1
|
Cheng JX, Liu PF, Yang Y, Liu YY, Xia YQ. Functional role of TrIL-1β in Takifugu rubripes defense against Cryptocaryon irritans infection. Int J Biol Macromol 2024; 269:132167. [PMID: 38729479 DOI: 10.1016/j.ijbiomac.2024.132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1β (IL-1β), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1β (TrIL-1β) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1β protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1β may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1β promoted the expression of endogenous IL-1β, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1β group had less tissue damage compared with control groups of fish. IL-1β-small interfering RNA and IL-1β overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1β regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1β also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1β could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1β. They also suggested that recombinant TrIL-1β could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.
Collapse
Affiliation(s)
- Jian-Xin Cheng
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Xiangfu Laboratory, Jiashan 314100, China
| | - Peng-Fei Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China.
| | - Yi Yang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China
| | - Yan-Yun Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China
| | - Yu-Qing Xia
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
2
|
Qi H, Sun Z, Gao T, Yao Y, Wang Y, Li W, Wang X, Wang X, Liu D, Jiang JD. Genetic fusion of CCL11 to antigens enhances antigenicity in nucleic acid vaccines and eradicates tumor mass through optimizing T-cell response. Mol Cancer 2024; 23:46. [PMID: 38459592 PMCID: PMC10921619 DOI: 10.1186/s12943-024-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.
Collapse
Affiliation(s)
- Hailong Qi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
- Newish Biological R&D Center, Wuxi, China.
| | - Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Newish Biological R&D Center, Wuxi, China
| | - Tianle Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Yu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
- Newish Biological R&D Center, Wuxi, China
| | - Weiwei Li
- Newish Biological R&D Center, Wuxi, China
| | | | | | - Defang Liu
- Newish Biological R&D Center, Wuxi, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
3
|
Wang E, Liu T, Wu J, Wang K, Chen D, Geng Y, Huang X, Ouyang P, Lai W, Ai X. Molecular characterization, phylogenetic analysis and adjuvant effect of channel catfish interleukin-1βs against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2019; 87:155-165. [PMID: 30630049 DOI: 10.1016/j.fsi.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/30/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Channel catfish is one of the most extensively cultured species worldwide, which is widely used as a classical model for comparative immunology. Interleukin-1β (IL1β) is an immunoregulatory cytokine with the potential to enhance the immune response induced by vaccines in many animals. To characterize the molecular characterization and identify the immunoadjuvant role of channel catfish IL1β, molecular cloning, phylogenetic analysis, and expression of two IL1β genes were performed, the bioactivity of their recombinant proteins (rIL1β1 and rIL1β2) were detected in vitro and their adjuvant effects on a subunit vaccine encoding C5a peptidase (pSCPI) of Streptococcus iniae were evaluated. The results indicated that two IL1βs remained highly conserved possessing five conserved motifs compared with other fish IL1βs, although there were 28 nucleotide differences and 16 amino acid differences between channel catfish IL1β1 and IL1β2. Analysis of the ratios of nonsynonymous (dN) and synonymous (dS) substitutions revealed that fish IL1β genes were subjected to negative/purifying selection with global dN/dS ratios value 0.425. The results of adjuvant effect showed that compared with injection of pSCPI alone, co-injecting pSCPI with both rIL1β1 and rIL1β2 significantly enhanced antibody levels, serum bactericidal activity, lysozyme activity, alternative complement hemolytic activity, and the expression of endogenous IL1β and TNF-α in head kidney and spleen. Although vaccination with rIL1β1 or rIL1β2 failed to offer immunoprotection against S. iniae infection, the RPS (relative percent survival) of pSCPI+rIL1β1 and pSCPI+rIL1β2 groups were both higher than pSCPI alone (RPS, 50%), with 64.26% and 60.71%, respectively. Moreover, pSCPI+rIL1β1+rIL1β2 offered significantly higher (P < 0.05) immunoprotection (RPS, 75%) against S. iniae infection than pSCPI alone. Our present results not only enrich the molecular structure study of fish IL1βs but also signify that two recombinant channel catfish IL1βs can be used as potential adjuvants in a subunit vaccine model against bacterial infection, which are of profound importance to prevent and control bacterial disease in channel catfish.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jie Wu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Deng Z, Geng Y, Wang K, Yu Z, Yang PO, Yang Z, He C, Huang C, Yin L, He M, Tang L, Lai W. Adjuvant effects of interleukin-2 co-expression with VP60 in an oral vaccine delivered by attenuated Salmonella typhimurium against rabbit hemorrhagic disease. Vet Microbiol 2019; 230:49-55. [PMID: 30827404 DOI: 10.1016/j.vetmic.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/15/2023]
Abstract
Rabbit hemorrhagic disease (RHD) is a highly contagious infection that has caused significant damage to the rabbit industry since 1984. Inactivated vaccines, the currently used prevention measures, are effective in controlling RHD. However, these vaccines are derived from the livers of infected rabbits, which constitutes a major concern in terms of animal welfare and safety. Administration of DNA vaccines in collaboration with appropriate adjuvants, in particular, cytokines, to strengthen the immune response presents a novel optimization strategy to generate more efficient vaccines. In this study, the adjuvant effect of interleukin (IL)-2 co-expression with the VP60 gene in a DNA vaccine was evaluated. In total, four groups of 60 RHD virus (RHDV)-free rabbits (30 days old) were orally or subcutaneously administered recombinant SL7207-pVAX1-IL2-VP60, SL7207-pVAX1-VP60, SL7207-pVAX1 bacteria or the commercial inactive vaccine, and the induced immunity evaluated by challenge with the RHDV(Y8504/China) strain on day 56. The Recombinant SL7207-pVAX1-IL2-VP60 induced a higher level of antibodies than the vaccine SL7207-pVAX1-VP60 and inactivated vaccines to a significant extent. The concentrations of interleukin (IL)-4 were markedly higher than those in groups immunized with the naked or inactive vaccine alone. Furthermore, the fusion gene vaccine provided higher protection (93.33%) after virus challenge relative to immunization with the single gene (SL7207-pVAX1-VP60). The collective results indicate that recombinant SL7207-pVAX1-IL-2-VP60 bacteria exert enhanced protective effects against RHDV and therefore present a strong candidate as a potential vaccine. Moreover, IL-2 enhanced both humoral and cellular responses, highlighting the utility of rabbit IL-2 as an effective adjuvant.
Collapse
Affiliation(s)
- Zhaobin Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kaiyu Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zehui Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ping Ou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
5
|
Enhanced efficacy of DNA vaccination against botulinum neurotoxin serotype A by co-administration of plasmids encoding DC-stimulating Flt3L and MIP-3α cytokines. Biologicals 2016; 44:441-7. [DOI: 10.1016/j.biologicals.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/31/2023] Open
|
6
|
Wang E, Wang J, Long B, Wang K, He Y, Yang Q, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus Punctatus) against Streptococcus iniae. Sci Rep 2016; 6:29310. [PMID: 27373470 PMCID: PMC4931690 DOI: 10.1038/srep29310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Interleukin-8 (IL-8) as an important cytokine involving in inflammatory and immune response, has been studied as effective adjuvants for vaccines in mammals. However, there are fewer reports about the characterization and adjuvant effects of IL-8 in fish. In this study, cloning and sequence analysis of IL-8 coding region of channel catfish (Ictalurus punctatus) were conducted, mature IL-8(rtIL-8) was expressed and evaluated for its adjuvant effects on the immunoprotection of subunit vaccine encoding α-enolase (rENO) of Streptococcus iniae from several aspects in channel catfish. The results showed co-vaccination of rENO with rtIL-8 enhanced immune responses including humoral and cellular immunity, with higher relative percent survival(RPS,71.4%) compared with the moderate RPS of rENO alone(50%) against S. iniae infection at 4 week post vaccination. While rtIL-8 failed to maintain long-lasting immune protection, only with RPS of 26.67% in rENO + rtIL-8-vaccinated fish compared with that of rENO alone(20%) at 8 week, signifying that IL-8 hold promise for use as potential immunopotentiator in vaccines against bacterial infections in fish, whereas it is insufficient to extend the immunoprotection for long time, and further studies are required to understand the mechanisms of IL-8 used as an adjuvant and seek for more effective way to strengthen the adjuvanticity of IL-8.
Collapse
Affiliation(s)
- Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Long
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|