1
|
Ahmad M, Tahir M, Hong Z, Zia MA, Rafeeq H, Ahmad MS, Rehman SU, Sun J. Plant and marine-derived natural products: sustainable pathways for future drug discovery and therapeutic development. Front Pharmacol 2025; 15:1497668. [PMID: 39834812 PMCID: PMC11743463 DOI: 10.3389/fphar.2024.1497668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Plant- and marine-derived natural products are rich sources of bioactive compounds essential for drug discovery. These compounds contain complex mixtures of metabolites, which collectively contribute to their pharmacological properties. However, challenges arise in the isolation of individual bioactive compounds, owing to their intricate chemistry and low abundance in natural extracts. Despite these limitations, numerous plant and marine-derived compounds have achieved regulatory approval, particularly for treating cancer and infectious diseases. This review explores the therapeutic potential of plant and marine sources along with innovative extraction and isolation methods that support sustainable drug development. Future perspectives will highlight the role of responsible innovation, artificial intelligence, and machine learning in advancing drug discovery, underscoring the importance of continued research to meet global health needs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maleha Tahir
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zibin Hong
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hamza Rafeeq
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shaheez Ahmad
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saif ur Rehman
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Kyriazoglou A, Pagkali A, Kotsantis I, Economopoulou P, Kyrkasiadou M, Moutafi M, Gavrielatou N, Anastasiou M, Boulouta A, Pantazopoulos A, Giannakakou M, Digklia A, Psyrri A. Well-differentiated liposarcomas and dedifferentiated liposarcomas: Systemic treatment options for two sibling neoplasms. Cancer Treat Rev 2024; 125:102716. [PMID: 38492514 DOI: 10.1016/j.ctrv.2024.102716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Well-differentiated liposarcomas (WDLPS) and dedifferentiated liposarcomas (DDLPS) account for 60 % of all liposarcomas, reflecting the heterogeneity of this type of sarcoma. Genetically, both types of liposarcomas are characterized by the amplification of MDM2 and CDK4 genes, which indicates an important molecular event with diagnostic and therapeutic relevance. In both localized WDLPS and DDLPS of the retroperitoneum and the extremities, between 25 % and 30 % of patients have local or distant recurrence, even when perioperatively treated, with clear margins present. The systemic treatment of WDLPS and DDLPS remains a challenge, with anthracyclines as the gold standard for first-line treatment. Several regimens have been tested with modest results regarding their efficacy. Herein we discuss the systemic treatment options for WDLPS and DDLPS and review their reported clinical efficacy results.
Collapse
Affiliation(s)
- A Kyriazoglou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.
| | - A Pagkali
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - I Kotsantis
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - P Economopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M Kyrkasiadou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M Moutafi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - N Gavrielatou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M Anastasiou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A Boulouta
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A Pantazopoulos
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M Giannakakou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A Digklia
- Sarcoma Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| | - A Psyrri
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|
3
|
Khoury R, Assi T, Ibrahim R, Ibrahim T, Verret B, Henon C, Bahleda R, Le Cesne A. A Comprehensive Review on the Role of Lurbinectedin in Soft Tissue Sarcomas. Curr Treat Options Oncol 2024; 25:176-190. [PMID: 38324075 DOI: 10.1007/s11864-024-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
OPINION STATEMENT Soft tissue sarcoma (STS), a substantial group of aggressive and rare tumors with tissue heterogeneity, is infrequently represented in clinical trials with an urgent necessity for newer treatment options. Lurbinectedin, an analog of trabectedin, is currently approved, in various countries, as a single agent, for the treatment of patients with relapsed small cell lung cancer (SCLC). However, preclinical and phase I and phase II trials have demonstrated the efficacy of lurbinectedin in different tumor types, including STS. The better understanding of the pathophysiology and evolution of STS as well as the mechanism of action of lurbinectedin in addition to the available data regarding the activity of this drug in this subset of patients will pave the way to newer therapeutic options and strategies.
Collapse
Affiliation(s)
- Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| | - Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France.
- Sarcoma Unit, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France.
| | - Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| | - Tony Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| | - Benjamin Verret
- Sarcoma Unit, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| | - Clemence Henon
- Sarcoma Unit, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| | - Ratislav Bahleda
- Sarcoma Unit, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
- Sarcoma Unit, Gustave Roussy Cancer Campus, 114, Rue Edouard Vaillant, Villejuif, France
| |
Collapse
|
4
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
5
|
Tummala T, Sevilla Uruchurtu AS, Cruz ADL, Huntington KE, George A, Liguori NR, Zhang L, Zhou L, Abbas AE, Azzoli CG, El-Deiry WS. Preclinical Synergistic Combination Therapy of Lurbinectedin with Irinotecan and 5-Fluorouracil in Pancreatic Cancer. Curr Oncol 2023; 30:9611-9626. [PMID: 37999116 PMCID: PMC10670398 DOI: 10.3390/curroncol30110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a poor prognosis. Novel chemotherapeutics in pancreatic cancer have shown limited success, illustrating the urgent need for new treatments. Lurbinectedin (PM01183; LY-01017) received FDA approval in 2020 for metastatic small cell lung cancer on or after platinum-based chemotherapy and is currently undergoing clinical trials in a variety of tumor types. Lurbinectedin stalls and degrades RNA Polymerase II and introduces breaks in DNA, causing subsequent apoptosis. We now demonstrate lurbinectedin's highly efficient killing of human-derived pancreatic tumor cell lines PANC-1, BxPC-3, and HPAF-II as a single agent. We further demonstrate that a combination of lurbinectedin and irinotecan, a topoisomerase I inhibitor with FDA approval for advanced pancreatic cancer, results in the synergistic killing of pancreatic tumor cells. Western blot analysis of combination therapy indicates an upregulation of γH2AX, a DNA damage marker, and the Chk1/ATR pathway, which is involved in replicative stress and DNA damage response. We further demonstrate that the triple combination between lurbinectedin, irinotecan, and 5-fluorouracil (5-FU) results in a highly efficient killing of tumor cells. Our results are developing insights regarding molecular mechanisms underlying the therapeutic efficacy of a novel combination drug treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Tej Tummala
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Ashley Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
| | - Leiqing Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
| | - Abbas E. Abbas
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
- Department of Surgery, Brown University, Providence, RI 02912, USA
| | - Christopher G. Azzoli
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI 02903, USA
| |
Collapse
|
6
|
Gadducci A, Cosio S. Trabectedin and lurbinectedin: Mechanisms of action, clinical impact, and future perspectives in uterine and soft tissue sarcoma, ovarian carcinoma, and endometrial carcinoma. Front Oncol 2022; 12:914342. [PMID: 36408147 PMCID: PMC9671549 DOI: 10.3389/fonc.2022.914342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The ecteinascidins trabectedin and lurbinectedin are very interesting antineoplastic agents, with a favorable toxicity profile and peculiar mechanisms of action. These drugs form adducts in the minor groove of DNA, which produce single-strand breaks (SSBs) and double-strand breaks (DSBs) and trigger a series of events resulting in cell cycle arrest and apoptosis. Moreover, the ecteinascidins interact with the tumor microenvironment, reduce the number of tumor-associated macrophages, and inhibit the secretion of cytokines and chemokines. Trabectedin has been approved by the Federal Drug Administration (FDA) for patients with unresectable or metastatic liposarcoma or leiomyosarcoma who received a prior anthracycline-based regimen. Moreover, trabectedin in combination with pegylated liposomal doxorubicin (PLD) has been approved in the European Union for the treatment of platinum-sensitive recurrent ovarian cancer. Lurbinectedin has been approved by the FDA for patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. The review assesses in vitro and in vivo experimental studies on the antineoplastic effects of both ecteinascidins as well as the clinical trials on the activity of trabectedin in uterine sarcoma and ovarian carcinoma and of lurbinectedin in ovarian carcinoma and endometrial carcinoma.
Collapse
|
7
|
De Sanctis R, Jacobs F, Benvenuti C, Gaudio M, Franceschini R, Tancredi R, Pedrazzoli P, Santoro A, Zambelli A. From seaside to bedside: Current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol 2022; 13:909566. [PMID: 36160422 PMCID: PMC9495264 DOI: 10.3389/fphar.2022.909566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
To date, only few marine natural compounds have been proved to be active in breast cancer (BC). The main marine-derived drugs that have been studied for the treatment of BC are tubulin-binding agents (eribulin and plocabulin), DNA-targeting agents (cytarabine and minor groove binders—trabectedin and lurbinectedin) and Antibody-Drug Conjugates (ADCs). Notably, eribulin is the only approved cytotoxic drug for the treatment of advanced BC (ABC), while cytarabine has a limited indication in case of leptomeningeal diffusion of the disease. Also plocabulin showed limited activity in ABC but further research is needed to define its ultimate potential role. The available clinical data for both trabectedin and lurbinectedin are of particular interest in the treatment of BRCA-mutated tumours and HR deficient disease, probably due to a possible immune-mediated mechanism of action. One of the most innovative therapeutic options for the treatment of BC, particularly in TNBC and HER2-positive BC, are ADCs. Some of the ADCs were developed using a specific marine-derived cytotoxic molecule as payload called auristatin. Among these, clinical data are available on ladiratuzumab vedotin and glembatumumab vedotin in TNBC, and on disitamab vedotin and ALT-P7 in HER2-positive patients. A deeper knowledge of the mechanism of action and of the potential predictive factors for response to marine-derived drugs is important for their rational and effective use, alone or in combination. In this narrative review, we discuss the role of marine-derived drugs for the treatment of BC, although most of them are not approved, and the opportunities that could arise from the potential treasure trove of the sea for novel BC therapeutics.
Collapse
Affiliation(s)
- Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Flavia Jacobs
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Chiara Benvenuti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mariangela Gaudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raul Franceschini
- Department of Chemistry, Università degli studi di Milano Statale, Milan, Italy
| | - Richard Tancredi
- Medical Oncology Unit, ASST Melegnano Martesana, Ospedale A. Uboldo, Milan, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- *Correspondence: Alberto Zambelli,
| |
Collapse
|
8
|
Allavena P, Belgiovine C, Digifico E, Frapolli R, D'Incalci M. Effects of the Anti-Tumor Agents Trabectedin and Lurbinectedin on Immune Cells of the Tumor Microenvironment. Front Oncol 2022; 12:851790. [PMID: 35299737 PMCID: PMC8921639 DOI: 10.3389/fonc.2022.851790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immune cells in the tumor micro-environment (TME) establish a complex relationship with cancer cells and may strongly influence disease progression and response to therapy. It is well established that myeloid cells infiltrating tumor tissues favor cancer progression. Tumor-Associated Macrophages (TAMs) are abundantly present at the TME and actively promote cancer cell proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Active research of the last decade has provided novel therapeutic approaches aimed at depleting TAMs and/or at reprogramming their functional activities. We reported some years ago that the registered anti-tumor agent trabectedin and its analogue lurbinectedin have numerous mechanisms of action that also involve direct effects on immune cells, opening up new interesting points of view. Trabectedin and lurbinectedin share the unique feature of being able to simultaneously kill cancer cells and to affect several features of the TME, most notably by inducing the rapid and selective apoptosis of monocytes and macrophages, and by inhibiting the transcription of several inflammatory mediators. Furthermore, depletion of TAMs alleviates the immunosuppressive milieu and rescues T cell functional activities, thus enhancing the anti-tumor response to immunotherapy with checkpoint inhibitors. In view of the growing interest in tumor-infiltrating immune cells, the availability of antineoplastic compounds showing immunomodulatory effects on innate and adaptive immunity deserves particular attention in the oncology field.
Collapse
Affiliation(s)
- Paola Allavena
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Cristina Belgiovine
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Elisabeth Digifico
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Department Immunology, IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
9
|
Musacchio L, Cicala CM, Salutari V, Camarda F, Carbone MV, Ghizzoni V, Giudice E, Nero C, Perri MT, Ricci C, Tronconi F, Scambia G, Lorusso D. Preclinical and Clinical Evidence of Lurbinectedin in Ovarian Cancer: Current Status and Future Perspectives. Front Oncol 2022; 12:831612. [PMID: 35280728 PMCID: PMC8904915 DOI: 10.3389/fonc.2022.831612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Lurbinectedin is an antitumor agent belonging to the natural marine-based tetrahydroisoquinoline family which has shown very promising clinical activity with a favorable safety profile in many types of cancer. Preclinical evidence showed that lurbinectedin inhibits active transcription and binds to GC-rich sequences, leading to irreversible degradation of RNA polymerase II and generation of single- and double-strand DNA breaks and, as a consequence, apoptosis of tumor cells. In addition, lurbinectedin has demonstrated modulation of the tumor microenvironment and activity against cancer cells harboring homologous recombination DNA repair deficiency. Although considerable improvements have been made in the treatment of epithelial ovarian cancer, most patients with advanced disease experience recurrence with a dismal prognosis due to chemotherapy (mainly platinum) resistance. Platinum-resistant/refractory ovarian cancer remains a difficult-to-treat setting of disease, and currently, the exploration of new therapeutic approaches represents a main field of interest. Although the CORAIL phase III study did not meet its primary endpoint, the results suggest that lurbinectedin might be a valid alternative for patients that have exhausted therapeutic options. This article will focus on the clinical evidence, the most recent investigations, and the future perspective regarding the use of lurbinectedin in ovarian cancer.
Collapse
Affiliation(s)
- Lucia Musacchio
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carlo Maria Cicala
- Comprehensive Cancer Center, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | - Vanda Salutari
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Floriana Camarda
- Comprehensive Cancer Center, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | - Maria Vittoria Carbone
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Viola Ghizzoni
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Giudice
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Camilla Nero
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Perri
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Caterina Ricci
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Giovanni Scambia
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenica Lorusso
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
10
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Baena J, Modrego A, Zeaiter A, Kahatt C, Alfaro V, Jimenez-Aguilar E, Mazarico JM, Paz-Ares L. Lurbinectedin in the treatment of relapsed small cell lung cancer. Future Oncol 2021; 17:2279-2289. [PMID: 33736462 DOI: 10.2217/fon-2020-1212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lurbinectedin is a marine-derived drug that inhibits transcription, a process that is frequently dysregulated in small cell lung cancer. The activity of lurbinectedin has been studied in many solid tumors, showing not only promising results but also a favorable safety profile. In relapsed small cell lung cancer, the drug has shown encouraging activity both as a single agent and in combination with doxorubicin, paclitaxel or irinotecan. The USA FDA has recently granted accelerated approval to lurbinectedin monotherapy in this setting. This article provides an update on available data and ongoing studies of lurbinectedin in small cell lung cancer, including Phase I combination trials, the basket Phase II trial and the ATLANTIS Phase III trial.
Collapse
Affiliation(s)
- Javier Baena
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.,H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Madrid, 28029, Spain
| | - Andrea Modrego
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Ali Zeaiter
- Clinical Development, PharmaMar, Madrid, 28770, Spain
| | - Carmen Kahatt
- Clinical Development, PharmaMar, Madrid, 28770, Spain
| | | | - Elizabeth Jimenez-Aguilar
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.,H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Madrid, 28029, Spain
| | - Jose María Mazarico
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.,H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Madrid, 28029, Spain
| | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.,H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Madrid, 28029, Spain.,Cancer Networking Biomedical Research Center, Madrid, 28029, Spain.,Faculty of Medicine, Complutense University, Madrid, 28040, Spain
| |
Collapse
|
12
|
Zhao YD, Muhetaerjiang M, An HW, Fang X, Zhao Y, Wang H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2020; 268:120552. [PMID: 33307365 DOI: 10.1016/j.biomaterials.2020.120552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy, leveraging the host's coordinated immune system to fight against tumor has been clinically validated. However, the modest response owing to the multiple ways of tumor immune evasion is one of the challenges in cancer immunotherapy. Tumor associated macrophages (TAMs), as a major component of the leukocytes infiltrating in all tumors, play crucial roles in driving cancer initiation, progress and metastasis via multiple mechanisms such as mediating chronic inflammation, promoting angiogenesis, taming protective immune responses, and supporting migration and intravasation. TAMs targeted therapeutics have achieved remarkable successes in clinical trials mostly through the use of small-molecule agents and antibodies. However, efforts for further application have met with challenges of limited efficacy and safety. Nanomaterials can provide versatile approaches to realize the superior spatiotemporal control over immunomodulation to amplify immune responses, ultimately enhancing the therapeutic benefits and reducing toxicity. Here, the potential drugs used in TAM-centered cancer treatment in clinic are summarized and the recent advances of TAMs targeted nanomedicines in this filed are highlighted. More importantly, we focus on how nanomedicine can exert their advantages in spatial and temporal control of immunomodulation.
Collapse
Affiliation(s)
- Yong-Dan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Pharmacy, Shanxi Medical University, Shanxi, 030009, PR China
| | - Mamuti Muhetaerjiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
13
|
Saltos A, Shafique M, Chiappori A. Update on the Biology, Management, and Treatment of Small Cell Lung Cancer (SCLC). Front Oncol 2020; 10:1074. [PMID: 32766139 PMCID: PMC7378389 DOI: 10.3389/fonc.2020.01074] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Small-cell lung cancer (SCLC) accounts for 13-15% of all new lung cancer cases in the US. The tumor has a tendency to disseminate early resulting in 80-85% of patients being diagnosed with extensive disease (ES-SCLC). Chemotherapy has provided SCLC patients considerable survival benefits over the past three decades. Nonetheless, most patients relapse and rarely survive beyond 2 years. Despite consistent overall response rates of ≥50%, until recently, median survival times and 2-year survivals only ranged between 7-10 months and 10-20%, respectively. Several chemotherapy agents possess activity against SCLC, both, as single agents and in combinations but etoposide-platinum emerged as the preferred first line regimen. Upon relapse, many patients remain candidates for additional therapy. However, the sensitivity of relapsed SCLC to further therapies is markedly reduced and dependent upon the level and duration of response to the initial treatment (platinum-sensitive vs. resistant relapse). Multiple factors suggest a therapeutic role for immunotherapy in SCLC: SCLC has been associated with immune-mediated paraneoplastic processes (cerebellar degeneration, limbic encephalitis, and Lambert-Eaton syndrome) and patients presenting with these paraneoplastic syndromes have shown more favorable outcomes, suggesting an underlying immune response mechanism.Comprehensive genomic profiling of SCLC indicates that the majority lack functional p53 (90%) and Rb1 (65%). These universal genetic aberrations facilitate poor genomic stability, thus perpetuating the generation of tumor associated antigens, amenable to targeting with immunotherapy.SCLC has one of the highest mutational loads, likely a reflection of the myriad of insults inflicted by smoking-related carcinogens. The relationship between tumor mutational load and response to immune checkpoint inhibitors has been established in multiple solid tumors, including preliminary results in relapsed SCLC. In this manuscript, we review the early (some failed and discontinued, some partly successful, and still ongoing) attempts to incorporate immunotherapy (particularly vaccine based approaches) to the treatment of SCLC, and the latest attempts (mostly incorporating the use of checkpoint inhibitors), including those with favorable but preliminary results (CheckMate 032, Keynote 028 and 158), and those with more definitive positive (iMpower 133 and CASPIAN) and negative (CheckMate 331 and 451) results.
Collapse
Affiliation(s)
| | | | - Alberto Chiappori
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
14
|
Fernandez-Teruel C, Gonzalez I, Trocóniz IF, Lubomirov R, Soto A, Fudio S. Population-Pharmacokinetic and Covariate Analysis of Lurbinectedin (PM01183), a New RNA Polymerase II Inhibitor, in Pooled Phase I/II Trials in Patients with Cancer. Clin Pharmacokinet 2020; 58:363-374. [PMID: 30090974 DOI: 10.1007/s40262-018-0701-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Lurbinectedin is an inhibitor of RNA polymerase II currently under clinical development for intravenous administration as a single agent and in combination with other anti-tumor agents for the treatment of several tumor types. The objective of this work was to develop a population-pharmacokinetic model in this patient setting and to elucidate the main predictors to guide the late stages of development. METHODS Data from 443 patients with solid and hematologic malignancies treated in six phase I and three phase II trials with lurbinectedin as a single agent or combined with other agents were included in the analysis. The potential influence of demographic, co-treatment, and laboratory characteristics on lurbinectedin pharmacokinetics was evaluated. RESULTS The final population-pharmacokinetic model was an open three-compartment model with linear distribution and linear elimination from the central compartment. Population estimates for total plasma clearance, and apparent volume at steady state were 11.2 L/h and 438 L, respectively. Inter-individual variability was moderate for all parameters, ranging from 20.9 to 51.2%. High α-1-acid glycoprotein and C-reactive protein, and low albumin reduced clearance by 28, 20, and 20%, respectively. Co-administration of cytochrome P450 3A inhibitors reduced clearance by 30%. Combinations with other anti-tumor agents did not modify the pharmacokinetics of lurbinectedin significantly. CONCLUSION The population-pharmacokinetic model indicated neither a dose nor time dependency, and no clinically meaningful pharmacokinetic differences were found when co-administered with other anticancer agents. A chronic inflammation pattern characterized by decreased albumin and increased C-reactive protein and α-1-acid glycoprotein levels led to high lurbinectedin exposure. Co-administration of cytochrome P450 3A inhibitors increased lurbinectedin exposure.
Collapse
Affiliation(s)
- Carlos Fernandez-Teruel
- Department of Clinical Pharmacology, PharmaMar, S.A., Avda. de los Reyes, 1 Colmenar Viejo, 28770, Madrid, Spain.
| | - Ignacio Gonzalez
- Department of Clinical Pharmacology, PharmaMar, S.A., Avda. de los Reyes, 1 Colmenar Viejo, 28770, Madrid, Spain
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Rubin Lubomirov
- Department of Clinical Pharmacology, PharmaMar, S.A., Avda. de los Reyes, 1 Colmenar Viejo, 28770, Madrid, Spain
| | - Arturo Soto
- Department of Clinical Pharmacology, PharmaMar, S.A., Avda. de los Reyes, 1 Colmenar Viejo, 28770, Madrid, Spain
| | - Salvador Fudio
- Department of Clinical Pharmacology, PharmaMar, S.A., Avda. de los Reyes, 1 Colmenar Viejo, 28770, Madrid, Spain
| |
Collapse
|
15
|
Kauffmann-Guerrero D, Huber RM. Orphan Drugs in Development for the Treatment of Small-Cell Lung Cancer: Emerging Data on Lurbinectedin. LUNG CANCER-TARGETS AND THERAPY 2020; 11:27-31. [PMID: 32184690 PMCID: PMC7060031 DOI: 10.2147/lctt.s239223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023]
Abstract
Lung cancer is the leading cause of death of all cancer entities and small-cell lung cancer (SCLC) is the most malignant subtype. Despite good initial response to chemotherapy, many patients relapse early and success of second line treatment remains poor. For years, no relevant improvement of second line treatment has been achieved in the field of SCLC. Lurbinectedin, a novel RNA-polymerase II inhibitor has shown promising results in pretreated SCLC patients as single agent and in combination with other chemotherapeutic drugs leading to an orphan drug designation from the FDA. This article reviews the current data on this emerging substance and its impact on the treatment of SCLC.
Collapse
Affiliation(s)
- Diego Kauffmann-Guerrero
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rudolf Maria Huber
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V and Thoracic Oncology Centre Munich, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
16
|
Cote GM, Choy E, Chen T, Marino-Enriquez A, Morgan J, Merriam P, Thornton K, Wagner AJ, Nathenson MJ, Demetri G, George S. A phase II multi-strata study of lurbinectedin as a single agent or in combination with conventional chemotherapy in metastatic and/or unresectable sarcomas. Eur J Cancer 2019; 126:21-32. [PMID: 31896519 DOI: 10.1016/j.ejca.2019.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023]
Abstract
Chemotherapy objective response rates (ORRs) in metastatic soft tissue sarcoma (STS) are typically 20-40% with median progression-free survival (PFS) less than 6 months. Lurbinectedin is a new anticancer agent under investigation. The primary objective of this three-arm, phase II study was to determine the disease control rate (DCR = ORR + stable disease [SD]) at 24 weeks of lurbinectedin alone or with chemotherapy in STS. Eligible patients included adults with ≤2 prior cytotoxic therapies. Study cohorts were: stratum A (StrA; anthracycline-naive), lurbinectedin/doxorubicin; stratum B (StrB; prior anthracycline), lurbinectedin/gemcitabine; stratum C (StrC; prior anthracycline/gemcitabine) lurbinectedin monotherapy. Each stratum was analysed separately by Simon two-stage design. Forty-two patients were accrued (StrA = 20, StrB = 10, StrC = 12) including leiomyosarcoma [LMS] (n = 20), synovial sarcoma [SS](n = 4), malignant peripheral nerve sheath tumour (n = 3) and other STS histologies (n = 15). For StrA there were seven partial responses (PR) plus one stable disease (SD) at 24 weeks. For StrB, two patients met the 24-week DCR including one PR (leiomyosarcoma) and one SD (desmoplastic small round cell tumour [DSRCT]). StrB did not continue to the second stage. In StrC, no patients met the primary end-point. Median progression-free survival (PFS) was: StrA = 4.2 months (90% CI 1.4-7.8), StrB = 1.7 months (90% confidence interval (CI) 1.0-7.4), and StrC = 1.3 months (90% CI 1.1-3.0). Lurbinectedin as a single agent or with chemotherapy was well tolerated with haematologic adverse events (AE's) as the most common toxicity. There were no treatment-related deaths. The combination of lurbinectedin/doxorubicin reached the DCR end-point with seven PR and one patient with SD (ORR 35.0%, 24-week DCR 40.0%). Evidence of drug benefit was seen in leiomyosarcoma, dedifferentiated liposarcoma (DDLS), myxoid liposarcoma (MLS), synovial sarcoma (SS), and desmoplastic small round cell tumour (DSRCT). TRIAL REGISTRATION: clinicaltrials.gov; NCT02448537.
Collapse
Affiliation(s)
- Gregory M Cote
- Division of Hematology and Oncology, Department of Medicine, Boston, MA, USA.
| | - Edwin Choy
- Division of Hematology and Oncology, Department of Medicine, Boston, MA, USA
| | - Tianqi Chen
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adrian Marino-Enriquez
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey Morgan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Priscilla Merriam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine Thornton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J Nathenson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
17
|
Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12:76. [PMID: 31300030 PMCID: PMC6626377 DOI: 10.1186/s13045-019-0760-3] [Citation(s) in RCA: 957] [Impact Index Per Article: 159.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
|
18
|
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019. [PMID: 31300030 DOI: 10.1186/s13045-019-0760-3.pmid:31300030;pmcid:pmc6626377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Jianxin Xu
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China.
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MS-1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Benton CB, Chien KS, Tefferi A, Rodriguez J, Ravandi F, Daver N, Jabbour E, Jain N, Alvarado Y, Kwari M, Pierce S, Maiti A, Hornbaker M, Santos MA, Martinez S, Siguero M, Zblewski D, Al-Kali A, Hogan WJ, Kantarjian H, Pardanani A, Garcia-Manero G. Safety and tolerability of lurbinectedin (PM01183) in patients with acute myeloid leukemia and myelodysplastic syndrome. Hematol Oncol 2018; 37:96-102. [PMID: 30153704 DOI: 10.1002/hon.2557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022]
Abstract
Trabectedin is an FDA-approved DNA minor groove binder that has activity against translocation-associated sarcomas. Lurbinectedin is a next-generation minor groove binder with preclinical activity against myeloid leukemia cells. A dose-finding phase 1 clinical trial was performed in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) with further assessment of safety and tolerability. Forty-two patients with relapsed/refractory AML/MDS received lurbinectedin administered as a 1-hour intravenous infusion in a 3 + 3 study design. Two dosing schedules were used: 3.5, 5, 7, or 6 mg on days 1 and 8 or 2, 3, 1, or 1.5 mg for 3 consecutive days on days 1 to 3. Three patients experienced dose-limiting toxicities of rhabdomyolysis (grade 4), hyperbilirubinemia (grade 3), and oral herpes (grade 3) with the day 1 and 8 schedule. Otherwise, adverse events mainly consisted of gastrointestinal manifestations (n = 11), febrile neutropenia/infections (n = 4), pulmonary toxicity (n = 2), and renal failure (n = 2). The most common laboratory abnormalities observed were an increase in creatinine (93%) and anemia, neutropenia, and thrombocytopenia (100%). Overall, 33 of 42 patients (79%) had reduction in blasts in peripheral blood or bone marrow. One patient achieved a partial response and 2 patients a morphologic leukemia-free state. Most (n = 30, 71%) were discontinued due to progressive disease. Early deaths occurred from disease-related causes that were not attributable to lurbinectedin. Four patients with a chromosome 11q21-23 abnormality had significantly greater bone marrow blast reduction than those without such abnormality, with decrease of 31 ± 14% (n = 4) vs 8 ± 8% (n = 16), respectively (P = .04). Overall, lurbinectedin was safe and tolerated using the schedules and dose levels tested. While no sustained remissions were observed, single-agent lurbinectedin was transiently leukemia suppressive for some patients.
Collapse
Affiliation(s)
- Christopher B Benton
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly S Chien
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monica Kwari
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisa Hornbaker
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margarida A Santos
- The University of Texas Health Sciences Center, Department of Epigenetics and Molecular Carcinogenesis, Houston, TX, USA
| | | | | | | | | | | | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
20
|
Review of Chromatographic Bioanalytical Assays for the Quantitative Determination of Marine-Derived Drugs for Cancer Treatment. Mar Drugs 2018; 16:md16070246. [PMID: 30041477 PMCID: PMC6071085 DOI: 10.3390/md16070246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The discovery of marine-derived compounds for the treatment of cancer has seen a vast increase over the last few decades. Bioanalytical assays are pivotal for the quantification of drug levels in various matrices to construct pharmacokinetic profiles and to link drug concentrations to clinical outcomes. This review outlines the different analytical methods that have been described for marine-derived drugs in cancer treatment hitherto. It focuses on the major parts of the bioanalytical technology, including sample type, sample pre-treatment, separation, detection, and quantification.
Collapse
|
21
|
Ascites interferes with the activity of lurbinectedin and trabectedin: Potential role of their binding to alpha 1-acid glycoprotein. Biochem Pharmacol 2017; 144:52-62. [DOI: 10.1016/j.bcp.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023]
|
22
|
Belgiovine C, Bello E, Liguori M, Craparotta I, Mannarino L, Paracchini L, Beltrame L, Marchini S, Galmarini CM, Mantovani A, Frapolli R, Allavena P, D'Incalci M. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br J Cancer 2017; 117:628-638. [PMID: 28683469 PMCID: PMC5572168 DOI: 10.1038/bjc.2017.205] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 01/13/2023] Open
Abstract
Background: Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells. Methods: In this study we investigated whether lurbinectedin has the ability to modulate the inflammatory microenvironment and the viability of myeloid cells in tumour-bearing mice. Results: Administration of lurbinectedin significantly and selectively decreased the number of circulating monocytes and, in tumour tissues, that of macrophages and vessels. Similar findings were observed when a lurbinectedin-resistant tumour variant was used, indicating a direct effect of lurbinectedin on the tumour microenviroment. In vitro, lurbinectedin induced caspase-8-dependent apoptosis of human purified monocytes, whereas at low doses it significantly inhibited the production of inflammatory/growth factors (CCL2, CXCL8 and VEGF) and dramatically impaired monocyte adhesion and migration ability. These findings were supported by the strong inhibition of genes of the Rho-GTPase family in lurbinectedin-treated monocytes. Conclusions: The results illustrate that lurbinectedin affects at multiple levels the inflammatory microenvironment by acting on the viability and functional activity of mononuclear phagocytes. These peculiar effects, combined with its intrinsic activity against cancer cells, make lurbinectedin a compound of particular interest in oncology.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Ezia Bello
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Manuela Liguori
- IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Laura Mannarino
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Lara Paracchini
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Luca Beltrame
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Sergio Marchini
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Roberta Frapolli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Paola Allavena
- IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | |
Collapse
|