1
|
Macri IN, Latorre Estivalis JM, Nery D, Derguy MR, Cristos DS, Zavala JA, Farina WM. Detoxification response in honey bee larvae exposed to agricultural intensification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179388. [PMID: 40245504 DOI: 10.1016/j.scitotenv.2025.179388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Honey bee Apis mellifera colonies located in agroecosystems are exposed to pesticides and more fragmented habitats. The resources that bees obtain in these environments may be exposed to agrochemicals, which can accumulate in their colonies and be distributed among their nest mates. Hives placed in an agricultural setting located in the region of the Argentine Pampas were studied. Changes in the expression levels of insect cytochrome P450s, enzymes involved in the detoxification of xenobiotics, and the presence of pesticides in hive products at different times of crop management were evaluated. Our results showed that CYP6AS2 and CYP6AS4 expression in honey bee larvae increased significantly after crop flowering and pesticide application. Furthermore, residues of the herbicides atrazine and glyphosate, and the insecticide chlorantraniliprole were found in beeswax and honey samples collected from the same beehives, and their concentrations correlated with the expression profiles of CYP6AS2, CYP6AS3 and CYP9BD1. These results underscore the potential risks of pesticides exposure to larval development, highlighting the need to mitigate agrochemical use in agricultural landscapes to safeguard honey bee colonies.
Collapse
Affiliation(s)
- Ivana N Macri
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Ingeniería Rural, Centro de Investigación de Agroindustria (CIA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Jose M Latorre Estivalis
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Denise Nery
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Rosa Derguy
- Laboratorio de Investigaciones de Sistemas Ecológicos y Ambientales (LISEA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Diego S Cristos
- Instituto de Tecnología de los Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Jorge A Zavala
- Cátedra de Bioquímica and Cátedra de Zoología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Margaoan R, Papa G, Nicolescu A, Cornea-Cipcigan M, Kösoğlu M, Topal E, Negri I. Environmental pollution effect on honey bees and their derived products: a comprehensive analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10370-10391. [PMID: 38847955 PMCID: PMC11996992 DOI: 10.1007/s11356-024-33754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/17/2024] [Indexed: 04/15/2025]
Abstract
Several factors, including environmental degradation, air pollution, intense urbanization, excessive agriculture, and climate change, endanger the well-being of animals and plants. One of the major issues with an increasingly negative impact is agricultural contamination with pesticides and antibiotics. Seed coatings with neonicotinoid insecticides used as a protective layer against pests are shown to exceed the permissible limits in most cases. Neonicotinoid compounds bind to nicotinic acetylcholine receptors, therefore affecting the honey bees' brain. Heavy metals in higher concentrations are lethal for honey bees, and the residue in bee products might pose a threat to human health. Highly effective acaricides used to treat Varroa destructor infestations in honey bee colonies have negative effects on honey bee reproduction, olfaction, and honey production. Furthermore, amitraz and fluvalinate are mostly found in the highest amounts and lead to decreased honey production and reduced colony reproduction, along with decreased learning ability and memory. However, scientific studies have shown that honey bees act as a reliable bio-indicator of environmental pollution. In response to the growing demand for bee products, the effects of adulteration and improper storage conditions have gotten worse and represent a new risk factor. In light of the shifting global economy, it is important to analyze consumer expectations and adjust manufacturing accordingly. By ensuring the manufacture of high-quality, traceable products devoid of drug residues, consumers will be better protected from subsequent health problems. This review's objectives are based on the necessity of identifying the risks associated with honey bees and bee products.
Collapse
Affiliation(s)
- Rodica Margaoan
- Department of Animal Production and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Giulia Papa
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alexandru Nicolescu
- Department of Horticulture and Landscape, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337, Cluj-Napoca, Romania.
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscape, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mustafa Kösoğlu
- Apiculture Research Center, Aegean Agricultural Research Institute, 35661, Izmir, Turkey
| | - Erkan Topal
- Izmir Food Control Laboratory Directorate, Bornova, 35100, Izmir, Turkey
| | - Ilaria Negri
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
3
|
Liu J, Shi J, Hu Y, Su Y, Zhang Y, Wu X. Flumethrin exposure perturbs gut microbiota structure and intestinal metabolism in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135886. [PMID: 39298952 DOI: 10.1016/j.jhazmat.2024.135886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
4
|
He C, Li Y, Zhou Z, Wei Y, Zhu Y, Han Y, Li Y, Yang R, Xu K. The role of neuropeptide prothoracicotropic hormone (PTTH) - Torso in pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106139. [PMID: 39477593 DOI: 10.1016/j.pestbp.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
The neuropeptide prothoracicotropic hormone (PTTH) plays a key role in regulating ecdysone synthesis and promoting insect metamorphosis. Pyriproxyfen is a juvenile hormone analogue. We previously reported that pyriproxyfen disrupts ecdysone secretion and inhibits larval-pupal metamorphosis in silkworms. However, the specific molecular mechanisms by which pyriproxyfen interferes with ecdysone signaling remain to be elucidated. Herein, the RNA-seq analysis on the ecdysone-secretion organ prothoracic gland (PG) was conducted following pyriproxyfen exposure. A total of 3774 differentially expressed genes (DEGs) were identified, with 1667 up-regulated and 2107 down-regulated. KEGG analysis showed that DEGs were enriched in the MAPK signaling pathway, a conserved pathway activated by PTTH binding to Torso, which regulates the ecdysone synthesis. qRT-PCR results indicated a significant up-regulation in PTTH transcription level, while the transcription levels of torso and downstream MAPK pathway genes, Ras2, Raf and ERK, were down-regulated 24 h post-pyriproxyfen treatment. Consistent with these transcriptional changes, PTTH titers in the brain also increased following pyriproxyfen treatment. These results suggest that pyriproxyfen induces abnormal metamorphosis in silkworms by impairing PTTH-Torso signaling. This study enhances our understanding of the molecular mechanisms of pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms, and also provides insights for developing detoxification strategies for juvenile hormone analog pesticides to non-target organisms.
Collapse
Affiliation(s)
- Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Zhenfeng Zhou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yirong Han
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yifei Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Rifeng Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
5
|
Li G, Li Y, He C, Wei Y, Cai K, Lu Q, Liu X, Zhu Y, Xu K. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105586. [PMID: 37945223 DOI: 10.1016/j.pestbp.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuebin Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
6
|
Paloschi CL, Tavares MHF, Berte EA, Model K, Rosa KM, Conceição FGD, Domanski FR, de Souza Vismara E, Montanher PF, Maciel RMA, Ribeiro LDS, Ramos Mertz N, Sampaio SC, Costa FM, Lozano ER, Potrich M. Imidacloprid: Impact on Africanized Apis mellifera L. (Hymenoptera: Apidae) workers and honey contamination. CHEMOSPHERE 2023; 338:139591. [PMID: 37478982 DOI: 10.1016/j.chemosphere.2023.139591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Apis mellifera L. (Hymenoptera: Apidae) is fundamental in the production chain, ensuring food diversity through the ecosystem service of pollination. The aim of this work was to evaluate the impact of imidacloprid, orally, topically, and by contact, on A. mellifera workers and to verify the presence of this active ingredient in honey. Toxicity levels were verified by bioassays. In bioassay 1, the levels correspond to the percentages of 100, 10, 1, 0.1, and 0.01% of the recommended concentration for field application of the commercial product Nortox® (active ingredient imidacloprid), with which we obtained the mean lethal concentration (LC50) in 48 h for A. mellifera, determining the concentration ranges to be used in the subsequent bioassays. Bioassays 2 and 3 followed the guidelines of the Organization for Economic Cooperation and Development, which specify the LC50 (48 h). In bioassay 4, the LC50 (48 h) and the survival rate of bees for a period of 120 h were determined by contact with a surface contaminated with imidacloprid, and in bioassay 5, the interference of the insecticide with the flight behavior of bees was evaluated. Honey samples were collected in agroecological and conventional georeferenced apiaries and traces of the imidacloprid were detected by means of high-performance liquid chromatography (HPLC-UV) with extraction by SPE C18. Bee survival was directly affected by the concentration and exposure time, as well behavioral performance, demonstrating the residual effect of imidacloprid on A. mellifera workers. Honey samples from a conventional apiary showed detection above the maximum residue limits (MRL) allowed by the European Union (0.05 μg mL-1), but samples from other apiaries showed no traces of this insecticide. Imidacloprid affects the survival rate and behavior of Africanized A. mellifera and honey quality.
Collapse
Affiliation(s)
| | | | | | - Kathleen Model
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
7
|
Gomes IN, Gontijo LM, Lima MAP, Zanuncio JS, Resende HC. The survival and flight capacity of commercial honeybees and endangered stingless bees are impaired by common agrochemicals. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:937-947. [PMID: 37733275 DOI: 10.1007/s10646-023-02699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
The impact of agrochemicals on native Brazilian bees may be underestimated, since studies of non-target effects on bees have, by and large, concerned mostly the Apis mellifera L. Furthermore, bees may be exposed in the field to multiple agrochemicals through different routes, thus suggesting the necessity for more comprehensive toxicological experiments. Here, we assessed the lethal and sublethal toxicity of multiple agrochemicals (herbicide [glyphosate - Roundup®], fungicide [mancozeb], insecticide [thiamethoxam]) through distinct routes of exposure (contact or ingestion) to an endangered native Brazilian bee Melipona (Michmelia) capixaba Moure & Camargo, 1994 and to A. mellifera. Results indicate that none of the agrochemicals caused feeding repellency on the bees. Thiamethoxam caused high mortality of both species, regardless of the route of exposure or the dose used. In addition, thiametoxam altered the flight capacity of M. capixaba when exposed to the lowest dose via contact exposure. The field dose of glyphosate caused high mortality of both bee species after oral exposure as well as impaired the flight capacity of A. mellifera (ingestion exposure) and M. capixaba (contact exposure). The lower dose of glyphosate also impaired the flight of M. capixaba through either routes of exposure. Exposure of A. mellifera through contact and ingestion to both doses of mancozeb caused high mortality and significantly impaired flight capacity. Taken altogether, the results highlight the importance of testing the impact of multiple agrochemicals (i.e. not just insecticides) through different routes of exposure in order to understand more comprehensively the potential risks for Apis and non-Apis bees.
Collapse
Affiliation(s)
- Ingrid N Gomes
- Programa de Pós Graduação em Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa - Campus Florestal, Florestal, MG, Brazil.
- Laboratório de Genética da Conservação de Abelhas - LaBee. Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, - Campus Florestal, Florestal, MG, Brazil.
- Centro de Síntese Ecológica e Conservação, Departamento de Genética Ecologia e Evolução - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Programa de Pós Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lessando Moreira Gontijo
- Programa de Pós Graduação em Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa - Campus Florestal, Florestal, MG, Brazil
| | | | - José Salazar Zanuncio
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, Fazenda Experimental Mendes da Fonseca, Domingos Martins, ES, Brazil
| | - Helder Canto Resende
- Programa de Pós Graduação em Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa - Campus Florestal, Florestal, MG, Brazil
- Laboratório de Genética da Conservação de Abelhas - LaBee. Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, - Campus Florestal, Florestal, MG, Brazil
| |
Collapse
|
8
|
Catania R, Lima MAP, Potrich M, Sgolastra F, Zappalà L, Mazzeo G. Are Botanical Biopesticides Safe for Bees (Hymenoptera, Apoidea)? INSECTS 2023; 14:247. [PMID: 36975932 PMCID: PMC10053700 DOI: 10.3390/insects14030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The recent global decline in insect populations is of particular concern for pollinators. Wild and managed bees (Hymenoptera, Apoidea) are of primary environmental and economic importance because of their role in pollinating cultivated and wild plants, and synthetic pesticides are among the major factors contributing to their decline. Botanical biopesticides may be a viable alternative to synthetic pesticides in plant defence due to their high selectivity and short environmental persistence. In recent years, scientific progress has been made to improve the development and effectiveness of these products. However, knowledge regarding their adverse effects on the environment and non-target species is still scarce, especially when compared to that of synthetic products. Here, we summarize the studies concerning the toxicity of botanical biopesticides on the different groups of social and solitary bees. We highlight the lethal and sublethal effects of these products on bees, the lack of a uniform protocol to assess the risks of biopesticides on pollinators, and the scarcity of studies on specific groups of bees, such as the large and diverse group of solitary bees. Results show that botanical biopesticides cause lethal effects and a large number of sublethal effects on bees. However, the toxicity is limited when comparing the effects of these compounds with those of synthetic compounds.
Collapse
Affiliation(s)
- Roberto Catania
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, 95123 Catania, Italy
| | - Maria Augusta Pereira Lima
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, 95123 Catania, Italy
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Michele Potrich
- Laboratório de Controle Biológico, Universidade Tecnológica Federal do Paraná—Dois Vizinhos (UTFPR-DV), Paraná 85660-000, Brazil
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Lucia Zappalà
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, 95123 Catania, Italy
| | - Gaetana Mazzeo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Wang S, Wang X, Chang H, Sun H, Liu Y. Establishment of a Method for the Detection of Indaziflam, Spirotetramat, Cyantraniliprole, and Their Metabolites and Application for Fruit and Vegetable Risk Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16369-16381. [PMID: 36521106 DOI: 10.1021/acs.jafc.2c05560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The presence of pesticides in foodstuffs has received increasing amount of attention worldwide. In this study, an efficient and sensitive QuEChERS/HPLC-MS/MS-based method was established for the simultaneous detection of indaziflam, cyantraniliprole, spirotetramat, and their metabolites on fruits and vegetables. The purification procedure and detection condition parameters were optimized. Good precision and reproducibility were found for the method, and the average recoveries of the target analytes ranged from 71 to 118%, with the relative standard deviation ranging from 2 to 12%. The limits of quantification and the limits of detection were 1-5 and 0.3-1.5 μg kg-1, respectively. The proposed method was used to detect three pesticides and their metabolites in fruit and vegetable samples collected from China's major producing regions. Furthermore, the dietary risk posed by the pesticide residues on fruits and vegetables was evaluated by risk quotients (RQs) and risk probabilities (RPs). The RQ and RP values were less than 100% for Chinese consumers. This study not only provides a reliable analytical method for monitoring purposes but also serves as a significant guide for food safety and export.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Haibin Sun
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yanping Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| |
Collapse
|
10
|
Dong ZX, Tang QH, Li WL, Wang ZW, Li XJ, Fu CM, Li D, Qian K, Tian WL, Guo J. Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120340. [PMID: 36208825 DOI: 10.1016/j.envpol.2022.120340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chao-Min Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kai Qian
- Department of Thoracic Surgery, Institute of the First People's Hospital of Yunnan Province, Kunming, China; Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Wen-Li Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
11
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
12
|
Zhang DW, Dai CC, Ali A, Liu YQ, Pan Y, Desneux N, Lu YH. Lethal and sublethal effects of chlorantraniliprole on the migratory moths Agrotis ipsilon and A. segetum: New perspectives for pest management strategies. PEST MANAGEMENT SCIENCE 2022; 78:4105-4113. [PMID: 35655426 DOI: 10.1002/ps.7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Agrotis ipsilon and A. segetum are major migratory pests of many crops in China, and frequent regional outbreaks cause severe yield losses. Use of food attractants is one of the most promising control methods against adult lepidoptera, notably through the attract-and-kill strategy. Chlorantraniliprole's acute toxicity and sublethal effects on both moths were evaluated. RESULTS Chlorantraniliprole showed high activity against both adults of both species, with LC20 and LC50 values of 0.08 and 0.21 mg L-1 (A. ipsilon), and 0.14 and 0.51 mg L-1 (A. segetum). The fecundity, effective oviposition rate, and egg hatching rate of both species in dual-sex exposure treatments were all significantly reduced compared with the control, and the population growth coefficients in the LC50 ♀ × LC50 ♂ treatments were only 0.32% (A. ipsilon) and 3.35% (A. segetum) that of the control. Furthermore, the flight distance was significantly suppressed from 6.67 km (control) to 0.01 km (LC50 ) for A. ipsilon, and from 7.39 km (control) to 0.78 km (LC50 ) for A. segetum. The proportions of robust- and medium-flight individuals of A. ipsilon and A. segetum in exposure treatments were greatly reduced. CONCLUSIONS Low lethal concentration exposures to chlorantraniliprole can drastically reduce the reproduction and flight performance of A. ipsilon and A. segetum, while inhibiting the production of offspring, suggesting chlorantraniliprole would be an excellent compound for use in combination with food attractants. Chlorantraniliprole has good potential for management of the two long-range migratory pests tested using an attract-and-kill strategy. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da-Wei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Chang-Chun Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yong-Qiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yan-Hui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Capela N, Sarmento A, Simões S, Azevedo-Pereira HMVS, Sousa JP. Sub-lethal doses of sulfoxaflor impair honey bee homing ability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155710. [PMID: 35526620 DOI: 10.1016/j.scitotenv.2022.155710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Agricultural intensification has increased the number of stressors that pollinators are exposed to. Besides increasing landscape fragmentation that limit the supply of flower resources, intensive agricultural practices relying on the use of pesticides to control agricultural pests also affect non-target organisms like honey bees. The use of most pesticides containing neonicotinoids has been severely restricted in the European Union, leaving pesticides containing acetamiprid as the only ones that are still authorized. In the meantime, new substances like sulfoxaflor, that have a similar mode of action acting on the insect's nicotinic acetylcholine receptors (nAChR), have been approved for agricultural use. In Europe and USA, the use of pesticides containing this active ingredient is limited due to toxic effects already reported on bees, but no restrictions regarding this matter were applied in other countries (e.g., Brazil). In this study, homing ability tests with acetamiprid and sulfoxaflor were performed, in which honey bees were fed with three sub-lethal doses from each substance. After exposure, each honey bee was equipped with an RFID chip and released 1 km away from the colony to evaluate their homing ability. No significant effects were detected in honey bees fed with 32, 48 and 61 ng of acetamiprid while a poor performance on their homing ability, with only 28% of them reaching the colony instead of 75%, was detected at a 26 ng/a.s./bee dose of sulfoxaflor. Although, both pesticides act on the nAChR, the higher sulfoxaflor toxicity might be related with the honey bees detoxifying mechanisms, which are more effective on cyano-based neonicotinoids (i.e., acetamiprid) than sulfoximines. With this study we encourage the use of homing ability tests to be a suitable candidate to integrate the future risk assessment scheme, providing valuable data to models predicting effects on colony health that emerge from the individual actions of each bee.
Collapse
Affiliation(s)
- Nuno Capela
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal.
| | - Artur Sarmento
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal
| | - Sandra Simões
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal
| | - Henrique M V S Azevedo-Pereira
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal
| |
Collapse
|
14
|
Comparison of the Biological Potential and Chemical Composition of Brazilian and Mexican Propolis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Propolis is a resinous substance collected by bees from plants and its natural product is available as a safe therapeutic option easily administered orally and readily available as a natural supplement and functional food. In this work, we review the most recent scientific evidence involving propolis from two countries (Brazil and Mexico) located in different hemispheres and with varied biomes. Brazil has a scientifically well documented classification of different types of propolis. Although propolis from Brazil and Mexico present varied compositions, they share compounds with recognized biological activities in different extraction processes. Gram-negative bacteria growth is inhibited with lower concentrations of different types of propolis extracts, regardless of origin. Prominent biological activities against cancer cells and fungi were verified in the different types of extracts evaluated. Antiprotozoal activity needs to be further evaluated for propolis of both origins. Regarding the contamination of propolis (e.g., pesticides, toxic metals), few studies have been carried out. However, there is evidence of chemical contamination in propolis by anthropological action. Studies demonstrate the versatility of using propolis in its different forms (extracts, products, etc.), but several potential applications that might improve the value of Brazilian and Mexican propolis should still be investigated.
Collapse
|
15
|
Li G, Lan H, Lu Q, He C, Wei Y, Mo D, Qu D, Xu K. The JH-Met2-Kr-h1 pathway is involved in pyriproxyfen-induced defects of metamorphosis and silk protein synthesis in silkworms, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104980. [PMID: 34802530 DOI: 10.1016/j.pestbp.2021.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Environmental residues of pryriproxyfen, a juvenile hormone analogue (JHA) type pesticide, may have on unintended consequences on non-target insects. However, the mechanism of pyriproxyfen action and silk protein synthesis in silkworms has not been reported. In the present study, we treated the silkworms with trace pyriproxyfen (1 × 10-4 mg/L) and found that the silkworm larvae showed no obvious poisoning symptoms, while the development of silk glands and cocoon-forming function were both seriously damaged due to the accumulation of pyriproxyfen in posterior silk gland (PSG). The titer of the juvenile hormone (JH) was increased, whereas the content of 20-hydroxyecdysone (20E) was reduced in pyriproxyfen-exposed hemolymph. Met2 is a component of the JH receptor complex and JH can promote its phosphorylation. We found Met2 and SRC were up-regulated in the larval stage after pyriproxyfen exposure, the JH-Met2/SRC complex led to the up-regulation of downstream genes Kr-h1, and Dimm, and then specifically inhibited the transcription of Fib-H. Meanwhile, the transcription of ecdysone inducible transcription factor Br-C Z4 was also inhibited by pyriproxyfen and resulted in the defects of metamorphosis. In conclusion, the trace pyriproxyfen could affect the metamorphosis and silk protein synthesis through the Met2-mediated pathway. Our study provided new evidence that Met2 might be a potential target gene of JHA in Lepidoptera.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Huangli Lan
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Danmei Mo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Dacai Qu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Guangxi University, Nanning, Guangxi 530004, PR China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
16
|
Indirect transfer of pyriproxyfen to European honeybees via an autodissemination approach. PLoS Negl Trop Dis 2021; 15:e0009824. [PMID: 34648501 PMCID: PMC8516248 DOI: 10.1371/journal.pntd.0009824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
The frequency of arboviral disease epidemics is increasing and vector control remains the primary mechanism to limit arboviral transmission. Container inhabiting mosquitoes such as Aedes albopictus and Aedes aegypti are the primary vectors of dengue, chikungunya, and Zika viruses. Current vector control methods for these species are often ineffective, suggesting the need for novel control approaches. A proposed novel approach is autodissemination of insect growth regulators (IGRs). The advantage of autodissemination approaches is small amounts of active ingredients compared to traditional insecticide applications are used to impact mosquito populations. While the direct targeting of cryptic locations via autodissemination seems like a significant advantage over large scale applications of insecticides, this approach could actually affect nontarget organisms by delivering these highly potent long lasting growth inhibitors such as pyriproxyfen (PPF) to the exact locations that other beneficial insects visit, such as a nectar source. Here we tested the hypothesis that PPF treated male Ae. albopictus will contaminate nectar sources, which results in the indirect transfer of PPF to European honey bees (Apis mellifera). We performed bioassays, fluorescent imaging, and mass spectrometry on insect and artificial nectar source materials to examine for intra- and interspecific transfer of PPF. Data suggests there is direct transfer of PPF from Ae. albopictus PPF treated males and indirect transfer of PPF to A. mellifera from artificial nectar sources. In addition, we show a reduction in fecundity in Ae. albopictus and Drosophila melanogaster when exposed to sublethal doses of PPF. The observed transfer of PPF to A. mellifera suggests the need for further investigation of autodissemination approaches in a more field like setting to examine for risks to insect pollinators. Autodissemination approaches have attracted a significant amount of attention for mosquito control because of the advantages of self-delivery of small amounts of highly potent insect growth regulators (IGRs) such as pyriproxyfen (PPF) to oviposition locations. However, while PPF may be delivered to oviposition locations by the mosquito vehicles, these treated mosquitoes may also be delivering PPF to nectar sources that other insects may visit, in particular important insect pollinators. Here we have examined for the direct transfer of PPF to nectar sources and the indirect transfer to the European honey bee. We show PPF is being deposited on artificial nectar sources and is being indirectly transferred to European honey bees. The results are discussed in reference to the potential risks to important insect pollinators of using autodissemination approaches for mosquito control.
Collapse
|
17
|
Abati R, Sampaio AR, Maciel RMA, Colombo FC, Libardoni G, Battisti L, Lozano ER, Ghisi NDC, Costa-Maia FM, Potrich M. Bees and pesticides: the research impact and scientometrics relations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14224-7. [PMID: 33961189 DOI: 10.1007/s11356-021-14224-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Bees are fundamental insects in agroecosystems, mainly due to pollination. However, its decline has been observed in recent years, and the contamination by pesticides is suspected to be responsible. This relationship is the objective of our research, which is the first scientometric study on this subject. The data were obtained from the Web of Science database (1231) and were analyzed using Microsoft Office Excel and CiteSpace. The results point to a significant increase in pesticide and bee reseach in the last 15 years in the most influential scientific journals. The USA and France have the largest number of publications and a moderade relationship between this trait and GDP (gross domestic product) was observed (r = 0.80; r2 = 0.60). There is no correlation between the use of pesticides and studies of the effects on pollinators and the use of pesticides and the countries' GDP. In general, studies have shown the negative effects of the contamination by pesticides on bees; however, most publications are with bees of the Apis genus, and therefore it is necessary to explore the action of pesticides on bumble bees and wild bees, as well furthur as studies are needed regarding the sublethal effects of these products on bees as the number of molecules used in the management of agricultural crops is vast.
Collapse
Affiliation(s)
- Raiza Abati
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Amanda Roberta Sampaio
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Rodrigo Mendes Antunes Maciel
- Programa de Pós-Graduação em Entomologia, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Centro Politécnico - Jardim das Américas, Cx, 1903, CEP 81531-980, Curitiba, Paraná, Brasil
| | - Fernanda Caroline Colombo
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Gabriela Libardoni
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Lucas Battisti
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Everton Ricardi Lozano
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04, CEP 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Fabiana Martins Costa-Maia
- Programa de Pós-Graduação em Zootecnia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04, CEP 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Michele Potrich
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil.
| |
Collapse
|
18
|
Organophosphate poisoning of Hyacinth Macaws in the Southern Pantanal, Brazil. Sci Rep 2021; 11:5602. [PMID: 33692405 PMCID: PMC7946944 DOI: 10.1038/s41598-021-84228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
The populations of hyacinth macaws (Anodorhynchus hyacinthinus), an emblematic species, have suffered declines due to many environmental factors. The Hyacinth Macaw Institute’s actions are showing positive outcomes for the conservation of A. hyacinthinus. However, environmental issues, such as fires and deforestation due to inefficient and unsustainable cattle ranching practices, are a threat to the biodiversity. Another major threat is the reckless use of pesticides. The objective of this manuscript is to describe the findings, in the Pantanal, of three dead hyacinth macaws and to investigate their cause of death and conservation implications. A necropsy was conducted on two individuals and biological samples were collected and sent to conduct toxicological exams to test for organophosphates, organochlorines, and carbomates. Compatible with other findings, results showed a highly dangerous level of organophosphate, 158.44 ppb. We describe for the first time, a rare, isolated but unusual mortality event associated with organophosphate pesticide poisoning of hyacinth macaws. Mortality reports for bees and other bird species on how the improper use of pesticides can potentially cause the contamination of food and water resources are discussed. These factors are antagonistic to long-term efforts to preserve wildlife and carry out other conservation efforts in Brazil’s southern Pantanal.
Collapse
|
19
|
Possible interference of Bacillus thuringiensis in the survival and behavior of Africanized honey bees (Apis mellifera). Sci Rep 2021; 11:3482. [PMID: 33568730 PMCID: PMC7876038 DOI: 10.1038/s41598-021-82874-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Bacillus thuringiensis (Bt), an entomopathogenic bacterium, has been used as bioinsecticides for insect pest control worldwide. Consequently, the objective of this work was to evaluate the possible effects of commercial formulations of Bt products, Dipel and Xentari, on the survival and behavior of Africanized honey bees (Apis mellifera). Bioassays were performed on foragers and newly emerged (24-h-old) bees that received the products mixed in the food. Their survival and behavior were evaluated through the vertical displacement tests and the walk test, analyzed using software Bee-Move. Then, histological analysis of the mesenterium was performed. As control treatment was used sterile water. The honey bees' survival was evaluated for between 1 and 144 h. No interference of B. thuringiensis, Dipel and Xentari, in the survival of Africanized honey bees were found. Only Xentari interfered with vertical displacement behavior of newly emerged (24-h-old) bees. Both the products tested were selective and safe for A. mellifera.
Collapse
|
20
|
Shu B, Yu H, Li Y, Zhong H, Li X, Cao L, Lin J. Identification of azadirachtin responsive genes in Spodoptera frugiperda larvae based on RNA-seq. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104745. [PMID: 33518039 DOI: 10.1016/j.pestbp.2020.104745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/20/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is a polyphagous pest with 353 plant species as its hosts, including maize, sorghum, cotton, and rice. Azadirachtin is one of the most effective botanical insecticides. The effect of azadirachtin against S. frugiperda remains to be determined. Here we report strong growth inhibition of azadirachtin on S. frugiperda larvae under either 1.0 or 5.0 μg/g azadirachtin. To explore the relevant mechanisms, the larvae fed with normal artificial diet and with 1.0 μg/g azadirachtin exposure for 3 days were collected as samples for RNA-Seq. RNA-Seq on S. frugiperda larvae under different treatments identified a total of 24,153 unigenes, including 3494 novel genes, were identified. Among them, 1282 genes were affected by 1.0 μg/g azadirachtin exposure, with 672 up-regulated and 610 down-regulated. The impacted genes include 61 coding for detoxification enzymes (31 P450s, 7 GSTs, 11 CarEs, 7 UGTs and 5 ABC transporters), 31 for cuticle proteins, and several proteins involved in insect chitin and hormone biosynthesis. Our results indicated that azadirachtin could regulate the growth of S. frugiperda by affecting insect chitin and hormone biosynthesis pathway. The enhanced expression of detoxification enzymes might be related to detoxifying azadirachtin. These findings provided a foundation for further delineating the molecular mechanism of growth regulation induced by azadirachtin in S. frugiperda larvae.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haikuo Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuning Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongxin Zhong
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangli Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Liang Cao
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
21
|
Devillers J, Devillers H. Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non- Apis Bees. TOXICS 2020; 8:toxics8040104. [PMID: 33212791 PMCID: PMC7712127 DOI: 10.3390/toxics8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
Pyriproxyfen is a juvenile hormone mimic used extensively worldwide to fight pests in agriculture and horticulture. It also has numerous applications as larvicide in vector control. The molecule disrupts metamorphosis and adult emergence in the target insects. The same types of adverse effects are expected on non-target insects. In this context, the objective of this study was to evaluate the existing information on the toxicity of pyriproxyfen on the honey bee (Apis mellifera) and non-Apis bees (bumble bees, solitary bees, and stingless bees). The goal was also to identify the gaps necessary to fill. Thus, whereas the acute and sublethal toxicity of pyriproxyfen against A. mellifera is well-documented, the information is almost lacking for the non-Apis bees. The direct and indirect routes of exposure of the non-Apis bees to pyriproxyfen also need to be identified and quantified. More generally, the impacts of pyriproxyfen on the reproductive success of the different bee species have to be evaluated as well as the potential adverse effects of its metabolites.
Collapse
Affiliation(s)
| | - Hugo Devillers
- SPO, INRAE, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France;
| |
Collapse
|
22
|
Devillers J. Fate of Pyriproxyfen in Soils and Plants. TOXICS 2020; 8:E20. [PMID: 32183189 PMCID: PMC7151735 DOI: 10.3390/toxics8010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Since the 1990s, the insect growth regulator pyriproxyfen has been widely used worldwide as a larvicide in vector control and in agriculture to fight a very large number of pests. Due to its widespread use it is of first importance to know how pyriproxyfen behaves in the terrestrial ecosystems. This was the goal of this work to establish the fate profile of pyriproxyfen in soils and plants. Thus, in soil, pyriproxyfen photodegrades slowly but its aerobic degradation is fast. The insecticide presents a high tendency to adsorb onto soils and it is not subject to leaching into groundwater. On the contrary its two main metabolites (4'-OH-Pyr and PYPAC) show a different fate in soil. When sprayed to plants, pyriproxyfen behaves as a translaminar insecticide. Its half-life in plants ranges from less than one week to about three weeks. The review ends by showing how the fate profile of pyriproxyfen in soils and plants influences the adverse effects of the molecule on non-target organisms.
Collapse
Affiliation(s)
- James Devillers
- CTIS, 3 Chemin de la Gravière, 69140 Rillieux-La-Pape, France
| |
Collapse
|