and more such agents based on diverse mechanisms are under investigation or evaluation. In this article, the authors reviewed the current literature on recent advances in medical treatment of prostate cancer, especially CRPC. In addition, the authors elaborated on novel drugs for prostate cancer currently undergoing investigation and their mechanisms.
Collapse
Affiliation(s)
| | | | | | - Choung-Soo Kim
- Corresponding author. Department of Urology, Asan Medical Center, 388-1 Pungnap 2 dong, Songpa-gu, Seoul 138-736, South Korea.Department of UrologyAsan Medical Center388-1 Pungnap 2 dongSongpa-guSeoul138-736South Korea
| |
Collapse
|
36
|
Dellis A, Papatsoris AG. Phase I and II therapies targeting the androgen receptor for the treatment of castration resistant prostate cancer. Expert Opin Investig Drugs 2016; 25:697-707. [PMID: 26954621 DOI: 10.1517/13543784.2016.1162784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Prostate cancer is the most common cancer in elderly males. Regardless of the initial hormonal treatment in metastatic disease, a significant proportion of patients develop castration resistant prostate cancer (CRPC). A better understanding of the molecular mechanisms behind castration resistance has led to the approval of oral medications such as abiraterone acetate and enzalutamide. Relevant research is accelerated with numerous agents being tested for the management of CRPC. AREAS COVERED The authors present Phase I and II studies targeting the androgen receptor for the treatment of CRPC. Three groups of agents are identified according to the mechanism of action. These include the CYP-17 modulators (Orteronel, Galeterone, VT-464 and CFG-920), novel antiandrogens (Apatorsen, ARN-509, ODM-201, EZN-4176, AZD-3514) and bipolar androgen therapy. EXPERT OPINION Further understanding of the mechanisms leading to castration resistance in prostate cancer can reveal potential targets for the development of novel anti-cancer agents. Except for the development of novel antiandrogens and CYP-17 modulators, bipolar androgen therapy is an interesting therapeutic approach. The combinations of the novel agents tested in Phase I and II studies with established agents is another field of interest. The real challenge is to distinguish a novel anti-cancer agent with acceptable tolerability and the best outcome.
Collapse
Affiliation(s)
- Athanasios Dellis
- a University Department of Urology , Sismanoglio Hospital , Athens , Greece
| | - Athanasios G Papatsoris
- a University Department of Urology , Sismanoglio Hospital , Athens , Greece.,b Department of Urology, Addenbrooke's Hospital , Cambridge University Hospitals NHS , Cambridge , UK
| |
Collapse
|
37
|
Wadosky KM, Koochekpour S. Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer. Int J Biol Sci 2016; 12:409-26. [PMID: 27019626 PMCID: PMC4807161 DOI: 10.7150/ijbs.14090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Patients with localized prostate cancer (PCa) have several therapeutic options with good prognosis. However, survival of patients with high-risk, advanced PCa is significantly less than patients with early-stage, organ-confined disease. Testosterone and other androgens have been directly linked to PCa progression since 1941. In this review, we chronicle the discoveries that led to modern therapeutic strategies for PCa. Specifically highlighted is the biology of androgen receptor (AR), the nuclear receptor transcription factor largely responsible for androgen-stimulated and castrate-recurrent (CR) PCa. Current PCa treatment paradigms can be classified into three distinct but interrelated categories: targeting AR at pre-receptor, receptor, or post-receptor signaling. The continuing challenge of disease relapse as CR and/or metastatic tumors, destined to occur within three years of the initial treatment, is also discussed. We conclude that the success of PCa therapies in the future depends on targeting molecular mechanisms underlying tumor recurrence that still may affect AR at pre-receptor, receptor, and post-receptor levels.
Collapse
Affiliation(s)
| | - Shahriar Koochekpour
- ✉ Corresponding author: Dr. Shahriar Koochekpour, Departments of Cancer Genetics and Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA, Telephone: 716-845-3345; Fax: 716-845-1698;
| |
Collapse
|
38
|
Ciccarese C, Santoni M, Brunelli M, Buti S, Modena A, Nabissi M, Artibani W, Martignoni G, Montironi R, Tortora G, Massari F. AR-V7 and prostate cancer: The watershed for treatment selection? Cancer Treat Rev 2015; 43:27-35. [PMID: 26827690 DOI: 10.1016/j.ctrv.2015.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
Abstract
The androgen receptor (AR) plays a key role in progression to metastatic castration-resistant prostate cancer (mCRPC). Despite the recent progress in targeting persistent AR activity with the next-generation hormonal therapies (abiraterone acetate and enzalutamide), resistance to these agents limits therapeutic efficacy for many patients. Several explanations for response and/or resistance to abiraterone acetate and enzalutamide are emerging, but growing interest is focusing on importance of AR splice variants (AR-Vs) and in particular of AR-V7. Increasing evidences highlight the concept that variant expression could be used as a potential predictive biomarker and a therapeutic target in advanced prostate cancer. Therefore, understanding the mechanisms of treatment resistance or sensitivity can help to achieve a more effective management of mCRPC, increasing clinical outcomes and representing a promising and engaging area of prostate cancer research.
Collapse
Affiliation(s)
- Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Matteo Santoni
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostic, A.O.U.I., University of Verona, Verona, Italy
| | | | - Alessandra Modena
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Walter Artibani
- Urologic Clinic, Department of Oncological and Surgical Sciences, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Guido Martignoni
- Department of Pathology and Diagnostic, A.O.U.I., University of Verona, Verona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Francesco Massari
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy.
| |
Collapse
|
39
|
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015; 15:701-11. [PMID: 26563462 PMCID: PMC4771416 DOI: 10.1038/nrc4016] [Citation(s) in RCA: 1070] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.
Collapse
Affiliation(s)
- Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Vivek K Arora
- Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri 63130, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
40
|
Hathaway AR, Baker MK, Sonpavde G. Emerging agents for the therapy of advanced prostate cancer. Future Oncol 2015; 11:2775-87. [DOI: 10.2217/fon.15.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since 2010, multiple advances have been made in the field of metastatic castration-resistant prostate cancer including regulatory approvals for five new agents including androgen pathway inhibitors (enzalutamide, abiraterone acetate), immunotherapy (sipuleucel-T), cytotoxic chemotherapy (cabazitaxel) and radiopharmaceuticals (radium-223) that have improved overall survival in this patient population. Despite these advances, each therapy has only extended median survival by 3–5 months and data suggest substantial cross-resistance among them. Given these modest increments, there is a major role for the vigorous investigation of new drugs and predictive biomarkers to select suitable patients who will benefit from them. This review describes emerging promising agents and their ongoing clinical development.
Collapse
Affiliation(s)
- Amanda R Hathaway
- University of Alabama at Birmingham (UAB) Comprehensive Cancer Center, Birmingham, AL, USA
| | - Mary Katherine Baker
- University of Alabama at Birmingham (UAB) Comprehensive Cancer Center, Birmingham, AL, USA
| | - Guru Sonpavde
- University of Alabama at Birmingham (UAB) Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|