1
|
Khan A, Khan M, Shah N, Khan M, Dawar A, Shah AA, Dawar F, Khisroon M. Genotoxicity of Copper, Silver and Green Synthetic Gold Nanoparticles in Fish (Ctenopharyngodon idella). Biol Trace Elem Res 2024; 202:2855-2863. [PMID: 37824020 DOI: 10.1007/s12011-023-03877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Grass carp (Ctenopharyngodon idella) was exposed to nanoparticles of different concentrations, i.e., copper oxide nanoparticles (CuO-NPs), silver nanoparticles (Ag-NPs), and green synthetic gold nanoparticles (Au-NPs).The administered doses of the three concentration groups were 20mg L-1, 30 mg L-1, and 40mg L-1 each for a period of 14 and 28 days, respectively. The DNA damage in the erythrocytes of grass carp was detected through a comet assay technique. The values of total comet score (TCS) were noted for the exposed concentrations with a significant increasing trend (p < 0.05) and ordered as CuO-NPs > Ag-NPs > Au-NPs. The highest TCS value of the exposed erythrocytes was recorded for CuO-NPs at 40 mg L-1 after 14 days of exposition period. Comparatively, TCS values of erythrocytes exposed to green synthetic Au-NPs at all the concentrations and exposed time were less as compared to the Ag-NPs and CuO-NPs. The study confirmed the adverse effects of nanoparticles on the genetic material of fish cells.
Collapse
Affiliation(s)
- Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Maghfoor Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Nazish Shah
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Tehnology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abidullah Dawar
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ashraf Ali Shah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Farmanullah Dawar
- Department of Zoology, Kohat University of Science and Tehnology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Mohamed HRH, Behira LST, Diab A. Estimation of genomic and mitochondrial DNA integrity in the renal tissue of mice administered with acrylamide and titanium dioxide nanoparticles. Sci Rep 2023; 13:13523. [PMID: 37598254 PMCID: PMC10439890 DOI: 10.1038/s41598-023-40676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The Kidneys remove toxins from the blood and move waste products into the urine. However, the accumulation of toxins and fluids in the body leads to kidney failure. For example, the overuse of acrylamide and titanium dioxide nanoparticles (TiO2NPs) in many food and consumer products increases human exposure and risks; however, there are almost no studies available on the effect of TiO2NPs coadministration with acrylamide on the integrity of genomic and mitochondrial DNA. Accordingly, this study was conducted to estimate the integrity of genomic and mitochondrial DNA in the renal tissue of mice given acrylamide and TiO2NPs. To achieve this goal, mice were administrated orally TiO2NPs or/and acrylamide at the exposure dose levels (5 mg/kg b.w) and (3 mg/kg b.w), respectively, five times per week for two consecutive weeks. Concurrent oral administration of TiO2NPs with acrylamide caused remarkable elevations in the tail length, %DNA in tail and tail moment with higher fragmentation incidence of genomic DNA compared to those detected in the renal tissue of mice given TiO2NPs alone. Simultaneous coadministration of TiO2NPs with acrylamide also caused markedly high elevations in the reactive oxygen species (ROS) production and p53 expression level along with a loss of mitochondrial membrane potential and high decreases in the number of mitochondrial DNA copies and expression level of β catenin gene. Therefore, from these findings, we concluded that concurrent coadministration of acrylamide with TiO2NPs augmented TiO2NPs induced genomic DNA damage and mitochondrial dysfunction through increasing intracellular ROS generation, decreasing mitochondrial DNA Copy, loss of mitochondrial membrane potential and altered p53 and β catenin genes expression. Therefore, further studies are recommended to understand the biological and toxic effects resulting from TiO2NPs with acrylamide coadministration.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department Faculty of Science, Cairo University, Giza, Egypt.
| | - Loren S T Behira
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| |
Collapse
|
3
|
Ribas JLC, Rossi S, Galvan GL, de Almeida W, Cestari MM, Assis HCSD, Zampronio AR. Co-exposure effects of lead and TiO 2 nanoparticles in primary kidney cell culture from the freshwater fish Hoplias malabaricus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104187. [PMID: 37331674 DOI: 10.1016/j.etap.2023.104187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
This study evaluated the effects of Lead (Pb) and titanium dioxide nanoparticles (TiO2 NPs) alone or in combination in anterior kidney macrophages of the freshwater fish Hoplias malabaricus, naïve or stimulated with 1ng.mL-1 lipopolysaccharide (LPS). Pb (1×10-5 to 1×10-1mg.mL-1) or TiO2 NPs (1.5×10-6 to 1.5×10-2mg.mL-1) reduced cell viability despite LPS stimulation, especially Pb 10-1mg.mL-1. In combination, lower concentrations of NPs intensified Pb-induced cell viability reduction while higher concentrations restored the cell viability independently of LPS stimulation. Basal and LPS- induced NO production was reduced by both TiO2 NPs and Pb isolated. The combination of both xenobiotics avoided this reduction of NO production by the isolated compounds at lower concentrations but the protective effect was lost as the concentrations increased. None xenobiotic increase DNA fragmentation. Therefore, at specific conditions, TiO2 NPs may have a protective effect over Pb toxicity, may also provide additional toxicity at higher concentrations.
Collapse
Affiliation(s)
| | - Stéfani Rossi
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná
| | | | - William de Almeida
- Department of Genetics, Biological Sciences Sector, Federal University of Paraná
| | | | | | | |
Collapse
|
4
|
Da Silva GH, Franqui LS, De Farias MA, De Castro VLSS, Byrne HJ, Martinez DST, Monteiro RTR, Casey A. TiO 2-MWCNT nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106434. [PMID: 36870176 DOI: 10.1016/j.aquatox.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariúna, São Paulo, Brazil; FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland.
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo A De Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Alan Casey
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
5
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Xu R, Mu X, Hu Z, Jia C, Yang Z, Yang Z, Fan Y, Wang X, Wu Y, Lu X, Chen J, Xiang G, Li H. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO 2 nanosheets. NANO RESEARCH 2022; 16:5247-5255. [PMID: 36532602 PMCID: PMC9734535 DOI: 10.1007/s12274-022-5153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/25/2023]
Abstract
Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.
Collapse
Affiliation(s)
- Rongchen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zunhan Hu
- Department of Stomatology, Kunming Medical University, Kunming, 650500 China
| | - Chongzhi Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Yang
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Zhongliang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiping Fan
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xiaoyu Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Strategic Support Force Medical Center, Beijing, 100101 China
| | - Yuefeng Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaotong Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jihua Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
7
|
Abou-Dahech M, HS Boddu S, Devi Bachu R, Jayachandra Babu R, Shahwan M, Al-Tabakha MM, Tiwari AK. A Mini-Review on Limitations Associated with UV Filters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
DNA Oxidative Damage as a Sensitive Genetic Endpoint to Detect the Genotoxicity Induced by Titanium Dioxide Nanoparticles. NANOMATERIALS 2022; 12:nano12152616. [PMID: 35957047 PMCID: PMC9370504 DOI: 10.3390/nano12152616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
The genotoxicity of nanomaterials has attracted great attention in recent years. As a possible occupational carcinogen, the genotoxic effects and underlying mechanisms of titanium dioxide nanoparticles (TiO2 NPs) have been of particular concern. In this study, the effect of TiO2 NPs (0, 25, 50 and 100 µg/mL) on DNA damage and the role of oxidative stress were investigated using human bronchial epithelial cells (BEAS-2B) as an in vitro model. After detailed characterization, the cytotoxicity of TiO2 NPs was detected. Through transmission electron microscopy (TEM), we found that TiO2 NPs entered the cytoplasm but did not penetrate deep into the nucleus of cells. The intracellular levels of reactive oxygen species (ROS) significantly increased in a dose-dependent manner and the ratios of GSH/GSSG also significantly decreased. The results of the normal comet assay were negative, while the Fpg-modified comet assay that specifically detected DNA oxidative damage was positive. Meanwhile, N-acetyl-L-cysteine (NAC) intervention inhibited the oxidative stress and genotoxicity induced by TiO2 NPs. Therefore, it was suggested that TiO2 NPs could induce cytotoxicity, oxidative stress and DNA oxidative damage in BEAS-2B cells. DNA oxidative damage may be a more sensitive genetic endpoint to detect the genotoxicity of TiO2 NPs.
Collapse
|
9
|
Li K, Xu D, Liao H, Xue Y, Sun M, Su H, Xiu X, Zhao T. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO 2 in sewage and surface-water and related research prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153866. [PMID: 35181357 DOI: 10.1016/j.scitotenv.2022.153866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/28/2023]
Abstract
This article reviews the nano-effects and applications of different crystalline nano‑titanium dioxide (nano-TiO2), identifies their discharge, distribution, behavior, and toxicity to aquatic organisms (focusing on microbial aggregates) in sewage and surface-water, summarizes related toxicity mechanisms, and critically proposes future perspectives. The results show that: 1) based on crystal type, application boundaries of nano-TiO2 have become clear, extending from traditional manufacturing to high-tech fields; 2) concentration of nano-TiO2 in water is as high as hundreds of thousands of μg/L (sewage) or several to dozens of μg/L (surface-water) due to direct application or indirect release; 3) water environmental behaviors of nano-TiO2 are mainly controlled by hydration conditions and particle characteristics; 4) aquatic toxicities of nano-TiO2 are closely related to their water environmental behavior, in which crystal type and tested species (such as single species and microbial aggregates) also play the key role. Going forward, the exploration of the toxicity mechanism will surely become a hot topic in the aquatic-toxicology of nano-TiO2, because most of the research so far has focused on the responses of biological indicators (such as metabolism and damage), while little is known about the stress imprint caused by the crystal structures of nano-TiO2 in water environments. Additionally, the aging of nano-TiO2 in a water environment should be heeded to because the continuously changing surface structure is bound to have a significant impact on its behavior and toxicity. Moreover, for microbial aggregates, comprehensive response analysis should be conducted in terms of the functional activity, surface features, composition structure, internal microenvironment, cellular and molecular level changes, etc., to find the key point of the interaction between nano-TiO2 and microbial aggregates, and to take mitigation or beneficial measures to deal with the aquatic-toxicity of nano-TiO2. In short, this article contributes by 1) reviewing the research status of nano-TiO2 in all aspects: application and discharge, distribution and behavior, and its aquatic toxicity; 2) suggesting the response mechanism of microbial aggregates and putting forward the toxigenic mechanism of nanomaterial structure; 3) pointing out the future research direction of nano-TiO2 in water environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Defu Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingyang Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianyi Zhao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
10
|
Tiwari AK, Mishra A, Pandey G, Gupta MK, Pandey PC. Nanotechnology: A Potential Weapon to Fight against COVID-19. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100159. [PMID: 35440846 PMCID: PMC9011707 DOI: 10.1002/ppsc.202100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Indexed: 05/13/2023]
Abstract
The COVID-19 infections have posed an unprecedented global health emergency, with nearly three million deaths to date, and have caused substantial economic loss globally. Hence, an urgent exploration of effective and safe diagnostic/therapeutic approaches for minimizing the threat of this highly pathogenic coronavirus infection is needed. As an alternative to conventional diagnosis and antiviral agents, nanomaterials have a great potential to cope with the current or even future health emergency situation with a wide range of applications. Fundamentally, nanomaterials are physically and chemically tunable and can be employed for the next generation nanomaterial-based detection of viral antigens and host antibodies in body fluids as antiviral agents, nanovaccine, suppressant of cytokine storm, nanocarrier for efficient delivery of antiviral drugs at infection site or inside the host cells, and can also be a significant tool for better understanding of the gut microbiome and SARS-CoV-2 interaction. The applicability of nanomaterial-based therapeutic options to cope with the current and possible future pandemic is discussed here.
Collapse
Affiliation(s)
- Atul K. Tiwari
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| | - Anupa Mishra
- Department of MicrobiologyDr. R.M.L. Awadh UniversityAyodhyaUttar Pradesh224001India
- Department of MicrobiologySri Raghukul Mahila Vidya PeethCivil Line GondaUttar Pradesh271001India
| | - Govind Pandey
- Department of PaediatricsKing George Medical UniversityLucknowUttar Pradesh226003India
| | - Munesh K. Gupta
- Department of MicrobiologyInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUttar Pradesh221005India
| | - Prem C. Pandey
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| |
Collapse
|
11
|
Oliveira ER, Fayer L, Zanette RSS, Ladeira LO, de Oliveira LFC, Maranduba CMC, Brandão HM, Munk M. Cytocompatibility of carboxylated multi-wall carbon nanotubes in stem cells from human exfoliated deciduous teeth. NANOTECHNOLOGY 2021; 33:065101. [PMID: 34700304 DOI: 10.1088/1361-6528/ac335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Carboxylated multi-wall carbon nanotube (MWCNT-COOH) presents unique properties due to nanoscale dimensions and permits a broad range of applications in different fields, such as bone tissue engineering and regenerative medicine. However, the cytocompatibility of MWCNT-COOH with human stem cells is poorly understood. Thus, studies elucidating how MWCNT-COOH affects human stem cell viability are essential to a safer application of nanotechnologies. Using stem cells from the human exfoliated deciduous teeth model, we have evaluated the effects of MWCNT-COOH on cell viability, oxidative cell stress, and DNA integrity. Results demonstrated that despite the decreased metabolism of mitochondria, MWCNT-COOH had no toxicity against stem cells. Cells maintained viability after MWCNT-COOH exposure. MWCNT-COOH did not alter the superoxide dismutase activity and did not cause genotoxic effects. The present findings are relevant to the potential application of MWCNT-COOH in the tissue engineering and regenerative medicine fields.
Collapse
Affiliation(s)
- Eduarda R Oliveira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Rafaella S S Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Luiz O Ladeira
- Nanomaterials Laboratory, Department of Physics, Federal University of Minas Gerais, Brazil
| | - Luiz F C de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, Brazil
| | - Carlos M C Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation- Embrapa Dairy Cattle, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| |
Collapse
|
12
|
Oh HJ, Han TT, Mainelis G. Potential consumer exposure to respirable particles and TiO 2 due to the use of eyebrow powders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:1032-1046. [PMID: 33208837 PMCID: PMC8128939 DOI: 10.1038/s41370-020-00278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cosmetic powders contain numerous components, including titanium dioxide (TiO2), which is classified as possibly carcinogenic to humans (Group 2B). However, little is known about potential inhalation exposures to particles that are released during cosmetic powder applications. METHODS We realistically simulated the application of five different eyebrow powders using a mannequin and then determined concentrations of total suspended particles (TSP), PM10, and PM4 fractions of particles that would be inhaled during powder application. We determined the size and shape of particles in the original powders and released particles, as well as their TiO2 concentrations and Ti content of individual particles. RESULTS The application of eyebrow powders resulted in the release and inhalation of airborne particles at concentrations ranging from 21.2 to 277.3 µg/m3, depending on the particle fraction and the powder. The concentrations of TiO2 in PM4 and PM10 samples reached 2.7 µg/m3 and 9.3 µg/m3, respectively. The concentration of TiO2 in airborne particle fractions was proportional to the presence of TiO2 in the bulk powder. CONCLUSION The application of eyebrow powders results in user exposures to respirable PM4 and PM10 particles, including those containing TiO2. This information should be of interest to stakeholders concerned about inhalation exposure to TiO2.
Collapse
Affiliation(s)
- Hyeon-Ju Oh
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Taewon T Han
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
13
|
Son BT, Long NV, Nhat Hang NT. Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts. RSC Adv 2021; 11:30805-30826. [PMID: 35498918 PMCID: PMC9041310 DOI: 10.1039/d1ra05647f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxides possess exceptional physicochemical properties which make them ideal materials for critical photocatalytic applications. However, of major interest, their photocatalytic applications are hampered by several drawbacks, consisting of prompt charge recombination of charge carriers, low surface area, inactive under visible light, and inefficient as well as expensive post-treatment recovery. The immobilization of metal oxide semiconductors on materials possessing high binding strength eliminates the impractical and costly recovery of spent catalysts in large-scale operations. Notably, the synthesis of green material (ash, clay, foundry sand, and pumice)-based metal oxides could provide a synergistic effect of the superior adsorption capacity of supporting materials and the photocatalytic activity of metal oxides. This phenomenon significantly improves the overall degradation efficiency of emerging pollutants. Inspired by the novel concept of "treating waste with waste", this contribution highlights recent advances in the utilization of natural material (clay mineral and pumice)- and waste material (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants. First, principles, mechanism, challenges towards using metal oxide as photocatalysts, and immobilization techniques are systematically summarized. Then, sources, classifications, properties, and chemical composition of green materials are briefly described. Recent advances in the utilization of green materials-based metal oxide composites for the photodegradation of various pollutants are highlighted. Finally, in the further development of green materials-derived photocatalysts, we underlined the current gaps that are worthy of deeper research in the future.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | | |
Collapse
|
14
|
Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. NANOMATERIALS 2021; 11:nano11092354. [PMID: 34578667 PMCID: PMC8465434 DOI: 10.3390/nano11092354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/23/2023]
Abstract
Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.
Collapse
|
15
|
Koedrith P, Rahman MM, Jang YJ, Shin DY, Seo YR. Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective. J Cancer Prev 2021; 26:83-97. [PMID: 34258247 PMCID: PMC8249203 DOI: 10.15430/jcp.2021.26.2.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/06/2022] Open
Abstract
The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.
Collapse
Affiliation(s)
- Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Md. Mujibur Rahman
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yu Jin Jang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Young Rok Seo
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
16
|
Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124915. [PMID: 33422758 DOI: 10.1016/j.jhazmat.2020.124915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.
Collapse
Affiliation(s)
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul 06252, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, South Korea.
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
17
|
Ling C, An H, Li L, Wang J, Lu T, Wang H, Hu Y, Song G, Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: a Systematic Review of the Literature and Meta-analysis. Biol Trace Elem Res 2021; 199:2057-2076. [PMID: 32770326 DOI: 10.1007/s12011-020-02311-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
With the wide use of titanium dioxide nanoparticles (TiO2-NPs), the genotoxicity of TiO2-NPs, which is a factor for safety assessment, has attracted people's attention. However, their genotoxic effects in vitro remain controversial due to inconsistent reports. Therefore, a systematic review was conducted followed by a meta-analysis to reveal whether TiO2-NPs cause genotoxicity in vitro. A total of 59 studies were identified in this review through exhaustive database retrieval and exclusion. Meta-analysis results were presented based on different evaluation methods. The results showed that TiO2-NP exposure considerably increased the percentage of DNA in tail and olive tail moment in comet assay. Gene mutation assay revealed that TiO2-NPs could also induce gene mutation. However, TiO2-NP exposure had no effect on micronucleus (MN) formation in the MN assay. Subgroup analysis showed that normal cells were more vulnerable to toxicity induced by TiO2-NPs. Moreover, mixed form and small particles of TiO2-NPs increased the percentage of DNA in tail. In addition, short-term exposure could detect more DNA damage. The size, coating, duration, and concentration of TiO2-NPs influenced MN formation. This study presented that TiO2-NP exposure could cause genotoxicity in vitro. The physicochemical properties of TiO2-NPs and experimental protocols influence the genotoxic effects in vitro. Comet and gene mutation assays may be more sensitive to the detection of TiO2-NP genotoxic effects.
Collapse
Affiliation(s)
- Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jiaqi Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Sixiu Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Sarma A, Bania R, Devi JR, Deka S. Therapeutic nanostructures and nanotoxicity. J Appl Toxicol 2021; 41:1494-1517. [PMID: 33641187 DOI: 10.1002/jat.4157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/09/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Nanotechnology, with its continuous advancement, leads to the development of nanoscale-level therapeutics to mitigate many complex diseases. This results in the emergence of numerous novel nanomaterials and its composite products into the market such as liposome, polymeric nanoparticles, dendrimers, and nanostructured lipid carrier. However, their application is always determined by a high benefit to risk ratio. Very few research have been done on the toxicity assessment of nanoparticles in the biological system; therefore, the limited knowledge regarding the toxicity profile of nanotherapeutics is available leading to the ignorance of its side effects. Nanoparticles can distribute in the whole body through translocating in the bloodstream by crossing membrane barriers efficiently and shows effect in organs and tissues at cellular and molecular levels. The interaction of nanoparticle with cell may consequences into nanotoxicity. The narrow size distribution, large surface area to mass ratio and surface properties of nanoparticle are significantly associated with nanotoxicity. Nanoparticles can enter into the tissue and cell by invading the membranes and cause cellular injury as well as toxicity. Therefore, the exploration of mechanisms of nanotoxicity has prime importance now a day. The toxicity assessment should be an integral part of the development of nanotherapeutics using various toxicity evaluation models. This review has focused on the exploration of different nanostructures for therapeutic delivery system along with its physicochemical characteristics responsible for adverse effects on human biology, various toxicity evaluation models, and environmental and regulatory hurdles.
Collapse
Affiliation(s)
- Anupam Sarma
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Ratnali Bania
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Juti Rani Devi
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Satyendra Deka
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
19
|
Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:481. [PMID: 33668665 PMCID: PMC7917665 DOI: 10.3390/nano11020481] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system's components.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Omar El Hamoui
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Bruno Alies
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
| |
Collapse
|
20
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
21
|
Li K, Qian J, Wang P, Wang C, Lu B, Jin W, He X, Tang S, Zhang C, Gao P. Responses of freshwater biofilm formation processes (from colonization to maturity) to anatase and rutile TiO 2 nanoparticles: Effects of nanoparticles aging and transformation. WATER RESEARCH 2020; 182:115953. [PMID: 32559664 DOI: 10.1016/j.watres.2020.115953] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their ''aging'' process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anatase-NPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO2-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO2-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO2-A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO2-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chao Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Pan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
22
|
Ranjan S, Dasgupta N, Mishra D, Ramalingam C. Involvement of Bcl-2 Activation and G1 Cell Cycle Arrest in Colon Cancer Cells Induced by Titanium Dioxide Nanoparticles Synthesized by Microwave-Assisted Hybrid Approach. Front Bioeng Biotechnol 2020; 8:606. [PMID: 32760701 PMCID: PMC7373722 DOI: 10.3389/fbioe.2020.00606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
The toxic effect of TiO2 nanoparticles (TNP) greatly varies with the variation in synthesis protocol followed. Any morphological alteration of TNPs affects their activity. In the present study, we report the detailed toxicological analysis of TNPs fabricated by a microwave irradiation–assisted hybrid chemical approach. The toxicological mechanism was studied in human colon cancer cell lines (HCT116). Results indicate that TNP induces oxidative stress on HCT116, which, in turn, causes mitochondrial membrane depolarization. We also observed activation of Bcl-2 and caspase-3 by Western blot analysis. This indicates TNPs induce mitochondrial-mediated apoptosis. Furthermore, G1 cell cycle arrest was observed by flow-cytometric analysis. This study provides an understanding of the mechanism of action for apoptosis induced by TNPs, which can be further used to design safe TNPs for various consumer products and also suggests that extensive research needs to be done on harmful effects of TNPs synthesized from different approaches before commercial application.
Collapse
Affiliation(s)
- Shivendu Ranjan
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Nandita Dasgupta
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Debasish Mishra
- Bio-Inspired Design Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Chidambaram Ramalingam
- Industrial Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
23
|
García-Gómez C, García-Gutiérrez S, Obrador A, Fernández MD. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: Acidic and calcareous. CHEMOSPHERE 2020; 239:124814. [PMID: 31527003 DOI: 10.1016/j.chemosphere.2019.124814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The increasing use of zinc oxide nanoparticles (ZnO NPs) in agriculture renders it necessary to evaluate their impact on soil non-target organisms. This work studies Zn availability to earthworms from the ZnO (NP and bulk) applied to two agricultural soils with a different pH at 20, 225, 500, and 1000 mg Zn kg-1. Zn uptakes and the effects on Eisenia andrei, grown under controlled conditions, were determined. Effects were assessed at three levels: organisms, mortality, growth and reproduction; biochemical, catalase and glutathione S-transferase activities, malondialdehyde (MDA), and protein content; cellular in coelomocytes, reactive oxygen species (ROS) generation, lysosomal membrane alterations (RN) and mitochondrial dysfunction (MTT). Available Zn was 100-fold higher in acidic than in calcareous soil and did not differ among ZnO (NP or bulk). Zn in worms was auto-regulated regardless of the soil Zn concentration, pH and ZnO size. Effects on mortality and weight were observed only in the acidic soil at the highest concentration, ZnO NPs reduced survival and body weight, while ZnO bulk reduced body weight. Reproduction parameters in acidic soil were: EC50 (fecundity) 277 and 256 mg Zn kg-1 and EC50 (fertility) 177 and 179 mg Zn kg-1 for ZnO NPs and bulk, respectively, with no found NP-specific effects. No responses of enzymatic activities, MDA and MTT were detected. ROS and RN were altered in the coelomocyte cells of earthworms in the two soils, but effects depended on ZnO size suggesting nanospecific effects. Soil pH governs toxicity more than ZnO size regardless of body Zn concentration.
Collapse
Affiliation(s)
- Concepción García-Gómez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía.,Ctra, A Coruña, Km 7.5, 28040, Madrid, Spain.
| | - Sandra García-Gutiérrez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía.,Ctra, A Coruña, Km 7.5, 28040, Madrid, Spain; Technical University of Madrid (UPM), Chemical & Food Technology Department, Avda. Complutense S/n, 28040, Madrid, Spain.
| | - Ana Obrador
- Technical University of Madrid (UPM), Chemical & Food Technology Department, Avda. Complutense S/n, 28040, Madrid, Spain.
| | - María Dolores Fernández
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía.,Ctra, A Coruña, Km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
24
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
25
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|
26
|
Chakrabarti S, Goyary D, Karmakar S, Chattopadhyay P. Exploration of cytotoxic and genotoxic endpoints following sub-chronic oral exposure to titanium dioxide nanoparticles. Toxicol Ind Health 2019; 35:577-592. [DOI: 10.1177/0748233719879611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Health hazards of titanium dioxide nanoparticles (TiO2-NPs) have raised severe concerns because of the paucity of information regarding the toxic effects among the population. In the present research, the in vitro and in vivo cytotoxic potential of TiO2-NPs were evaluated using flow cytometric techniques. Further, in vitro and in vivo genotoxic endpoints were estimated by means of comet, micronucleus (MN), and chromosomal aberration (CA) assays. In vitro analysis was performed at the concentration range of 10–100 µg/mL using murine RAW 264.7 cells. In vivo experiments were conducted on Albino mice (M/F) by exposing them to 200 and 500 mg/kg TiO2-NPs for 90 days. Decreased percentage of cell viability with higher doses of TiO2-NPs was evident in both in vitro and in vivo flow cytometric analysis. Further, an impaired cell cycle (G0/G1, S, and G2/M) was reflected in the present investigation following the exposure to TiO2-NPs. Increased comet scores such as tail length, % DNA in tail, tail moment, and olive moment were also observed with the higher doses of TiO2-NPs in vitro and in vivo comet assays. Finally, the in vivo MN and CA assays revealed the formation of MN and chromosomal breakage following the exposure to TiO2-NPs.
Collapse
|
27
|
Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110303. [PMID: 31761191 DOI: 10.1016/j.msec.2019.110303] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs), first developed in the 1990s, have been applied in numerous biomedical fields such as tissue engineering and therapeutic drug development. In recent years, TiO2-based drug delivery systems have demonstrated the ability to decrease the risk of tumorigenesis and improve cancer therapy. There is increasing research on the origin and effects of pristine and doped TiO2-based nanotherapeutic drugs. However, the detailed molecular mechanisms by which drug delivery to cancer cells alters sensing of gene mutations, protein degradation, and metabolite changes as well as its associated cumulative effects that determine the microenvironmental mechanosensitive metabolism have not yet been clearly elucidated. This review focuses on the microenvironmental influence of TiO2-NPs induced various mechanical stimuli on tumor cells. The differential expression of genome, proteome, and metabolome after treatment with TiO2-NPs is summarized and discussed. In the tumor microenvironment, mechanosensitive DNA mutations, gene delivery, protein degradation, inflammatory responses, and cell viability affected by the mechanical stimuli of TiO2-NPs are also examined.
Collapse
|
28
|
Barkhade T, Mahapatra SK, Banerjee I. Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO 2 and prevented by Fe incorporation. Toxicol Res (Camb) 2019; 8:711-722. [PMID: 31588348 PMCID: PMC6764469 DOI: 10.1039/c9tx00143c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The potential impact of TiO2 and Fe incorporated TiO2 nanoparticles at the organelle level has been reported. The toxicity of the samples on mitochondria isolated from chicken liver tissue has been examined through mitochondrial swelling, membrane fluidity, ROS generation capacity, and activity of complex II. The toxic effect of TiO2 was prevented by incorporating Fe into the TiO2 matrix at different concentrations. The activity of the succinate dehydrogenase enzyme complex was affected and permeabilization of the mitochondrial inner membrane to H+ and K+ and its alteration in membrane fluidity at 100 μg mL-1 of nano-TiO2 dosage were investigated, which showed significant changes in the anisotropy of DPH-labeled mitochondria. Fe incorporation into the TiO2 matrix makes it more biocompatible by changing its structure and morphology.
Collapse
Affiliation(s)
- Tejal Barkhade
- School of Nanosciences , Central University of Gujarat , Gandhinagar-382030 , Gujarat , India .
| | - Santosh Kumar Mahapatra
- Department of Physical Sciences , Central University of Punjab , Bathinda-151001 , Punjab , India
| | - Indrani Banerjee
- School of Nanosciences , Central University of Gujarat , Gandhinagar-382030 , Gujarat , India .
| |
Collapse
|
29
|
Žegura B, Filipič M. The application of the Comet assay in fish cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:72-84. [DOI: 10.1016/j.mrgentox.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
|
30
|
Gea M, Bonetta S, Iannarelli L, Giovannozzi AM, Maurino V, Bonetta S, Hodoroaba VD, Armato C, Rossi AM, Schilirò T. Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food Chem Toxicol 2019; 127:89-100. [DOI: 10.1016/j.fct.2019.02.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
|
31
|
Solaiman SM, Algie J, Bakand S, Sluyter R, Sencadas V, Lerch M, Huang XF, Konstantinov K, Barker PJ. Nano-sunscreens – a double-edged sword in protecting consumers from harm: viewing Australian regulatory policies through the lenses of the European Union. Crit Rev Toxicol 2019; 49:122-139. [DOI: 10.1080/10408444.2019.1579780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- S. M. Solaiman
- School of Law, University of Wollongong, Wollongong, Australia
| | - Jennifer Algie
- School of Management, Operations and Marketing, University of Wollongong, Wollongong, Australia
| | - Shahnaz Bakand
- School of Health and Society, University of Wollongong, Wollongong, Australia
| | - Ronald Sluyter
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Vitor Sencadas
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Philip J. Barker
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| |
Collapse
|
32
|
Delmond KA, Vicari T, Guiloski IC, Dagostim AC, Voigt CL, Silva de Assis HC, Ramsdorf WA, Cestari MM. Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO 2) and inorganic lead (PbII). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:42-52. [PMID: 30711874 DOI: 10.1016/j.etap.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles (NpTiO2) are the most widely-used nanoparticle type and the adsorption of metals such as lead (PbII) onto their surface is a major source of concern to scientists. This study evaluated the effects of the associated exposure to both types of contaminant, i.e., lead (a known genotoxic metal) and NpTiO2, in a freshwater fish (Astyanax serratus) through intraperitoneal injection for an acute assay of 96 h. The effects of this exposure were evaluated using the comet assay, DNA diffusion assay and piscine micronucleus test, as well as the quantification of antioxidant enzymes (SOD, CAT, and GST) and metallothioneins. Our findings indicate that co-exposure of PbII with NpTiO2 can provoke ROS imbalances, leading to DNA damage in the blood and liver tissue of A. serratus, as well as modifying erythropoiesis in this species, inducing necrosis and changing the nuclear morphology of the erythrocytes.
Collapse
Affiliation(s)
- Kézia Aguiar Delmond
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Taynah Vicari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Izonete Cristina Guiloski
- Department of Pharmacology, Laboratory of Environmental Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Ana Carolina Dagostim
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Carmen Lúcia Voigt
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Laboratory of Environmental Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Wanessa Algarte Ramsdorf
- Department of Chemistry, Laboratory of Ecotoxicology, Federal and Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
33
|
Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 2019; 42:84-93. [PMID: 30103634 DOI: 10.1080/01480545.2018.1491987] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
In recent years, nanoparticles are being used extensively in personal healthcare products such as cosmetics, sunscreens, soaps, and shampoos. Particularly, metal oxide nanoparticles are gaining competence as key industrial constituents, progressing toward a remarkable rise in their applications. Zinc oxide and titanium oxide nanoparticles are the most commonly employed metal oxide nanoparticles in sunscreens, ointments, foot care, and over the counter topical products. Dermal exposure to these metal oxides predominantly occurs through explicit use of cosmetic products and airway exposure to nanoparticle dusts is primarily mediated via occupational exposure. There is a compelling need to understand the toxicity effects of nanoparticles which can easily enter the cells and induce oxidative stress. Consequently, these products have become a direct source of pollution in the environment and thereby greatly impact our ecosystem. A complete understanding of the toxicity mechanism of nano-ZnO is intended to resolve whether and to what extent such nanoparticles may pose a threat to the environment and to human beings. In this review article, we have discussed the characteristics of metal oxide nanoparticles and its applications in the cosmetic industry. We have also highlighted about their toxicity effects and their impact on human health.
Collapse
Affiliation(s)
- Vimala Devi Subramaniam
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Suhanya Veronica Prasad
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Antara Banerjee
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Madhumala Gopinath
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Ramachandran Murugesan
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Francesco Marotta
- b ReGentra R&d international for Aging Intervention , Milano-Beijing & VCC, Preventitive Medical Promotion Foundation , Beijing , China
| | - Xiao-Feng Sun
- c Department of Oncology and Department of Clinical and Experimental Medicine , University of Linköping , Linköping , Sweden
| | - Surajit Pathak
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| |
Collapse
|
34
|
Klingelfus T, Disner GR, Voigt CL, Alle LF, Cestari MM, Leme DM. Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications. CHEMOSPHERE 2019; 215:703-709. [PMID: 30347365 DOI: 10.1016/j.chemosphere.2018.10.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Genotoxic effects of nanomaterials (NMs) have been controversially reported in literature, and the mode of action (MoA) via DNA oxidation is cited as the main damage caused by them. Evidence of nano-silver as a crosslinker has been previously reported by the present research team in an in vivo fish genotoxicity study. Thus, aiming to confirm the evidence about NMs as crosslinker agent, the present investigation elucidated the genotoxic potential of NMs and their genotoxic MoA through in vitro assay with RTG-2 cells line (rainbow trout gonadal) by exposure to nano-silver (PVP-coated) and nano-titanium. The types and levels of DNA damage were assessed by the Comet assay (standard alkaline, hOGG1-modified alkaline, and two crosslink-modified alkaline versions). It was demonstrated that the use of the standard alkaline Comet assay alone may inaccurately predict the genotoxicity of NMs since oxidative and crosslink DNA damages were also verified in RTG-2 cells when assessed by the modified versions of the alkaline protocol. More importantly, it was confirmed that both nano-silver and nano-titanium acted as DNA-protein crosslinkers through the Comet assay version with proteinase K. As both nano-silver and nano-titanium present a great risk to aquatic life, these findings reinforce the need of genotoxicity testing strategies that encompass the assessment of different types of DNA damage, in order to ensure an accurate prediction of the genotoxic potential of NMs.
Collapse
Affiliation(s)
- T Klingelfus
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - G R Disner
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - C L Voigt
- Chemistry Department, State University of Ponta Grossa, Ponta Grossa, Paraná State, Brazil.
| | - L F Alle
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - M M Cestari
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - D M Leme
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| |
Collapse
|
35
|
Wei F, Duan Y. Crosstalk between Autophagy and Nanomaterials: Internalization, Activation, Termination. ACTA ACUST UNITED AC 2018; 3:e1800259. [PMID: 32627344 DOI: 10.1002/adbi.201800259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Nanomaterials (NMs) are comprehensively applied in biomedicine due to their unique physical and chemical properties. Autophagy, as an evolutionarily conserved cellular quality control process, is closely associated with the effect of NMs on cells. In this review, the recent advances in NM-induced/inhibited autophagy (NM-phagy) are summarized, with an aim to present a comprehensive description of the mechanisms of NM-phagy from the perspective of internalization, activation, and termination, thereby bridging autophagy and nanomaterials. Several possible mechanisms are extensively reviewed including the endocytosis pathway of NMs and the related cross components (clathrin and adaptor protein 2 (AP-2), adenosine diphosphate (ADP)-ribosylation factor 6 (Arf6), Rab, UV radiation resistance associated gene (UVRAG)), three main stress mechanisms (oxidative stress, damaged organelles stress, and toxicity stress), and several signal pathway-related molecules. The mechanistic insight is beneficial to understand the autophagic response to NMs or NMs' regulation of autophagy. The challenges currently encountered and research trend in the field of NM-phagy are also highlighted. It is hoped that the NM-phagy discussion in this review with the focus on the mechanistic aspects may serve as a guideline for future research in this field.
Collapse
Affiliation(s)
- Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-enviroment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-enviroment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| |
Collapse
|
36
|
Savić-Zdravković D, Jovanović B, Đurđević A, Stojković-Piperac M, Savić A, Vidmar J, Milošević D. An environmentally relevant concentration of titanium dioxide (TiO 2) nanoparticles induces morphological changes in the mouthparts of Chironomus tentans. CHEMOSPHERE 2018; 211:489-499. [PMID: 30081221 DOI: 10.1016/j.chemosphere.2018.07.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 05/22/2023]
Abstract
The present study was carried out in order to assess the influence of environmentally relevant concentrations of TiO2 nanoparticles (E171 human food grade) toxicity on the freshwater midge Chironomus tentans. Tested concentrations were 125, 250, 500, 1000, 2000 and 4000 mg of E171 TiO2 per 1 kg of sediment, for the experiment aiming at life trait toxicity observation; and 2.5, 25 and 250 mg of E171 TiO2 per 1 kg of sediment for the experiment aiming at mouthpart deformity observation. The experimental design was constructed for the sediment dwelling chironomid larvae according to OECD guidelines. For the first time, a geometric morphometric approach was used to assess the deformities in chironomid larvae as sublethal implications of nanoparticle exposure. The present study showed a concentration-response relationship between the TiO2 concentration in the substrate and the TiO2 intake. The mortality and emergence ratio was affected at concentrations >1000 mg/kg. Geometric Morphometrics revealed the tendency of the mentum teeth to narrow and elongate and the mandibles to widen, as well as the loss of the first inner tooth, with a TiO2 concentration rise. The variability of morphological changes observed in the mouthparts indicates that C. tentans could be used as a bioindicator in nano-TiO2 monitoring.
Collapse
Affiliation(s)
- Dimitrija Savić-Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Boris Jovanović
- Department of Natural Resource Management and Ecology, Iowa State University, Ames, IA, USA
| | - Aca Đurđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Milica Stojković-Piperac
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ana Savić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Janja Vidmar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
37
|
Vicari T, Dagostim AC, Klingelfus T, Galvan GL, Monteiro PS, da Silva Pereira L, Silva de Assis HC, Cestari MM. Co-exposure to titanium dioxide nanoparticles (NpTiO 2) and lead at environmentally relevant concentrations in the Neotropical fish species Hoplias intermedius. Toxicol Rep 2018; 5:1032-1043. [PMID: 30386731 PMCID: PMC6205112 DOI: 10.1016/j.toxrep.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/13/2018] [Accepted: 09/01/2018] [Indexed: 12/03/2022] Open
Abstract
Growing production and utilization of titanium dioxide nanoparticles (NpTiO2) invariably lead to their accumulation in oceans, rivers and other water bodies, thus increasing the risk to the welfare of this ecosystem. The progressive launch of these nanoparticles in the environment has been accompanied by concern in understanding the dynamics and the toxic effect of these xenobiotic in different ecosystems, either on their own or in tandem with different contaminants (such as organic compounds and heavy metals), possibly altering their toxicity. Nevertheless, it remains unknown if these combined effects may induce damage in freshwater organisms. Therefore, this study aimed to analyze the consequences caused by NpTiO2, after a waterborne exposure of 96 h to a Neotropical fish species Hoplias intermedius, as well as after a co-exposure with lead, whose effects for fish have already been well described in the literature. The characterization of NpTiO2 stock suspension was carried out in order to provide additional information and revealed a stable colloidal suspension. As a result, NpTiO2 showed some genotoxic effects which were observed by comet assay in gill, kidney and brain cells. Also, the activity of brain acetylcholinesterase (AChE) has not changed, but the activity of muscle AChE decreased in the group exposed only to PbII. Regarding the hepatic antioxidant system, catalase (CAT) did not show any change in its activity, whereas that of superoxide dismutase (SOD) intensified in the groups submitted only to PbII and NpTiO2 alone. As for lipid peroxidation, there was a decrease in the group exposed to the NpTiO2 alone and to the co-exposed group (NpTiO2+PbII). As far as metallothionein is concerned, its concentration rose for the co-exposed group (NpTiO2+PbII) and for the group exposed to PbII alone. Overall, we may conclude that NpTiO2 alone caused DNA damage to vital tissues. Also, some impairment related to the antioxidant mechanism was described but it is probably not related to the DNA damage observed, suggesting that the genotoxic effect observed may be due to a different mechanism instead of ROS production.
Collapse
Affiliation(s)
- Taynah Vicari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Ana Carolina Dagostim
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Tatiane Klingelfus
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Gabrieli Limberger Galvan
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Sampaio Monteiro
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Letícia da Silva Pereira
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
38
|
Ghanbary F, Seydi E, Naserzadeh P, Salimi A. Toxicity of nanotitanium dioxide (TiO 2-NP) on human monocytes and their mitochondria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6739-6750. [PMID: 29260482 DOI: 10.1007/s11356-017-0974-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
The effect of nanotitanium dioxide (TiO2-NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO2-NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO2-NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO2-NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO2-NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO2-NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO2-NP.
Collapse
Affiliation(s)
- Fatemeh Ghanbary
- Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Islamic Republic of Iran
| | - Enaytollah Seydi
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
- Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Science, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
39
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
40
|
Doyle JJ, Ward JE, Wikfors GH. Acute exposure to TiO 2 nanoparticles produces minimal apparent effects on oyster, Crassostrea virginica (Gmelin), hemocytes. MARINE POLLUTION BULLETIN 2018; 127:512-523. [PMID: 29475691 DOI: 10.1016/j.marpolbul.2017.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
The response of oyster (Crassostrea virginica) hemocytes was studied following exposure to anatase nanoparticles (ca. 7.4nm), surface-coated rutile nanocomposites (UV-Titan M212, ca. 86nm) and bulk titanium dioxide (TiO2) particles (anatase and rutile crystalline forms; 0.4-0.5μm). Hemocytes were collected from oysters and exposed to one of the four particle types at concentrations of 0.1, 0.5, and 1.0mg/L under dark and environmentally-relevant light conditions for periods of two and four hours. Hemocyte mortality, phagocytosis, and reactive oxygen species (ROS) production were then evaluated using flow-cytometric assays. Bulk and nanoparticulate TiO2 had little effect on viability of oyster hemocytes or on production of ROS. Significant changes in phagocytosis occurred after exposure to anatase nanoparticles for 4h under dark conditions, and UV-Titan for 2h under light conditions. Results demonstrate that TiO2 particles (bulk or nanoscale) produce minimal effects on hemocyte biomarkers examined following acute, in vitro exposures.
Collapse
Affiliation(s)
- John J Doyle
- Gloucester Marine Genomics Institute, 55 Blackburn Center, Gloucester, MA 01930, USA.
| | - J Evan Ward
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340, USA.
| | - Gary H Wikfors
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, 212 Rogers Avenue, Milford, CT 06460, USA.
| |
Collapse
|
41
|
Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 2017; 38:817-835. [PMID: 29254388 DOI: 10.1080/07388551.2017.1414141] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This paper aims to summarize recent developments regarding the synthesis, application and challenges of fungal AgNPs. Possible methods to overcome the challenge of synthesis and reduce the toxicity of AgNPs have been discussed. MATERIALS AND METHODS This review consults and summary a large number of papers. RESULTS Silver nanoparticles (AgNPs) have great potential in many areas, as they possess multiple novel characteristics. Conventional methods for AgNPs biosynthesis involve chemical agents, causing environmental toxicity and high energy consumption. Fungal bioconversion is a simple, low-cost and energy-efficient biological method, which could successfully be used for AgNPs synthesis. Fungi can produce enzymes that act as both reducing and capping agents, to form stable and shape-controlled AgNPs. CONCLUSIONS AgNPs have great potential in the medical and food industries, due to their antimicrobial, anticancer, anti-HIV, and catalytic activities. However, the observed in vitro and in vivo toxicity poses considerable challenges in the synthesis and application of AgNPs.
Collapse
Affiliation(s)
- Xixi Zhao
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Liangfu Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Muhammad Shahid Riaz Rajoka
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Lu Yan
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Chunmei Jiang
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Dongyan Shao
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Jing Zhu
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Junling Shi
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Qingsheng Huang
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Hui Yang
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| | - Mingliang Jin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China
| |
Collapse
|
42
|
Li K, Qian J, Wang P, Wang C, Liu J, Tian X, Lu B, Shen M. Crystalline phase-dependent eco-toxicity of titania nanoparticles to freshwater biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1433-1441. [PMID: 28917816 DOI: 10.1016/j.envpol.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/13/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The potential toxic impacts of different crystal phases of titania nanoparticles (TNPs) on freshwater biofilms, especially under ultraviolet C irradiation (UVC), are unknown. Here, adverse impacts of three phases (anatase, rutile, and P25, 50 mg L-1 respectively) with UVC irradiation (An-UV, Ru-UV, and P25-UV) on freshwater biofilms were conducted. Characterization experiments revealed that rutile TNPs had a higher water environment stability than anatase and P25 TNPs, possessing a stronger photocatalytic activity under UVC irradiation. Phase-dependent inhibition of cell viability and significant decreases of four- and five-fold in algal biomass at 12 h of exposure were observed compared with unexposed biofilms. Moreover, phase-dependent oxidative stress resulted in remarkably significant reductions (P < 0.01) of the photosynthetic yields of the biofilms, to 40.32% (P25-UV), 48.39% (An-UV), and 46.77% (Ru-UV) of the plateau value obtained in the unexposed biofilms. A shift in community composition that manifested as a strong reduction in diatoms, indicating cyanobacteria and green algae were more tolerant than diatoms when exposed to TNPs. In terms of the toxic mechanisms, rutile TNPs resulted in apoptosis by inducing excessive intracellular reactive oxygen species (ROS) production, whereas P25 and anatase TNPs tended to catalyze enormous acellular ROS lead to cell necrosis under UVC irradiation.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jingjing Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xin Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Mengmeng Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
43
|
Bogdan J, Pławińska-Czarnak J, Zarzyńska J. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review. NANOSCALE RESEARCH LETTERS 2017; 12:225. [PMID: 28351128 PMCID: PMC5368103 DOI: 10.1186/s11671-017-2007-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.
Collapse
Affiliation(s)
- Janusz Bogdan
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
44
|
Qian J, Li K, Wang P, Wang C, Shen M, Liu J, Lu B, Tian X. Toxic effects of three crystalline phases of TiO 2 nanoparticles on extracellular polymeric substances in freshwater biofilms. BIORESOURCE TECHNOLOGY 2017; 241:276-283. [PMID: 28575791 DOI: 10.1016/j.biortech.2017.05.121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Comparative toxicity of three typical TiO2 NPs (Anatase, Rutile, and Degussa P25, 50mg/L respectively) under UVC irradiation (An+UV, Ru+UV, and P25+UV) on production and chemical characteristics of EPS in freshwater biofilms were investigated. Rutile was more stable in lake water, yet P25 and anatase were endowed with better photo-oxidation capacity. TiO2 NPs+UV enhanced total EPS, manifesting as LB-EPS increased by 98.16% (An+UV), 143.03% (Ru+UV), and 48.21% (P25+UV), while TB-EPS increased to 1.51 (An+UV), 1.36 (Ru+UV), and 1.61 (P25+UV) times greater than control without NPs and UVC, being mainly attributed to increase of polysaccharide and proteins. Three-dimensional fluorescence spectrum revealed tyrosine (An+UV and P25+UV) and tryptophan (P25+UV) protein-like substances vanished in LB-EPS. Fourier transform infrared spectroscopy indicated PO (An+UV and P25+UV) and CO or COC (P25+UV) disappeared in EPS. P25+UV and An+UV caused more lactate dehydrogenase release, while Ru+UV induced more reactive oxygen species and malondialdehyde production, consistent with decreased in cells viability.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Mengmeng Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jingjing Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xin Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
45
|
Bermejo-Nogales A, Fernández-Cruz ML, Navas JM. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regul Toxicol Pharmacol 2017; 90:297-307. [PMID: 28966106 DOI: 10.1016/j.yrtph.2017.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
Abstract
Risk assessment of engineered nanomaterials (ENMs) is being hindered by the sheer production volume of these materials. In this regard, the grouping and ranking of ENMs appears as a promising strategy. Here we sought to evaluate the usefulness of in vitro systems based on fish cell lines for ranking a set of ENMs on the basis of their cytotoxicity. We used the topminnow (Poeciliopsis lucida) liver cell line (PLHC-1) and the rainbow trout (Oncorhynchus mykiss) fibroblast-like gonadal cell line (RTG-2). ENMs were obtained from the EU Joint Research Centre repository. The size frequency distribution of ENM suspensions in cell culture media was characterized. Cytotoxicity was evaluated after 24 h of exposure. PLHC-1 cells exhibited higher sensitivity to the ENMs than RTG-2 cells. ZnO-NM was found to exert toxicity mainly by altering lysosome function and metabolic activity, while multi-walled carbon nanotubes (MWCNTs) caused plasma membrane disruption at high concentrations. The hazard ranking for toxicity (ZnO-NM > MWCNT ≥ CeO2-NM = SiO2-NM) was inversely related to the ranking in size detected in culture medium. Our findings reveal the suitability of fish cell lines for establishing hazard rankings of ENMs in the framework of integrated approaches to testing and assessment.
Collapse
Affiliation(s)
- A Bermejo-Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain
| | - M L Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain
| | - J M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
46
|
Srikanth B, Goutham R, Badri Narayan R, Ramprasath A, Gopinath KP, Sankaranarayanan AR. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 200:60-78. [PMID: 28570937 DOI: 10.1016/j.jenvman.2017.05.063] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 05/20/2023]
Abstract
The aim of this paper is to provide a review on the usage of different anchoring media (supports) for immobilising commonly employed photocatalysts for degradation of organic pollutants. The immobilisation of nano-sized photocatalysts can eliminate costly and impractical post-treatment recovery of spent photocatalysts in largescale operations. Some commonly employed immobilisation aids such as glass, carbonaceous substances, zeolites, clay and ceramics, polymers, cellulosic materials and metallic agents that have been previously discussed by various research groups have been reviewed. The study revealed that factors such as high durability, ease of availability, low density, chemical inertness and mechanical stability are primary factors responsible for the selection of suitable supports for catalysts. Common techniques for immobilisation namely, dip coating, cold plasma discharge, polymer assisted hydrothermal decomposition, RF magnetron sputtering, photoetching, solvent casting, electrophoretic deposition and spray pyrolysis have been discussed in detail. Finally, some common techniques adopted for the characterisation of the catalyst particles and their uses are also discussed.
Collapse
Affiliation(s)
- B Srikanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - R Goutham
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - R Badri Narayan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - A Ramprasath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - K P Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India.
| | - A R Sankaranarayanan
- Department of Civil Architectural and Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
47
|
Mahaye N, Thwala M, Cowan DA, Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:134-160. [PMID: 28927524 DOI: 10.1016/j.mrrev.2017.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key mechanisms of metal-based ENP-induced genotoxicity, (ii) identify key nanoparticle and environmental factors which influence the observed genotoxic effects, and (iii) highlight the challenges involved in interpreting reported data and provide recommendations on how these challenges might be addressed. We review the application of eight different genotoxicity assays, where the Comet Assay is generally preferred due to its capacity to detect low levels of DNA damage. Most ENPs have been shown to cause genotoxic responses; e.g., DNA or/and chromosomal fragmentation, or DNA strand breakage, but at unrealistic high concentrations. The genotoxicity of the ENPs was dependent on the inherent physico-chemical properties (e.g. size, coating, surface chemistry, e.tc.), and the presence of co-pollutants. To enhance the value of published genotoxicity data, the role of environmental processes; e.g., dissolution, aggregation and agglomeration, and adsorption of ENPs when released in aquatic systems, should be included, and assay protocols must be standardized. Such data could be used to model ENP genotoxicity processes in open environmental systems.
Collapse
Affiliation(s)
- N Mahaye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa; Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - M Thwala
- Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - N Musee
- Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
48
|
Wormington AM, Coral J, Alloy MM, Delmarè CL, Mansfield CM, Klaine SJ, Bisesi JH, Roberts AP. Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1661-1666. [PMID: 27925281 DOI: 10.1002/etc.3702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/06/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Nano-titanium dioxide (TiO2 ) is the most widely used form of nanoparticles in commercial industry and comes in 2 main configurations: rutile and anatase. Rutile TiO2 is used in ultraviolet (UV) screening applications, whereas anatase TiO2 crystals have a surface defect that makes them photoreactive. There are numerous reports in the literature of photo-induced toxicity to aquatic organisms following coexposure to anatase nano-TiO2 and UV. All natural freshwater contains varying amounts of natural organic matter (NOM), which can drive UV attenuation and quench reactive oxygen species (ROS) in aquatic ecosystems. The present research examined how NOM alters the photo-induced toxicity of anatase nano-TiO2 . Daphnia magna neonates were coexposed to NOM and photoexcited anatase nano-TiO2 for 48 h. Natural organic matter concentrations as low as 4 mg/L reduced anatase nano-TiO2 toxicity by nearly 100%. These concentrations of NOM attenuated UV by <10% in the exposure system. However, ROS production measured using a fluorescence assay was significantly reduced in a NOM concentration--dependent manner. Taken together, these data suggest that NOM reduces anatase nano-TiO2 toxicity via an ROS quenching mechanism and not by attenuation of UV. Environ Toxicol Chem 2017;36:1661-1666. © 2016 SETAC.
Collapse
Affiliation(s)
- Alexis M Wormington
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - Jason Coral
- Department of Biological Sciences & Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina, USA
| | - Matthew M Alloy
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - Carmen L Delmarè
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - Charles M Mansfield
- Department of Biological Sciences & Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina, USA
| | - Stephen J Klaine
- Department of Biological Sciences & Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina, USA
| | - Joseph H Bisesi
- Department of Environmental & Global Health, University of Florida, Gainesville, Florida, USA
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| |
Collapse
|
49
|
Aydın E, Türkez H, Hacımüftüoğlu F, Tatar A, Geyikoğlu F. Molecular genetic and biochemical responses in human airway epithelial cell cultures exposed to titanium nanoparticles in vitro. J Biomed Mater Res A 2017; 105:2056-2064. [PMID: 28028929 DOI: 10.1002/jbm.a.35994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 01/16/2023]
Abstract
Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017.
Collapse
Affiliation(s)
- Elanur Aydın
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, TR-25240, Turkey
| | - Hasan Türkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, TR-25240, Turkey
| | - Fazıl Hacımüftüoğlu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, TR-25240, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, TR-25240, Turkey
| | - Fatime Geyikoğlu
- Faculty of Science Department of Biology, Atatürk University, Erzurum, TR-25240, Turkey
| |
Collapse
|
50
|
Bermejo-Nogales A, Connolly M, Rosenkranz P, Fernández-Cruz ML, Navas JM. Negligible cytotoxicity induced by different titanium dioxide nanoparticles in fish cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:309-319. [PMID: 28062079 DOI: 10.1016/j.ecoenv.2016.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 10/28/2016] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) have a wide number of applications in cosmetic, solar and paint industries due to their photocatalyst and ultraviolet blocking properties. The continuous increase in the production of TiO2-NPs enhances the risk for this manufactured nanomaterial to enter water bodies through treated effluents or agricultural amendments. TiO2-NPs have shown very low toxicity in a number of aquatic organisms. However, there are no conclusive data about their deleterious effects and on their possible mechanisms of toxic action. At this level, in vitro cell culture systems are a useful tool to gain insight about processes underlying the toxicity of a wide variety of substances, including nanomaterials. Differences in the physiology of different taxa make advisable the use of cells coming from the taxon of interest, but collecting data from a variety of cellular types allows a better understanding of the studied processes. Taking all this into account, the aim of the present study was to assess the toxicity of three types of TiO2-NP, rutile hydrophobic (NM-103), rutile hydrophilic (NM-104) and rutile-anatase (NM-105), obtained from the EU Joint Research Centre (JRC) repository, using various fish cell lines (RTG-2, PLHC-1, RTH-149, RTL-W1) and rainbow trout primary hepatocytes. For comparative purposes, the effect of different dispersion protocols, end-point assays and extended exposure time was studied in a fish cell line (RTG-2) and in the rat hepatoma cell line (H4IIE). TiO2-NPs dispersions showed a variable degree of aggregation in cell culture media. Disruption of mitochondrial metabolic activity, plasma membrane integrity and lysosome function was not detected in any cell line after exposure to TiO2-NPs at any time and concentration ranges tested. These results are indicative of a low toxicity of the TiO2-NPs tested and show the usefulness of fish cells maintained in vitro as high throughput screening methods that can facilitate further testing in the framework of integrated testing strategies.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain; Heriott-Watt University, School of Life Sciences, Edinburgh, UK.
| | - Philipp Rosenkranz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - María-Luisa Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|