1
|
Adams EM, Gulka JE, Yang Y, Burton MEH, Burns DA, Buxton V, Cleckner L, DeSorbo CR, Driscoll CT, Evers DC, Fisher N, Lane O, Mao H, Riva-Murray K, Millard G, Razavi NR, Richter W, Sauer AK, Schoch N. Distribution and trends of mercury in aquatic and terrestrial biota of New York, USA: a synthesis of 50 years of research and monitoring. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:959-976. [PMID: 37861861 DOI: 10.1007/s10646-023-02704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Mercury (Hg) inputs have particularly impacted the northeastern United States due to its proximity to anthropogenic emissions sources and abundant habitats that efficiently convert inorganic Hg into methylmercury. Intensive research and monitoring efforts over the past 50 years in New York State, USA, have informed the assessment of the extent and impacts of Hg exposure on fishes and wildlife. By synthesizing Hg data statewide, this study quantified temporal trends of Hg exposure, spatiotemporal patterns of risk, the role that habitat and Hg deposition play in producing spatial patterns of Hg exposure in fish and other wildlife, and the effectiveness of current monitoring approaches in describing Hg trends. Most temporal trends were stable, but we found significant declines in Hg exposure over time in some long-sampled fish. The Adirondack Mountains and Long Island showed the greatest number of aquatic and terrestrial species with elevated Hg concentrations, reflecting an unequal distribution of exposure risk to fauna across the state. Persistent hotspots were detected for aquatic species in central New York and the Adirondack Mountains. Elevated Hg concentrations were associated with open water, forests, and rural, developed habitats for aquatic species, and open water and forested habitats for terrestrial species. Areas of consistently elevated Hg were found in areas driven by atmospheric and local Hg inputs, and habitat played a significant role in translating those inputs into biotic exposure. Continued long-term monitoring will be important in evaluating how these patterns continue to change in the face of changing land cover, climate, and Hg emissions.
Collapse
Affiliation(s)
- Evan M Adams
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Julia E Gulka
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Yang Yang
- Western Carolina University, 1 University Way, Cullowhee, NC, 28723, USA
| | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Douglas A Burns
- USGS New York Water Science Center, 425 Jordan Road, Troy, NY, 12180, USA
| | - Valerie Buxton
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 2125 Derring Hall, 926 West Campus Drive, Blacksburg, VA, 24061, USA
- Adirondack Center for Loon Conservation, PO Box 195, Ray Brook, NY, 12977, USA
| | - Lisa Cleckner
- Finger Lakes Institute, 601 South Maine Street, Geneva, NY, 14456, USA
- Hobart and William Smith Colleges, 300 Pulteney St., Geneva, NY, 14456, USA
| | | | - Charles T Driscoll
- Syracuse University, Department of Civil and Environmental Engineering, 151 Link Hall, Syracuse, NY, 13244, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Nicholas Fisher
- Stony Brook University, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony, NY, 11794, USA
| | - Oksana Lane
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Huiting Mao
- SUNY-ESF Chemistry Department, 1 Forestry Derive, Syracuse, NY, 13210, USA
| | - Karen Riva-Murray
- USGS New York Water Science Center, 425 Jordan Road, Troy, NY, 12180, USA
| | - Geoffrey Millard
- Syracuse University, Department of Civil and Environmental Engineering, 151 Link Hall, Syracuse, NY, 13244, USA
- U.S.A. Environmental Protection Agency, Office of Research and Development, 26 W Martin Luther King Dr, Cincinnati, OH, 45220, USA
| | - N Roxanna Razavi
- SUNY-ESF Department of Environmental Biology, 1 Forestry Derive, Syracuse, NY, 13210, USA
| | - Wayne Richter
- New York State Department of Environmental Conservation, Division of Fish and Wildlife, 625 Broadway, Albany, NY, 12233-4756, USA
| | - Amy K Sauer
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Nina Schoch
- Adirondack Center for Loon Conservation, PO Box 195, Ray Brook, NY, 12977, USA
| |
Collapse
|
2
|
Saunders SP, Piper W, Farr MT, Bateman BL, Michel NL, Westerkam H, Wilsey CB. Interrelated impacts of climate and land-use change on a widespread waterbird. J Anim Ecol 2021; 90:1165-1176. [PMID: 33754380 DOI: 10.1111/1365-2656.13444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Together climate and land-use change play a crucial role in determining species distribution and abundance, but measuring the simultaneous impacts of these processes on current and future population trajectories is challenging due to time lags, interactive effects and data limitations. Most approaches that relate multiple global change drivers to population changes have been based on occurrence or count data alone. We leveraged three long-term (1995-2019) datasets to develop a coupled integrated population model-Bayesian population viability analysis (IPM-BPVA) to project future survival and reproductive success for common loons Gavia immer in northern Wisconsin, USA, by explicitly linking vital rates to changes in climate and land use. The winter North Atlantic Oscillation (NAO), a broad-scale climate index, immediately preceding the breeding season and annual changes in developed land cover within breeding areas both had strongly negative influences on adult survival. Local summer rainfall was negatively related to fecundity, though this relationship was mediated by a lagged interaction with the winter NAO, suggesting a compensatory population-level response to climate variability. We compared population viability under 12 future scenarios of annual land-use change, precipitation and NAO conditions. Under all scenarios, the loon population was expected to decline, yet the steepest declines were projected under positive NAO trends, as anticipated with ongoing climate change. Thus, loons breeding in the northern United States are likely to remain affected by climatic processes occurring thousands of miles away in the North Atlantic during the non-breeding period of the annual cycle. Our results reveal that climate and land-use changes are differentially contributing to loon population declines along the southern edge of their breeding range and will continue to do so despite natural compensatory responses. We also demonstrate that concurrent analysis of multiple data types facilitates deeper understanding of the ecological implications of anthropogenic-induced change occurring at multiple spatial scales. Our modelling approach can be used to project demographic responses of populations to varying environmental conditions while accounting for multiple sources of uncertainty, an increasingly pressing need in the face of unprecedented global change.
Collapse
Affiliation(s)
| | - Walter Piper
- Schmid College of Science & Technology, Chapman University, Orange, CA, USA
| | - Matthew T Farr
- Department of Integrative Biology, Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
3
|
Evers DC, Sauer AK, Burns DA, Fisher NS, Bertok DC, Adams EM, Burton MEH, Driscoll CT. A synthesis of patterns of environmental mercury inputs, exposure and effects in New York State. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1565-1589. [PMID: 33170395 PMCID: PMC7661403 DOI: 10.1007/s10646-020-02291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 05/15/2023]
Abstract
Mercury (Hg) pollution is an environmental problem that adversely affects human and ecosystem health at local, regional, and global scales-including within New York State. More than two-thirds of the Hg currently released to the environment originates, either directly or indirectly, from human activities. Since the early 1800s, global atmospheric Hg concentrations have increased by three- to eight-fold over natural levels. In the U.S., atmospheric emissions and point-source releases to waterways increased following industrialization into the mid-1980s. Since then, water discharges have largely been curtailed. As a result, Hg emissions, atmospheric concentrations, and deposition over the past few decades have declined across the eastern U.S. Despite these decreases, Hg pollution persists. To inform policy efforts and to advance public understanding, the New York State Energy Research and Development Authority (NYSERDA) sponsored a scientific synthesis of information on Hg in New York State. This effort includes 23 papers focused on Hg in atmospheric deposition, water, fish, and wildlife published in Ecotoxicology. New York State experiences Hg contamination largely due to atmospheric deposition. Some landscapes are inherently sensitive to Hg inputs driven by the transport of inorganic Hg to zones of methylation, the conversion of inorganic Hg to methylmercury, and the bioaccumulation and biomagnification along food webs. Mercury concentrations exceed human and ecological risk thresholds in many areas of New York State, particularly the Adirondacks, Catskills, and parts of Long Island. Mercury concentrations in some biota have declined in the Eastern Great Lakes Lowlands and the Northeastern Highlands over the last four decades, concurrent with decreases in water releases and air emissions from regional and U.S. sources. However, widespread changes have not occurred in other ecoregions of New York State. While the timing and magnitude of the response of Hg levels in biota varies, policies expected to further diminish Hg emissions should continue to decrease Hg concentrations in food webs, yielding benefits to the fish, wildlife, and people of New York State. Anticipated improvements in the Hg status of aquatic ecosystems are likely to be greatest for inland surface waters and should be roughly proportional to declines in atmospheric Hg deposition. Efforts that advance recovery from Hg pollution in recent years have yielded significant progress, but Hg remains a pollutant of concern. Indeed, due to this extensive compilation of Hg observations in biota, it appears that the extent and intensity of the contamination on the New York landscape and waterscape is greater than previously recognized. Understanding the extent of Hg contamination and recovery following decreases in atmospheric Hg deposition will require further study, underscoring the need to continue existing monitoring efforts.
Collapse
Affiliation(s)
- D C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - A K Sauer
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
- Syracuse University, Syracuse, NY, 13244, USA
| | - D A Burns
- U.S. Geological Survey, Troy, NY, 12180, USA
| | - N S Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - D C Bertok
- New York State Energy Research and Development Authority, Albany, NY, 12203, USA
| | - E M Adams
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - M E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | | |
Collapse
|
4
|
Schoch N, Yang Y, Yanai RD, Buxton VL, Evers DC, Driscoll CT. Spatial patterns and temporal trends in mercury concentrations in common loons (Gavia immer) from 1998 to 2016 in New York's Adirondack Park: has this top predator benefitted from mercury emission controls? ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1774-1785. [PMID: 31691909 DOI: 10.1007/s10646-019-02119-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg), a neurotoxic pollutant, can be transported long distances through the atmosphere and deposited in remote areas, threatening aquatic wildlife through methylation and bioaccumulation. Over the last two decades, air quality management has resulted in decreases in Hg emissions from waste incinerators and coal-fired power plants across North America. The common loon (Gavia immer) is an apex predator of the aquatic food web. Long-term monitoring of Hg in loons can help track biological recovery in response to the declines in atmospheric Hg that have been documented in the northeastern USA. To assess spatial patterns and temporal trends in Hg exposure of the common loon in the Adirondack Park of New York State, we analyzed Hg concentrations in loon blood and egg samples from 116 lakes between 1998 and 2016. We found spatially variable Hg concentrations in adult loon blood and feathers across the Park. Loon Hg concentrations (converted to female loon units) increased 5.7% yr-1 from 1998 to 2010 (p = 0.04), and then stabilized at 1.70 mg kg-1 from 2010 to 2016 (p = 0.91), based on 760 observations. Concentrations of Hg in juvenile loons also increased in the early part of the record, stabilizing 2 years before Hg concentrations stabilized in adults. For 52 individual lakes with samples from at least 4 different years, loon Hg increased in 34 lakes and decreased in 18 lakes. Overall, we found a delayed recovery of Hg concentrations in loons, despite recent declines in atmospheric Hg.
Collapse
Affiliation(s)
- Nina Schoch
- Formerly of Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
- Adirondack Center for Loon Conservation, PO Box 195, Ray Brook, NY, 12977, USA
| | - Yang Yang
- Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| | - Ruth D Yanai
- Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Valerie L Buxton
- Adirondack Center for Loon Conservation, PO Box 195, Ray Brook, NY, 12977, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|