1
|
Sehnem GS, Silva JA, da C Silva T, Prado DG, Santiago MB, O Santos AL, Martins MM, Cunha LCS, Sousa RMF, Romero R, Bittar VP, Borges ALS, Martins CHG, Espindola FS, de Oliveira A. Chemical Composition of Extracts and Fractions from Miconia Ibaguensis (Melastomataceae) Leaves and Evaluation of Biological Activities. Chem Biodivers 2024; 21:e202400680. [PMID: 38748618 DOI: 10.1002/cbdv.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
The study aimed to assess the chemical composition of Miconia ibaguensis leaves extracts and fractions obtained from the ethanolic extract (EE), along with evaluating their antifungal, antibacterial, antidiabetic, and antioxidant activities. The ethyl acetate fraction (EAF) exhibited potent antifungal activity against Candida spp (1.95-3.90 μg mL-1) and potent antioxidant activity in the DPPH (1.74±0.07 μg mL-1), FRAP (654.01±42.09 μmol ETrolox/gsample), and ORAC (3698.88±37.28 μmol ETrolox/gsample) methods. The EE displayed inhibition against the α-amylase enzyme (8.42±0.05 μg mL-1). Flavonoids, hydrolysable tannins, triterpenoids, and phenolic acids, identified in the EE and fractions via (-)-HPLC-ESI-MS/MS analysis, were found to contribute to the species' biological activity potentially. These findings suggest promising avenues for further research and potential applications in pharmacology and natural products, offering new possibilities in the fight against global health issues.
Collapse
Affiliation(s)
- Gabriela S Sehnem
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Julia A Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Tiara da C Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Diego G Prado
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Mariana B Santiago
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Anna Lívia O Santos
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Mário M Martins
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Luis C S Cunha
- Bioprospecting Center for Natural Products, Chemistry Department, Federal Institute of Triângulo Mineiro -, MG, Uberaba, Brazil
| | - Raquel M F Sousa
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Rosana Romero
- Institute of Biology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Vinicius P Bittar
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Ana Luiza S Borges
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Carlos H G Martins
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Foued S Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| |
Collapse
|
2
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Sousa LR, Oliveira AGS, Arantes A, Junqueira JGM, Alexandre GP, Severino VGP, Reis RM, Kim B, Ribeiro RIMA. Acetogenins-Rich Fractions of Annona coriacea Suppress Human Glioblastoma Viability and Migration by Regulating Necroptosis and MMP-2 Activity In Vitro. Molecules 2023; 28:molecules28093809. [PMID: 37175219 PMCID: PMC10179884 DOI: 10.3390/molecules28093809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is an incurable primary brain tumor with a poor prognosis. Resection, radiation therapy, and temozolomide (TMZ) are insufficient to increase survival, making the treatment limited. Thus, the search for more effective and specific treatments is essential, making plants a promising source for elucidating new anti-glioblastoma compounds. Accordingly, this study investigated the effects of four fractions of hexane and ethyl acetate extract of Annona coriacea Mart., enriched with acetogenins, against GBM cell lines. All four fractions were selectively cytotoxic to GBM cells when compared to TMZ. Moreover, A. coriacea fractions delayed cell migration; reduced cytoplasmic projections, the metalloproteinase 2 (MMP-2) activity; and induced morphological changes characteristic of necroptosis, possibly correlated with the increase in receptor-interacting protein kinase 1 and 3 (RIP-1 and RIP-3), apoptosis-inducing factor (AIF), and the non-activation of cleaved caspase 8. The present findings reinforce that fractions of A. coriacea Mart. should be considered for more studies focusing treatment of GBM.
Collapse
Affiliation(s)
- Lorena R Sousa
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - Ana Gabriela S Oliveira
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - Antônio Arantes
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - João Gabriel M Junqueira
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Gerso P Alexandre
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Vanessa G P Severino
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Bonglee Kim
- College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Rosy I M A Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| |
Collapse
|
4
|
Gandhi SR, Gandhi GR, Antony PJ, Hillary VE, Ceasar SA, Hariharan G, Liu Y, Gurgel RQ, Quintans JDSS, Quintans-Júnior LJ. Health functions and related molecular mechanisms of Miconia genus: A systematic review. Heliyon 2023; 9:e14609. [PMID: 36967930 PMCID: PMC10036935 DOI: 10.1016/j.heliyon.2023.e14609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Miconia genus is traditionally used in folk medicine in Brazil and other tropical American countries and is represented by 282 species in this region. It is a multifaceted genus of medicinal plants widely used to treat rheumatoid arthritis (RA), pain, inflammatory diseases, and many more therapeutic applications. In the present study, we systematically identify and discuss the literature on in vivo and in vitro studies focusing on the therapeutic potentials and related molecular mechanisms of the Miconia genus. The review also assessed phytochemicals and their pharmacological properties and considered safety concerns related to the genus. Literature searches to identify studies on the Miconia genus were carried out through four main electronic databases, namely PubMed, Embase, Scopus, and Web of Science limited to Medical Subjects Headings (MeSH) and Descriptores en Ciencias de la Salud (DCS) (Health Sciences Descriptors) to identify studies published up to December 2022. The relevant information about the genus was gathered using the keywords 'Miconia', 'biological activities', 'therapeutic mechanisms', 'animal model, 'cell-line model', 'antinociceptive', 'hyperalgesia', 'anti-inflammatory', and 'inflammation'. The therapeutic potentials and mechanisms of action of 14 species from genus Miconia were examined in 18 in vitro studies and included their anti-inflammatory, anticancer, analgesic, antibacterial, cytotoxic, mutagenic, antioxidant, anti-leishmanial, antinociceptive, schistosomicidal, and anti-osteoarthritis potentials, and in eight in vivo studies, assessing their analgesic, antioxidant, antinociceptive, and anti-osteoarthritis activities. Some of the main related molecular mechanisms identified are the modulation of cytokines such as IL-1β, IL-6, and TNF-α, as well as the inhibition of inflammatory mediators and prostaglandin synthesis. The limited number of studies showed that commonly available species from the genus Miconia are safe for consumption. Miconia albicans Sw.Triana and Miconia rubiginosa (Bonpl.) DC was the most frequently used species and showed significant efficacy and potential for developing safe drugs to treat pain and inflammation.
Collapse
|
5
|
Bio-Prospecting of Crude Leaf Extracts from Thirteen Plants of Brazilian Cerrado Biome on Human Glioma Cell Lines. Molecules 2023; 28:molecules28031394. [PMID: 36771057 PMCID: PMC9921846 DOI: 10.3390/molecules28031394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.
Collapse
|
6
|
Pinto GFS, Roma LP, Kolb RM. Phytotoxicity of organic extracts of five medicinal plants of the Neotropical savanna. BRAZ J BIOL 2023; 83:e270122. [PMID: 37075426 DOI: 10.1590/1519-6984.270122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
Medicinal plants produce a high diversity of secondary metabolites with different biological activities, which are commonly evaluated when prospecting for bioherbicides. We analyzed the phytotoxic activity of organic extracts from the leaves of five medicinal species, Byrsonima intermedia, Moquiniastrum polymorphum, Luehea candicans, Miconia chamissois, and Qualea cordata. Phytotoxicity was evaluated on the initial growth of cucumber seedlings through tests with different concentrations of hexane, ethyl acetate, and methanol extracts. The results showed that all organic extracts and all concentrations affected cucumber development, with methanol extracts generally showing the greatest negative effect on the initial growth of the target species. The only exception was for M. chamissois extracts, in which the hexane extract had the greatest phytotoxicity. Furthermore, the organic extracts were subjected to preliminary phytochemical analysis, revealing the widespread presence of alkaloids along with other chemical classes. All the study species are thus potential candidates for use as natural herbicides.
Collapse
Affiliation(s)
- G F S Pinto
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências e Letras, Departamento de Ciências Biológicas, Laboratório de Anatomia e Fisiologia Ecológica de Plantas, Câmpus de Assis, Assis, SP, Brasil
| | - L P Roma
- Universidade de São Paulo - USP, Instituto de Biociências, Departamento de Botânica, Laboratório de Fitoquímica, São Paulo, SP, Brasil
| | - R M Kolb
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências e Letras, Departamento de Ciências Biológicas, Laboratório de Anatomia e Fisiologia Ecológica de Plantas, Câmpus de Assis, Assis, SP, Brasil
| |
Collapse
|
7
|
Netto JB, Melo ESA, Oliveira AGS, Sousa LR, Santiago LR, Santos DM, Chagas RCR, Gonçalves AS, Thomé RG, Santos HB, Reis RM, Ribeiro RIMA. Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study. Braz J Med Biol Res 2022; 55:e12076. [PMID: 36000612 PMCID: PMC9394692 DOI: 10.1590/1414-431x2022e12076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma is the most prevalent and malignant brain tumor identified in adults. Surgical resection followed by radiotherapy and chemotherapy, mainly with temozolomide (TMZ), is the chosen treatment for this type of tumor. However, the average survival of patients is around 15 months. Novel approaches to glioblastoma treatment are greatly needed. Here, we aimed to investigate the anti-glioblastoma effect of the combination of matteucinol (Mat) (dihydroxyflavanone derived from Miconia chamissois Naudin) with the chemotherapeutic TMZ in vitro using tumor (U-251MG) and normal astrocyte (NHA) cell lines and in vivo using the chick embryo chorioallantoic membrane (CAM) assay. The combination was cytotoxic and selective for tumor cells (28 μg/mL Mat and 9.71 μg/mL TMZ). Additionally, the combination did not alter cell adhesion but caused morphological changes characteristic of apoptosis in vitro. Notably, the combination was also able to reduce tumor growth in the chick embryo model (CAM assay). The docking results showed that Mat was the best ligand to the cell death membrane receptor TNFR1 and to TNFR1/TMZ complex, suggesting that these two molecules may be working together increasing their potential. In conclusion, Mat-TMZ can be a good candidate for pharmacokinetic studies in view of clinical use for the treatment of glioblastoma.
Collapse
Affiliation(s)
- J B Netto
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - E S A Melo
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | | | - L R Sousa
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - L R Santiago
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - D M Santos
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - R C R Chagas
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - A S Gonçalves
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Vila Velha, ES, Brasil.,Universidade Federal do Espírito Santo, Goiabeiras, ES, Brasil
| | - R G Thomé
- Laboratório de Processamento de Tecidos, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - H B Santos
- Laboratório de Processamento de Tecidos, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - R M Reis
- Centro de Pesquisa em Oncologia Molecular, Hospital do Câncer de Barretos, Barretos, SP, Brasil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R I M A Ribeiro
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| |
Collapse
|
8
|
The Genus Miconia Ruiz & Pav. (Melastomataceae): Ethnomedicinal Uses, Pharmacology, and Phytochemistry. Molecules 2022; 27:molecules27134132. [PMID: 35807377 PMCID: PMC9267935 DOI: 10.3390/molecules27134132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Species of the genus Miconia are used in traditional medicine for the treatment of diseases, such as pain, throat infections, fever, and cold, and they used as depuratives, diuretics, and sedatives. This work reviewed studies carried out with Miconia species, highlighting its ethnomedicinal uses and pharmacological and phytochemical potential. This information was collected in the main platforms of scientific research (PubMed, Scopus, and Web of Science). Our findings show that some of the traditional uses of Miconia are corroborated by biological and/or pharmacological assays, which demonstrated, among other properties, anti-inflammatory, analgesic, antimutagenic, antiparasitic, antioxidant, cytotoxic, and antimicrobial activities. A total of 148 chemical compounds were identified in Miconia species, with phenolic compounds being the main constituents found in the species of this genus. Such phytochemical investigations have demonstrated the potential of species belonging to this genus as a source of bioactive substances, thus reinforcing their medicinal and pharmacological importance.
Collapse
|
9
|
Ferreira JDF, López MHM, Gomes JVD, Martins DHN, Fagg CW, Magalhães PO, Davies NW, Silveira D, Fonseca-Bazzo YM. Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031120. [PMID: 35164385 PMCID: PMC8838837 DOI: 10.3390/molecules27031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Miconia chamissois Naudin is a species from the Cerrado, which is being increasingly researched for its therapeutic potential. The aim of this study was to obtain a standardized extract and to evaluate seasonal chemical variations. Seven batches of aqueous extracts from leaves were produced for the standardization. These extracts were evaluated for total solids, polyphenol (TPC) and flavonoid content (TFC), vitexin derivative content, antioxidant activity; thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) profiles were generated. For the seasonal study, leaves were collected from five different periods (May 2017 to August 2018). The results were correlated with meteorological data (global radiation, temperature, and rainfall index). Using chromatographic and spectroscopic techniques, apigenin C-glycosides (vitexin/isovitexin) and derivatives, luteolin C-glycosides (orientin/isoorientin) and derivatives, a quercetin glycoside, miconioside B, matteucinol-7-O-β-apiofuranosyl (1 → 6) -β-glucopyranoside, and farrerol were identified. Quality parameters, including chemical marker quantification by HPLC, and biological activity, are described. In the extract standardization process, all the evaluated parameters showed low variability. The seasonality study revealed no significant correlations (p < 0.05) between TPC or TFC content and meteorological data. These results showed that it is possible to obtain extracts from M. chamissois at any time of the year without significant differences in composition.
Collapse
Affiliation(s)
- Juliana de Freitas Ferreira
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Manuel Humberto Mera López
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - João Victor Dutra Gomes
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Diegue H. Nascimento Martins
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, Ceilândia Campus, School of Pharmacy, University of Brasília, Brasilia 70910-900, Brazil;
| | - Pérola Oliveira Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Noel William Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Dâmaris Silveira
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
| | - Yris Maria Fonseca-Bazzo
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (J.d.F.F.); (M.H.M.L.); (J.V.D.G.); (D.H.N.M.); (P.O.M.); (D.S.)
- Correspondence:
| |
Collapse
|
10
|
Natural Compounds in Glioblastoma Therapy: Preclinical Insights, Mechanistic Pathways, and Outlook. Cancers (Basel) 2021; 13:cancers13102317. [PMID: 34065960 PMCID: PMC8150927 DOI: 10.3390/cancers13102317] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is a tumor of the brain or spinal cord with poor clinical prognosis. Current interventions, such as chemotherapy and surgical tumor resection, are constrained by tumor invasion and cancer drug resistance. Dietary natural substances are therefore evaluated for their potential as agents in GBM treatment. Various substances found in fruits, vegetables, and other natural products restrict tumor growth and induce GBM cell death. These preclinical effects are promising but remain constrained by natural substances’ varying pharmacological properties. While many of the reviewed substances are available as over-the-counter supplements, their anti-GBM efficacy should be corroborated by clinical trials moving forward. Abstract Glioblastoma (GBM) is an aggressive, often fatal astrocyte-derived tumor of the central nervous system. Conventional medical and surgical interventions have greatly improved survival rates; however, tumor heterogeneity, invasiveness, and chemotherapeutic resistance continue to pose clinical challenges. As such, dietary natural substances—an integral component of the lifestyle medicine approach to chronic diseases—are examined as potential chemotherapeutic agents. These heterogenous substances exert anti-GBM effects by upregulating apoptosis and autophagy, inducing cell cycle arrest, interfering with tumor metabolism, and inhibiting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis. Although these beneficial effects are promising, natural substances’ efficacy in GBM is constrained by their bioavailability and blood–brain barrier permeability; various chemical formulations are proposed to improve their pharmacological properties. Many of the reviewed substances are available as over-the-counter dietary supplements, underscoring their viability as lifestyle interventions. However, clinical trials remain necessary to substantiate the in vitro and in vivo properties of natural substances.
Collapse
|
11
|
Bioprospecting of Natural Compounds from Brazilian Cerrado Biome Plants in Human Cervical Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22073383. [PMID: 33806119 PMCID: PMC8036847 DOI: 10.3390/ijms22073383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is the third most common in Brazilian women. The chemotherapy used for the treatment of this disease can cause many side effects; then, to overcome this problem, new treatment options are necessary. Natural compounds represent one of the most promising sources for the development of new drugs. In this study, 13 different species of 6 families from the Brazilian Cerrado vegetation biome were screened against human cervical cancer cell lines (CCC). Some of these species were also evaluated in one normal keratinocyte cell line (HaCaT). The effect of crude extracts on cell viability was evaluated by a colorimetric method (MTS assay). Extracts from Annona crassiflora, Miconia albicans, Miconia chamissois, Stryphnodendron adstringens, Tapirira guianensis, Xylopia aromatica, and Achyrocline alata showed half-maximal inhibitory concentration (IC50) values < 30 μg/mL for at least one CCC. A. crassiflora and S. adstringens extracts were selective for CCC. Mass spectrometry (Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ESI FT-ICR MS)) of A. crassiflora identified fatty acids and flavonols as secondary compounds. One of the A. crassiflora fractions, 7C24 (from chloroform partition), increased H2AX phosphorylation (suggesting DNA damage), PARP cleavage, and cell cycle arrest in CCC. Kaempferol-3-O-rhamnoside and oleic acid were bioactive molecules identified in 7C24 fraction. These findings emphasize the importance of investigating bioactive molecules from natural sources for developing new anti-cancer drugs.
Collapse
|