1
|
Isa V, Seveso D, Concari E, Becchi A, Saliu F, Lasagni M, Collina EM, Madaschi A, Lavorano S, Montano S, Louis YD, Montalbetti E. Evidence of oxidative stress in the soft coral Pinnigorgia flava (Nutting, 1910) exposed to secondary plastic nanofibers and related leachates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125433. [PMID: 39622405 DOI: 10.1016/j.envpol.2024.125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
Awareness of plastic pollution in marine habitats, such as coral reefs, has grown in recent years. Several studies have shown that tiny particles resulting from plastic breakdown, especially microplastics, can potentially harm corals. However, to date, there is very little evidence regarding the impact that nanoplastics (<1 μm) can have on the physiology and health of corals, particularly soft corals. In this study, we exposed the soft coral Pinnigorgia flava to two concentrations (0.1 and 1 mg/L) of secondary nanoplastics-specifically nanofibers obtained from the photodegradation of polypropylene nonwoven fabrics-and their related leachates, to evaluate the coral's cellular response through the analysis of antioxidant enzyme activities (SOD, CAT, GST, GR). Chemo-physical characterization of the nano-aggregates displayed an average size of 224.3 ± 8.1 nm, while GC-MS analyses of the leachates showed a variety of mono- and dicarboxylic acids. Although both nanoplastic treatments generated a cellular oxidative stress response, the physical interaction with secondary plastic fiber nano-aggregates affected cellular homeostasis more than the chemical interaction with the released compounds, triggering a stronger antioxidant response. The activity of all antioxidant enzymes increased with higher nanofiber concentrations, while this trend was not consistently observed for the leachates. Overall, SOD and CAT were the two most responsive antioxidant enzymes in cellular detoxification. Our study highlights the significant threat that plastic nanofibers and the polymers they release may pose to coral reefs.
Collapse
Affiliation(s)
- Valerio Isa
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, GE, 16128, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy.
| | - Eleonora Concari
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Alessandro Becchi
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Francesco Saliu
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Elena Maria Collina
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Andrea Madaschi
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, GE, 16128, Italy
| | - Simone Montano
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
| | - Yohan Didier Louis
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133, Palermo, Italy
| |
Collapse
|
2
|
Tisthammer KH, Martinez JA, Downs CA, Richmond RH. Differential molecular biomarker expression in corals over a gradient of water quality stressors in Maunalua Bay, Hawaii. Front Physiol 2024; 15:1346045. [PMID: 38476143 PMCID: PMC10928694 DOI: 10.3389/fphys.2024.1346045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Coral reefs globally face unprecedented challenges from anthropogenic stressors, necessitating innovative approaches for effective assessment and management. Molecular biomarkers, particularly those related to protein expressions, provide a promising avenue for diagnosing coral health at the cellular level. This study employed enzyme-linked immunosorbent assays to evaluate stress responses in the coral Porites lobata along an environmental gradient in Maunalua Bay, Hawaii. The results revealed distinct protein expression patterns correlating with anthropogenic stressor levels across the bay. Some proteins, such as ubiquitin and Hsp70, emerged as sensitive biomarkers, displaying a linear decrease in response along the environmental gradient, emphasizing their potential as indicators of stress. Our findings highlighted the feasibility of using protein biomarkers for real-time assessment of coral health and the identification of stressors. The identified biomarkers can aid in establishing stress thresholds and evaluating the efficacy of management interventions. Additionally, we assessed sediment and water quality from the inshore areas in the bay and identified organic contaminants, including polycyclic aromatic hydrocarbons and pesticides, in bay sediments and waters.
Collapse
Affiliation(s)
- Kaho H. Tisthammer
- Kewalo Marine Laboratory, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Craig A. Downs
- Haereticus Environmental Laboratory, Clifford, VA, United States
| | - Robert H. Richmond
- Kewalo Marine Laboratory, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
3
|
Rizzi C, Seveso D, De Grandis C, Montalbetti E, Lancini S, Galli P, Villa S. Bioconcentration and cellular effects of emerging contaminants in sponges from Maldivian coral reefs: A managing tool for sustainable tourism. MARINE POLLUTION BULLETIN 2023; 192:115084. [PMID: 37257411 DOI: 10.1016/j.marpolbul.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Tourism is the main income source for the Maldives, but concurrently, it represents a growing threat to its marine ecosystem. Here, we monitored the bioaccumulation of 15 emerging contaminants (ECs) in the Maldivian reef sponges Spheciospongia vagabunda collected in two resort islands (Athuruga and Thudufushi, Ari Atoll) and an inhabited island (Magoodhoo, Faafu Atoll), and we analysed their impact on different sponge cellular stress biomarkers. Caffeine and the insect repellent DEET were detected in sponges of all the islands, whereas the antibiotic erythromycin and the UV filter 4-methylbenzylidene camphor were found in resort islands only. Although concentrations were approximately a few ng/g d.w., we quantified various induced cellular effects, in particular an increase of the levels of the enzyme glutathione S-transferase involved in cell detoxification. Our results highlight the importance to increase awareness on ECs pollution, promoting the use of more environmental friendly products to achieving the sustainable development goals.
Collapse
Affiliation(s)
- Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Chiara De Grandis
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Stefania Lancini
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Paolo Galli
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives; University of Dubai, PO Box: 14143, Dubai Academic City, United Arab Emirates
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, Milano 20126, Italy
| |
Collapse
|
4
|
Medeiros IPM, Souza MM. Cell volume maintenance capacity of the sea anemone Bunodosoma cangicum: the effect of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50057-50066. [PMID: 36787068 DOI: 10.1007/s11356-023-25834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution. The accumulation of heavy metals in aquatic ecosystems has a significant effect on the biota, leading to impaired function. The aim of this study was to investigate the capacity of volume regulation in isolated cells of the sea anemone Bunodosoma cangicum exposed to nominal copper (Cu) concentrations of 5 and 50 µg L-1, associated or not with hypoosmotic (15‰) or hyperosmotic (45‰) shock for 15 min. In the absence of the metal, our results showed volume maintenance in all osmotic conditions. Our results showed that cell volume was maintained under all osmotic conditions in the absence of Cu. Similarly, no significant differences were observed in cell volumes under isosmotic and hyperosmotic conditions in the presence of both Cu concentrations. A similar homeostatic response was observed under the hypoosmotic condition with 5 µg L-1 Cu. Our results showed an increase in cell volume with exposure of the cells to the hypoosmotic condition and 50 µg L-1 Cu. The response could be associated with the increased bioavailability of Cu, reduced ability to resist multixenobiotics and their efflux pathways, and the impairment of water efflux in specialized transmembrane proteins. Therefore, B. cangicum pedal disk cells can tolerate osmotic variations in aquatic ecosystems. However, the capacity to regulate cell volume under hypoosmotic conditions can be affected by the presence of a metal contaminant (50 µg L-1 Cu), which could be due to the inhibition of water channels.
Collapse
Affiliation(s)
- Isadora Porto Martins Medeiros
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Marta Marques Souza
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil
| |
Collapse
|
5
|
Emanuela F, Erik C, Silvia F, Fiorella P, Mauro M, Stefano G. Peculiar polycyclic aromatic hydrocarbons accumulation patterns in a non-zooxanthellate scleractinian coral. MARINE POLLUTION BULLETIN 2022; 184:114109. [PMID: 36115194 DOI: 10.1016/j.marpolbul.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Frapiccini Emanuela
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Caroselli Erik
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Franzellitti Silvia
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Prada Fiorella
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Marini Mauro
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Goffredo Stefano
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
6
|
Godefroid M, Hédouin L, Mercière A, Dubois P. Thermal stress responses of the antipatharian Stichopathes sp. from the mesophotic reef of Mo'orea, French Polynesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153094. [PMID: 35051469 DOI: 10.1016/j.scitotenv.2022.153094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Antipatharians, also called black corals, are present in almost all oceans of the world, until extreme depths. In several regions, they aggregate in higher densities to form black coral beds that support diverse animal communities and create biodiversity hotspots. These recently discovered ecosystems are currently threatened by fishing activities and illegal harvesting for commercial purposes. Despite this, studies dedicated to the physiology of antipatharians are scarce and their responses to global change stressors have remained hardly explored since recently. Here, we present the first study on the physiological responses of a mesophotic antipatharian Stichopathes sp. (70-90 m) to thermal stress through a 16-d laboratory exposure (from 26 to 30.5 °C). Oxygen consumption measurements allowed identifying the physiological tipping point of Stichopathes sp. (Topt = 28.3 °C; 2.7 °C above mean ambient condition). Our results follow theoretical predictions as performances start to decrease beyond Topt, with lowered oxygen consumption rates, impairment of the healing capacities, increased probability of tissue necrosis and stress responses activated as a function of temperature (i.e. increase in mucocyte density and total antioxidant capacity). Altogether, our work indicates that Stichopathes sp. lives at suboptimal performances during the coldest months of the year, but also that it is likely to have low acclimatization capacity and a narrow thermal breadth.
Collapse
Affiliation(s)
- Mathilde Godefroid
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium.
| | - Laetitia Hédouin
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Alexandre Mercière
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Philippe Dubois
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium
| |
Collapse
|
7
|
Henley EM, Quinn M, Bouwmeester J, Daly J, Zuchowicz N, Lager C, Bailey DW, Hagedorn M. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci Rep 2021; 11:12525. [PMID: 34108494 PMCID: PMC8190081 DOI: 10.1038/s41598-021-91030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
Ocean warming, fueled by climate change, is the primary cause of coral bleaching events which are predicted to increase in frequency. Bleaching is generally damaging to coral reproduction, can be exacerbated by concomitant stressors like ultraviolet radiation (UVR), and can have lasting impacts to successful reproduction and potential adaptation. We compared morphological and physiological reproductive metrics (e.g., sperm motility, mitochondrial membrane integrity, egg volume, gametes per bundle, and fertilization and settlement success) of two Hawaiian Montipora corals after consecutive bleaching events in 2014 and 2015. Between the species, sperm motility and mitochondrial membrane potential had the most disparate results. Percent sperm motility in M. capitata, which declined to ~ 40% during bleaching from a normal range of 70-90%, was still less than 50% motile in 2017 and 2018 and had not fully recovered in 2019 (63% motile). By contrast, percent sperm motility in Montipora spp. was 86% and 74% in 2018 and 2019, respectively. This reduction in motility was correlated with damage to mitochondria in M. capitata but not Montipora spp. A major difference between these species is the physiological foundation of their UVR protection, and we hypothesize that UVR protective mechanisms inherent in Montipora spp. mitigate this reproductive damage.
Collapse
Affiliation(s)
- E Michael Henley
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA.
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.
| | - Mariko Quinn
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Jessica Bouwmeester
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Jonathan Daly
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Nikolas Zuchowicz
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Claire Lager
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Daniel W Bailey
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
8
|
May LA, Burnett AR, Miller CV, Pisarski E, Webster LF, Moffitt ZJ, Pennington P, Wirth E, Baker G, Ricker R, Woodley CM. Effect of Louisiana sweet crude oil on a Pacific coral, Pocillopora damicornis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105454. [PMID: 32179335 DOI: 10.1016/j.aquatox.2020.105454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Recent oil spill responses such as the Deepwater Horizon event have underscored the need for crude oil ecotoxicological threshold data for shallow water corals to assist in natural resource damage assessments. We determined the toxicity of a mechanically agitated oil-seawater mixture (high-energy water-accommodated fraction, HEWAF) of a sweet crude oil on a branched stony coral, Pocillopora damicornis. We report the results of two experiments: a 96 h static renewal exposure experiment and a "pulse-chase" experiment of three short-term exposure durations followed by a recovery period in artificial seawater. Five endpoints were used to determine ecotoxicological values: 1) algal symbiont chlorophyll fluorescence, 2) a tissue regeneration assay and a visual health metric with three endpoints: 3) tissue integrity, 4) tissue color, and 5) polyp behavior. The sum of 50 entrained polycyclic aromatic hydrocarbons (tPAH50) was used as a proxy for oil exposure. For the 96 h exposure dose response experiment, dark-adapted maximum quantum yield (Fv/Fm) of the dinoflagellate symbionts was least affected by crude oil (EC50 = 913 μg/L tPAH50); light-adapted effective quantum yield (EQY) was more sensitive (EC50 = 428 μg/L tPAH50). In the health assessment, polyp behavior (EC50 = 27 μg/L tPAH50) was more sensitive than tissue integrity (EC50 = 806 μg/L tPAH50) or tissue color (EC50 = 926 μg/L tPAH50). Tissue regeneration proved to be a particularly sensitive measurement for toxicity effects (EC50 = 10 μg/L tPAH50). Short duration (6-24 h) exposures using 503 μg/L tPAH50 (average concentration) resulted in negative impacts to P. damicornis and its symbionts. Recovery of chlorophyll a fluorescence levels for 6-24 h oil exposures was observed in a few hours (Fv/Fm) to several days (EQY) following recovery in fresh seawater. The coral health assessments for tissue integrity and tissue color were not affected following short-term oil exposure durations, but the 96 h treatment duration resulted in significant decreases for both. A reduction in polyp behavior (extension) was observed for all treatment durations, with recovery observed for the short-term (6-24 h) exposures within 1-2 days following placement in fresh seawater. Wounded and intact fragments exposed to oil treatments were particularly sensitive, with significant delays observed in tissue regeneration. Estimating ecotoxicological values for P. damicornis exposed to crude oil HEWAFs provides a basis for natural resource damage assessments for oil spills in reef ecosystems. These data, when combined with ecotoxicological values for other coral reef species, will contribute to the development of species sensitivity models.
Collapse
Affiliation(s)
- Lisa A May
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA.
| | - Athena R Burnett
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Carl V Miller
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Emily Pisarski
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Laura F Webster
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Zachary J Moffitt
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Paul Pennington
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, 219 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Edward Wirth
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Greg Baker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, 1305 East West Highway, Room 10317, Silver Spring, MD, 20910, USA
| | - Robert Ricker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, Assessment and Restoration Division, 1410 Neotomas Ave., Suite 110, Santa Rosa, CA, 95405, USA
| | - Cheryl M Woodley
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| |
Collapse
|
9
|
Ayalon I, de Barros Marangoni LF, Benichou JIC, Avisar D, Levy O. Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. GLOBAL CHANGE BIOLOGY 2019; 25:4194-4207. [PMID: 31512309 PMCID: PMC6900201 DOI: 10.1111/gcb.14795] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/22/2023]
Abstract
Coral reefs represent the most diverse marine ecosystem on the planet, yet they are undergoing an unprecedented decline due to a combination of increasing global and local stressors. Despite the wealth of research investigating these stressors, Artificial Light Pollution at Night (ALAN) or "ecological light pollution" represents an emerging threat that has received little attention in the context of coral reefs, despite the potential of disrupting the chronobiology, physiology, behavior, and other biological processes of coral reef organisms. Scleractinian corals, the framework builders of coral reefs, depend on lunar illumination cues to synchronize their biological rhythms such as behavior, reproduction and physiology. While, light pollution (POL) may mask and lead de-synchronization of these biological rhythms process. To reveal if ALAN impacts coral physiology, we have studied two coral species, Acropora eurystoma and Pocillopora damicornis, from the Gulf of Eilat/Aqaba, Red Sea, which is undergoing urban development that has led to severe POL at night. Our two experimental design data revealed that corals exposed to ALAN face an oxidative stress condition, show lower photosynthesis performances measured by electron transport rate (ETR), as well as changes in chlorophyll and algae density parameters. Testing different lights such as Blue LED and White LED spectrum showed more extreme impact in comparison to Yellow LEDs on coral physiology. The finding of this work sheds light on the emerging threat of POL and the impacts on the biology and ecology of Scleractinian corals, and will help to formulate specific management implementations to mitigate its potentially harmful impacts.
Collapse
Affiliation(s)
- Inbal Ayalon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
- Israel The H. Steinitz Marine Biology LaboratoryThe Interuniversity Institute for Marine Sciences of EilatEilatIsrael
- Porter School of the Environment and Earth SciencesFaculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
| | | | | | - Dror Avisar
- Porter School of the Environment and Earth SciencesFaculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| |
Collapse
|
10
|
Weizman E, Levy O. The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun Biol 2019; 2:282. [PMID: 31396562 PMCID: PMC6677750 DOI: 10.1038/s42003-019-0543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
Extreme weather events frequency and scale are altered due to climate change. Symbiosis between corals and their endosymbiotic-dinoflagellates (Symbiodinium) is susceptible to these events and can lead to what is known as bleaching. However, there is evidence for coral adaptive plasticity in the role of epigenetic that have acclimated to high-temperature environments. We have implemented ATAC-seq and RNA-seq to study the cnidarian-dinoflagellate model Exaptasia pallida (Aiptasia) and expose the role of chromatin-dynamics in response to thermal-stress. We have identified 1309 genomic sites that change their accessibility in response to thermal changes. Moreover, apo-symbiotic Aiptasia accessible sites were enriched with NFAT, ATF4, GATA3, SOX14, and PAX3 motifs and expressed genes related to immunological pathways. Symbiotic Aiptasia accessible sites were enriched with NKx3-1, HNF4A, IRF4 motifs and expressed genes related to oxidative-stress pathways. Our work opens a new path towards understanding thermal-stress gene regulation in association with gene activity and chromatin-dynamics.
Collapse
Affiliation(s)
- Eviatar Weizman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|
11
|
Murphy JWA, Collier AC, Richmond RH. Antioxidant enzyme cycling over reproductive lunar cycles in Pocillopora damicornis. PeerJ 2019; 7:e7020. [PMID: 31211013 PMCID: PMC6557253 DOI: 10.7717/peerj.7020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
The impacts of continued degradation of watersheds on coastal coral reefs world-wide is alarming, and action addressing anthropogenic stressors and subsequent rehabilitation of watersheds and adjacent reefs is an urgent priority. The aim of this study is to develop and improve the use of antioxidant enzymes as bioindicators of stress in coral species. In order to fully develop such tools, it is necessary to first understand baseline cycling of these enzymes within coral tissues. Due to inherent links between reproduction and oxidative stress, these aims may be facilitated by sampling coral tissues over reproductively-linked lunar cycles to determine variations from baseline. By developing a greater understanding of biochemical markers of stress in corals, specifically antioxidant defense enzymes catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) in Hawaiian Pocillopora damicornis, we have provided molecular tools that identify thresholds of stress on coral reefs. Our results suggest that the coral reproductive state is a significant factor affecting the activity of antioxidant enzymes. Specifically, CAT and GR display maximum activity during peak reproductive state. Whereas significant maximal Se-independent GPx and SOD activity was measured during off-peak reproductive cycles. Such insight into the cyclical variation of the activity of these enzymes should be applied towards differentiating the influence of natural biological activity cycling in diagnostic tests identifying the effects of different physical environmental factors and chemical pollutants on coral health. Through the development and application of these molecular biomarkers of stress, we look to improve our ability to identify problems at the sub-lethal level, when action can be taken to mitigate a/biotic impacts.
Collapse
Affiliation(s)
- James W A Murphy
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, United States of America.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii (HI), United States of America
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert H Richmond
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
12
|
Turner NR, Renegar DA. Petroleum hydrocarbon toxicity to corals: A review. MARINE POLLUTION BULLETIN 2017; 119:1-16. [PMID: 28502453 DOI: 10.1016/j.marpolbul.2017.04.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills.
Collapse
Affiliation(s)
- Nicholas R Turner
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania, FL 33004, USA.
| | - D Abigail Renegar
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania, FL 33004, USA
| |
Collapse
|
13
|
Salas BH, Haslun JA, Strychar KB, Ostrom PH, Cervino JM. Site-specific variation in gene expression from Symbiodinium spp. associated with offshore and inshore Porites astreoides in the lower Florida Keys is lost with bleaching and disease stress. PLoS One 2017; 12:e0173350. [PMID: 28355291 PMCID: PMC5371298 DOI: 10.1371/journal.pone.0173350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/20/2017] [Indexed: 11/18/2022] Open
Abstract
Scleractinian coral are experiencing unprecedented rates of mortality due to increases in sea surface temperatures in response to global climate change. Some coral species however, survive high temperature events due to a reduced susceptibility to bleaching. We investigated the relationship between bleaching susceptibility and expression of five metabolically related genes of Symbiodinium spp. from the coral Porites astreoides originating from an inshore and offshore reef in the Florida Keys. The acclimatization potential of Symbiodinium spp. to changing temperature regimes was also measured via a two-year reciprocal transplant between the sites. Offshore coral fragments displayed significantly higher expression in Symbiodinium spp. genes PCNA, SCP2, G3PDH, PCP and psaE than their inshore counterparts (p<0.05), a pattern consistent with increased bleaching susceptibility in offshore corals. Additionally, gene expression patterns in Symbiodinium spp. from site of origin were conserved throughout the two-year reciprocal transplant, indicating acclimatization did not occur within this multi-season time frame. Further, laboratory experiments were used to investigate the influence of acute high temperature (32°C for eight hours) and disease (lipopolysaccharide of Serratia marcescens) on the five metabolically related symbiont genes from the same offshore and inshore P. astreoides fragments. Gene expression did not differ between reef fragments, or as a consequence of acute exposure to heat or heat and disease, contrasting to results found in the field. Gene expression reported here indicates functional variation in populations of Symbiodinium spp. associated with P. astreoides in the Florida Keys, and is likely a result of localized adaptation. However, gene expression patterns observed in the lab imply that functional variation in zooxanthellae observed under conditions of chronic moderate stress is lost under the acute extreme conditions studied here.
Collapse
Affiliation(s)
- Briana Hauff Salas
- University of Texas School of Medicine, San Antonio, TX, United States of America
| | - Joshua A Haslun
- Michigan State University, Department of Integrative Biology, East Lansing, MI, United States of America
| | - Kevin B Strychar
- Annis Water Resources Institute-Grand Valley State University, Muskegon, MI, United States of America
| | - Peggy H Ostrom
- Michigan State University, Department of Integrative Biology, East Lansing, MI, United States of America
| | - James M Cervino
- Woods Hole Oceanographic Institute, Department of Marine Chemistry & Geochemistry, Woods Hole, MA, United States of America
| |
Collapse
|
14
|
Seveso D, Montano S, Reggente MAL, Maggioni D, Orlandi I, Galli P, Vai M. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 2017; 22:225-236. [PMID: 27988888 PMCID: PMC5352596 DOI: 10.1007/s12192-016-0756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives.
| | - Simone Montano
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Melissa Amanda Ljubica Reggente
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Davide Maggioni
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Ivan Orlandi
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Galli
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Marina Vai
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
15
|
Montilla LM, Ramos R, García E, Cróquer A. Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene. DISEASES OF AQUATIC ORGANISMS 2016; 119:153-161. [PMID: 27137073 DOI: 10.3354/dao02980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.
Collapse
Affiliation(s)
- Luis Miguel Montilla
- Universidad Simón Bolívar, Departamento de Estudios Ambientales, Laboratorio de Ecología Experimental, Apdo. 89000, Caracas, Venezuela
| | | | | | | |
Collapse
|
16
|
Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:265-88. [PMID: 26487337 DOI: 10.1007/s00244-015-0227-7] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/13/2015] [Indexed: 05/26/2023]
Abstract
Benzophenone-3 (BP-3; oxybenzone) is an ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet light. Oxybenzone is an emerging contaminant of concern in marine environments—produced by swimmers and municipal, residential, and boat/ship wastewater discharges. We examined the effects of oxybenzone on the larval form (planula) of the coral Stylophora pistillata, as well as its toxicity in vitro to coral cells from this and six other coral species. Oxybenzone is a photo-toxicant; adverse effects are exacerbated in the light. Whether in darkness or light, oxybenzone transformed planulae from a motile state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of oxybenzone. Oxybenzone is a genotoxicant to corals, exhibiting a positive relationship between DNA-AP lesions and increasing oxybenzone concentrations. Oxybenzone is a skeletal endocrine disruptor; it induced ossification of the planula, encasing the entire planula in its own skeleton. The LC50 of planulae exposed to oxybenzone in the light for an 8- and 24-h exposure was 3.1 mg/L and 139 µg/L, respectively. The LC50s for oxybenzone in darkness for the same time points were 16.8 mg/L and 779 µg/L. Deformity EC20 levels (24 h) of planulae exposed to oxybenzone were 6.5 µg/L in the light and 10 µg/L in darkness. Coral cell LC50s (4 h, in the light) for 7 different coral species ranges from 8 to 340 µg/L, whereas LC20s (4 h, in the light) for the same species ranges from 0.062 to 8 µg/L. Coral reef contamination of oxybenzone in the U.S. Virgin Islands ranged from 75 µg/L to 1.4 mg/L, whereas Hawaiian sites were contaminated between 0.8 and 19.2 µg/L. Oxybenzone poses a hazard to coral reef conservation and threatens the resiliency of coral reefs to climate change.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change. PLoS One 2015; 10:e0139223. [PMID: 26510159 PMCID: PMC4624983 DOI: 10.1371/journal.pone.0139223] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/09/2015] [Indexed: 01/01/2023] Open
Abstract
Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.
Collapse
|
18
|
Hauff B, Cervino JM, Haslun JA, Krucher N, Wier AM, Mannix AL, Hughen K, Strychar KB. Genetically divergent Symbiodinium sp. display distinct molecular responses to pathogenic Vibrio and thermal stress. DISEASES OF AQUATIC ORGANISMS 2014; 112:149-159. [PMID: 25449326 DOI: 10.3354/dao02802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Global climate change and anthropogenic activities are threatening the future survival of coral reef ecosystems. The ability of reef-building zooxanthellate coral to survive these stressors may be determined through fundamental differences within their symbiotic dinoflagellates (Symbiodinium sp.). We define the in vitro apoptotic response of 2 evolutionarily distant Symbiodinium sp., subtypes B2 and C1, to determine the synergistic effects of disease and temperature on cell viability using flow cytometry. The putative yellow band disease (YBD) consortium of Vibrio spp. bacteria and temperature (33°C) had a positive synergistic effect on C1 apoptosis, while B2 displayed increased apoptosis to elevated temperature (29 and 33°C), the Vibrio consortium, and a lone virulent strain of V. alginolyticus, but no synergistic effects. Additionally, heat shock protein 60 expression revealed differential cell-mediated temperature sensitivity between subtypes via western blotting. This result marks the first evidence of Symbiodinium sp. apoptotic variations to YBD pathogens and emphasizes the potential impact of synergistic stress on globally distributed coral-Symbiodinium symbioses.
Collapse
Affiliation(s)
- Briana Hauff
- Michigan State University, Department of Zoology, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maor-Landaw K, Karako-Lampert S, Waldman Ben-Asher H, Goffredo S, Falini G, Dubinsky Z, Levy O. Gene expression profiles during short-term heat stress in the red sea coral Stylophora pistillata. GLOBAL CHANGE BIOLOGY 2014; 20:3026-35. [PMID: 24706387 DOI: 10.1111/gcb.12592] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 05/21/2023]
Abstract
During the past several decades, corals worldwide have been affected by severe bleaching events leading to wide-spread coral mortality triggered by global warming. The symbiotic Red Sea coral Stylophora pistillata from the Gulf of Eilat is considered an opportunistic 'r' strategist. It can thrive in relatively unstable environments and is considered a stress-tolerant species. Here, we used a S. pistillata custom microarray to examine gene expression patterns and cellular pathways during short-term (13-day) heat stress. The results allowed us to identify a two-step reaction to heat stress, which intensified significantly as the temperature was raised to a 32 °C threshold, beyond which, coping strategies failed at 34 °C. We identified potential 'early warning genes' and 'severe heat-related genes'. Our findings suggest that during short-term heat stress, S. pistillata may divert cellular energy into mechanisms such as the ER-unfolded protein response (UPR) and ER-associated degradation (ERAD) at the expense of growth and biomineralization processes in an effort to survive and subsequently recover from the stress. We suggest a mechanistic theory for the heat stress responses that may explain the success of some species which can thrive under a wider range of temperatures relative to others.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Biomarkers of dissolved oxygen stress in oysters: a tool for restoration and management efforts. PLoS One 2014; 9:e104440. [PMID: 25116465 PMCID: PMC4130543 DOI: 10.1371/journal.pone.0104440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/14/2014] [Indexed: 01/17/2023] Open
Abstract
The frequency and intensity of anoxic and hypoxic events are increasing worldwide, creating stress on the organisms that inhabit affected waters. To understand the effects of low dissolved oxygen stress on oysters, hatchery-reared oysters were placed in cages and deployed along with continuously recording environmental data sondes at a reef site in Mobile Bay, AL that typically experiences low oxygen conditions. To detect and measure sublethal stress, we measured growth and survival of oysters as well as expression of three biomarkers, heat shock protein 70 (HSP70), hypoxia inducible factor (HIF) and phospho-p38 MAP kinase, in tissues from juvenile and adult oysters. Survival rates were high for both juvenile and adult oysters. Expression levels of each of the 3 isoforms of HSP 70 were negatively correlated to dissolved oxygen (DO) concentrations, suggesting that HSP 70 is useful to quantify sublethal effects of DO stress. Results for HIF and phospho-p38 MAP kinase were inconclusive. Test deployments of oysters to assess expression of HSP 70 relative to environmental conditions will be useful, in addition to measuring abiotic factors, to identify appropriate sites for restoration, particularly to capture negative effects of habitat quality on biota before lethal impacts are incurred.
Collapse
|
21
|
Godø OR, Klungsøyr J, Meier S, Tenningen E, Purser A, Thomsen L. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations. MARINE POLLUTION BULLETIN 2014; 84:236-250. [PMID: 24908516 DOI: 10.1016/j.marpolbul.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites.
Collapse
Affiliation(s)
- Olav Rune Godø
- Institute of Marine Research, Bergen, PO Box 1870, Nordnes, 5817 Bergen, Norway.
| | - Jarle Klungsøyr
- Institute of Marine Research, Bergen, PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Sonnich Meier
- Institute of Marine Research, Bergen, PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Eirik Tenningen
- Institute of Marine Research, Bergen, PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Autun Purser
- Jacobs University, OceanLab, 28207 Bremen, Germany
| | | |
Collapse
|
22
|
Hook SE, Gallagher EP, Batley GE. The role of biomarkers in the assessment of aquatic ecosystem health. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2014; 10:327-41. [PMID: 24574147 PMCID: PMC4750648 DOI: 10.1002/ieam.1530] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 05/19/2023]
Abstract
Ensuring the health of aquatic ecosystems and identifying species at risk from the detrimental effects of environmental contaminants can be facilitated by integrating analytical chemical analysis with carefully selected biological endpoints measured in tissues of species of concern. These biological endpoints include molecular, biochemical, and physiological markers (i.e., biomarkers) that when integrated, can clarify issues of contaminant bioavailability, bioaccumulation, and ecological effects while enabling a better understanding of the effects of nonchemical stressors. In the case of contaminant stressors, an understanding of chemical modes of toxicity can be incorporated with diagnostic markers of aquatic animal physiology to help understand the health status of aquatic organisms in the field. Furthermore, new approaches in functional genomics and bioinformatics can help discriminate individual chemicals, or groups of chemicals among complex mixtures that may contribute to adverse biological effects. Although the use of biomarkers is not a new paradigm, such approaches have been underused in the context of ecological risk assessment and natural resource damage assessment. From a regulatory standpoint, these approaches can help better assess the complex effects from coastal development activities to assessing ecosystem integrity pre- and post development or site remediation.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Graeme E Batley
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| |
Collapse
|
23
|
Downs CA, Kramarsky-Winter E, Fauth JE, Segal R, Bronstein O, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Kushmaro A, Loya Y. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:175-91. [PMID: 24352829 DOI: 10.1007/s10646-013-1161-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2013] [Indexed: 05/26/2023]
Abstract
Benzophenone-2 (BP-2) is an additive to personal-care products and commercial solutions that protects against the damaging effects of ultraviolet light. BP-2 is an "emerging contaminant of concern" that is often released as a pollutant through municipal and boat/ship wastewater discharges and landfill leachates, as well as through residential septic fields and unmanaged cesspits. Although BP-2 may be a contaminant on coral reefs, its environmental toxicity to reefs is unknown. This poses a potential management issue, since BP-2 is a known endocrine disruptor as well as a weak genotoxicant. We examined the effects of BP-2 on the larval form (planula) of the coral, Stylophora pistillata, as well as its toxicity to in vitro coral cells. BP-2 is a photo-toxicant; adverse effects are exacerbated in the light versus in darkness. Whether in darkness or light, BP-2 induced coral planulae to transform from a motile planktonic state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of BP-2. BP-2 is a genotoxicant to corals, exhibiting a strong positive relationship between DNA-AP lesions and increasing BP-2 concentrations. BP-2 exposure in the light induced extensive necrosis in both the epidermis and gastro dermis. In contrast, BP-2 exposure in darkness induced autophagy and autophagic cell death.The LC50 of BP-2 in the light for an 8 and 24 hour exposure was 120 parts per million (ppm) and 165 parts per billion (ppb), respectively. The LC50s for BP-2 in darkness for the same time points were 144 parts per million and 548 parts per billion [corrected].
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA, 24533, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pratte ZA. Microbial functional genes associated with coral health and disease. DISEASES OF AQUATIC ORGANISMS 2013; 107:161-71. [PMID: 24334358 DOI: 10.3354/dao02664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Both the incidence and prevalence of coral disease are rapidly increasing, and as a consequence, many studies involving coral microbial associates have been conducted. However, very few of these have considered microbial functional genes. This is an underutilized approach for studying coral disease etiology which is capable of revealing the molecular processes of the coral microbial community. This review presents a summary of the known microbial functional genes that have been linked to coral health and disease. Overall functional gene diversity tended to be lower in healthy corals than diseased or bleached corals, and respiration and photosynthesis functional genes appeared to be crucial to coral health. Genes associated with the nitrogen cycle were the most studied, were highly represented within the coral holobiont, and their expression often shifted in diseased or stressed individuals. Carbon metabolism, such as fatty acid and amino acid catabolism, also tended to shift in unhealthy corals. Genes associated with sulfite respiration as well as dimethylsulfoniopropionate degradation have been detected, although they have yet to be directly associated with coral disease. In addition, genes associated with xenobiotic degradation, antibiotic resistance, virulence, and oxidative stress may all be involved in maintaining coral health. However, the links between these functional genes and their roles in interacting with the coral host are not clear. Continuing identification of coral-associated microbial functional genes within the coral holobiont should facilitate advances in the field of coral health and disease.
Collapse
Affiliation(s)
- Zoe A Pratte
- Florida International University, Department of Biological Sciences, 11200 SW 8th Street, Miami, Florida 33199, USA
| |
Collapse
|
25
|
Heavy metals affect regulatory volume decrease (RVD) in nematocytes isolated from the jellyfish Pelagia noctiluca. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:199-206. [DOI: 10.1016/j.cbpa.2013.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/20/2022]
|
26
|
Morrow KM, Ritson-Williams R, Ross C, Liles MR, Paul VJ. Macroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals. PLoS One 2012; 7:e44859. [PMID: 23028648 PMCID: PMC3441602 DOI: 10.1371/journal.pone.0044859] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/08/2012] [Indexed: 12/14/2022] Open
Abstract
Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Auburn University, Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America.
| | | | | | | | | |
Collapse
|