1
|
Faizan M, Alam P, Iqbal S, Waheed Z, Eren A, Shamsi A, Shahwan M. Calcium-mediated mitigation strategies and novel approaches to alleviate arsenic induced plant stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112527. [PMID: 40287099 DOI: 10.1016/j.plantsci.2025.112527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
One worldwide environmental concern is the presence of potentially hazardous elements (PTEs) in air, soil, and water resources. Arsenic is one of the PTEs that is thought to be the most poisonous and carcinogenic. Plants exposed to arsenic may experience several morphological, physiological, and biochemical changes-even at extremely low concentrations. Arsenic toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the kind of plant species, and with other soil parameters affecting arsenic accumulation in plants, according to new study on arsenic in the soil-plant system. Arsenic stress modifies metabolic cascades in plants at different developmental stages by affecting the pattern of gene expressions mediated by small non-coding RNAs (micro-RNAs), which are essential for plant adaptation to oxidative stress and play a key role in the moderation of numerous cellular processes. In this review, we investigated the impact of calcium (Ca2 +) on the toxicity of arsenic in plant and soil environments. Plant grown with arsenic exhibited enhanced arsenic uptake, increased oxidative stress and growth inhibition. Arsenic toxicity modulates carbohydrate, lipid, and protein metabolism along with DNA structure. Role of Ca2+, Ca channels and Ca sensors to signaling pathways also described briefly. A worldwide issue for humanity is the poisoning of soil ecosystems by arsenic. Its toxicity, tolerance, and phytoremediation of polluted soils utilizing calcium were the main points of the recent review, which also highlighted the significant mechanisms of arsenic in soil-plant systems.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India.
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zainab Waheed
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Abdullah Eren
- Department of Organic Agriculture, Kiziltepe Vocational School, Mardin Artuklu University, Mardin, Turkiye
| | - Anas Shamsi
- Centre for Medical and Bio-Allied Health Science Research, Ajman University, United Arab Emirates
| | - Moyad Shahwan
- Centre for Medical and Bio-Allied Health Science Research, Ajman University, United Arab Emirates
| |
Collapse
|
2
|
Leng Z, Liu J, He C, Wang Z, He S, Du D, Li J. Deposition of sulfur by Spartina alterniflora promoted its ecological adaptability in cadmium-polluted coastal wetlands. BIORESOURCE TECHNOLOGY 2025; 419:132069. [PMID: 39809387 DOI: 10.1016/j.biortech.2025.132069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/14/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Invasive Spartina alterniflora poses a significant threat to coastal wetland ecosystems. This study investigated the role of sulfur (S) in facilitating the invasion of S. alterniflora in cadmium (Cd)-contaminated coastal wetlands by greenhouse-control-experiment. Results demonstrate that increased S deposition significantly enhanced the formation of acid-volatile sulfur in sediments, thereby reducing the bioavailability of Cd to plants by 41%. Additionally, S supplementation improved plant nutrient uptake and stress tolerance by increasing the C/N ratio and the concentrations of essential mineral elements. These physiological and biochemical changes, including enhanced photosynthesis, increased carbohydrate storage, and improved antioxidant capacity, ultimately contributed to increased shoot and root biomass production by 15% and 31% respectively, and the competitive ability of S. alterniflora. The findings of this study highlight the critical role of S in promoting the invasion of S. alterniflora. Effective strategies can be developed to control the spread of S. alterniflora and protect coastal ecosystems.
Collapse
Affiliation(s)
- Zhanrui Leng
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Jing Liu
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Chunjiang He
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035 China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Daolin Du
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Jian Li
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102 China.
| |
Collapse
|
3
|
Adamipour N, Nazari F, Nalousi AM, Teixeira da Silva JA. Evaluation of the molecular mechanism underlying proline metabolic and catabolic pathways and some morpho-physiological traits of tobacco (Nicotiana tabacum L.) plants under arsenic stress. BMC PLANT BIOLOGY 2025; 25:258. [PMID: 40000937 PMCID: PMC11854119 DOI: 10.1186/s12870-025-06262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND In recent decades, arsenic (As) toxicity has emerged as a significant challenge in many countries. It not only reduces the growth and performance of plants, but also poses a threat to human health. The synthesis of compatible solutes, particularly proline, is a mechanism plants utilize to cope with stress. Investigating the metabolic pathways of proline would deepen our understanding for future molecular breeding or genetic engineering efforts. Therefore, the aim of this study was to explore the metabolic and catabolic pathways of proline, as well as the morpho-physiological traits of tobacco, under As stress. RESULTS The results revealed a significant decrease in morphological traits and photosynthetic efficiency, chlorophyll content, and total soluble protein content with increasing As concentration. The results also showed that proline content, total soluble carbohydrates, hydrogen peroxide, and malondialdehyde, as well as the activity of two antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased with increasing As concentration. At 10 mg As Kg-1 soil, the expression of Δ1-pyrroline-carboxylate synthetase (P5CS) and P5C reductase (P5CR) genes was not different from the control, but their expression increased significantly at 20 and 40 mg As Kg-1 soil. At 10 mg As Kg-1 soil, the expression of proline dehydrogenase (PDH) and P5C dehydrogenase (P5CDH) genes decreased sharply compared to the control but remained unchanged at 20 and 40 mg As Kg-1 soil. At 10 and 20 mg As Kg-1 soil, expression of the ornithine δ-aminotransferase (OAT) gene was unchanged compared to the control, but at 40 mg As Kg-1 soil, it increased sharply. CONCLUSION The results showed that the accumulation of proline at the lowest (10 mg As Kg-1 soil) tested As concentration was due to a decrease in the expression of proline catabolic genes (PDH and P5CDH), while the genes involved in proline synthesis did not play a role. At 20 mg As Kg-1 soil, proline accumulation was caused by the increased expression of genes (P5CS and P5CR) involved in the glutamate pathway of proline synthesis. Additionally, at the highest concentration of arsenic (40 mg As Kg-1 soil), the OAT gene, which is active in the ornithine pathway, was also involved in proline synthesis, along with the P5CS and P5CR genes.
Collapse
Affiliation(s)
- Nader Adamipour
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Farzad Nazari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Ayoub Molaahmad Nalousi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
4
|
Janejobkhet J, Pongprayoon W, Obsuwan K, Jaiyindee S, Maksup S. Multifaceted response mechanisms of Oryza sativa L. 'KDML105' to high arsenite and arsenate stress levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13816-13832. [PMID: 38265595 DOI: 10.1007/s11356-024-32122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Toxicity resulting from high levels of inorganic arsenic (iAs), specifically arsenite (AsIII) and arsenate (AsV), significantly induces oxidative stress and inhibits the growth of rice plants in various ways. Despite its economic importance and significance as a potent elite trait donor in rice breeding programmes, Khao Dawk Mali 105 (KDML105) has received limited attention regarding its responses to As stress. Therefore, this study aimed to comprehensively investigate how KDML105 responds to elevated AsIII and AsV stress levels. In this study, the growth, physiology, biochemical attributes and levels of As stress-associated transcripts were analysed in 45-day-old rice plants after exposing them to media containing 0, 75, 150, 300 and 600 µM AsIII or AsV for 1 and 7 days, respectively. The results revealed that AsIII had a more pronounced impact on the growth and physiological responses of KDML105 compared to AsV at equivalent concentrations. Under elevated AsIII treatment, there was a reduction in growth and photosynthetic efficiency, accompanied by increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Notably, the total contents of antioxidants, such as proline, phenolics and flavonoids in the shoot, increased by 8.1-fold, 1.4-fold and 1.6-fold, respectively. Additionally, the expression of the OsABCC1 gene in the roots increased by 9.5-fold after exposure to 150 µM AsIII for 1 day. These findings suggest that KDML105's prominent responses to As stress involve sequestering AsIII in vacuoles through the up-regulation of the OsABCC1 gene in the roots, along with detoxifying excessive stress in the leaves through proline accumulation. These responses could serve as valuable traits for selecting As-tolerant rice varieties.
Collapse
Affiliation(s)
- Juthathip Janejobkhet
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, 20131, Thailand
| | - Kullanart Obsuwan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Supakit Jaiyindee
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
5
|
Singh G, Le H, Ablordeppey K, Long S, Minocha R, Dhankher OP. Overexpression of gamma-glutamyl cyclotransferase 2;1 (CsGGCT2;1) reduces arsenic toxicity and accumulation in Camelina sativa (L.). PLANT CELL REPORTS 2023; 43:14. [PMID: 38135793 PMCID: PMC11654775 DOI: 10.1007/s00299-023-03091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE Overexpressing CsGGCT2;1 in Camelina enhances arsenic tolerance, reducing arsenic accumulation by 40-60%. Genetically modified Camelina can potentially thrive on contaminated lands and help safeguard food quality and sustainable food and biofuel production. Environmental arsenic contamination is a serious global issue that adversely affects human health and diminishes the quality of harvested produce. Glutathione (GSH) is known to bind and detoxify arsenic and other toxic metals. A steady level of GSH is maintained within cells via the γ-glutamyl cycle. The γ-glutamyl cyclotransferases (GGCTs) have previously been shown to be involved in GSH degradation and increased tolerance to toxic metals in plants. In this study, we characterized the GGCT2;1 homolog from Camelina sativa for its role in arsenic tolerance and accumulation. Overexpression of CsGGCT2;1 in Camelina under CaMV35S constitutive promoter resulted in strong tolerance to arsenite (AsIII). The overexpression (OE) lines had 2.6-3.5-fold higher shoots and sevenfold to tenfold enhanced root biomass on media supplemented with AsIII, relative to wild-type plants. The CsGGCT2;1 OE lines accumulated 40-60% less arsenic in root and shoot tissues compared to wild-type plants. Further, the OE lines had ~ twofold higher chlorophyll content and 35% lesser levels of malondialdehyde (MDA), an indicator of membrane damage via lipid peroxidation. There was a slight but non-significant increase in 5-oxoproline (5-OP), a product of GSH degradation, in OE lines. However, the transcript levels of Oxoprolinase 1 (OXP1) were upregulated, indicating the accelerated conversion of 5-OP to glutamate, which is further utilized for the resynthesis of GSH to maintain GSH homeostasis. Overall, this research suggests that genetically modified Camelina may have the potential for cultivation on contaminated marginal lands to reduce As accumulation; thereby could help in addressing food safety issues as well as future food and biofuel needs.
Collapse
Affiliation(s)
- Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Helen Le
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Kenny Ablordeppey
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
6
|
Nazir F, Jahan B, Iqbal N, Rajurkar AB, Siddiqui MH, Khan MIR. Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107990. [PMID: 37657298 DOI: 10.1016/j.plaphy.2023.107990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The plant growth regulator, jasmonic acid (JA) has emerged as important molecule and involved in key processes of plants. In this study, we investigated the role of methyl jasmonate (MeJA) in achieving tolerance mechanisms against arsenic (As) stress in rice (Oryza sativa). Arsenic toxicity is a major global concern that significantly deteriorate rice production. The application of MeJA (20 μM) and ethylene (150 μL L-1) both individually and/or in combination were found significant in protecting against As-induced toxicity in rice, and significantly improved defense systems. The study shown that the positive influence of MeJA in promoting carbohydrate metabolism, photosynthesis and growth under As stress were the result of its interplay with ethylene biosynthesis and reduced oxidative stress-mediated cellular injuries and cell deaths. Interestingly, the use of JA biosynthesis inhibitor, neomycin (Neo) and ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) overturned the effects of MeJA and ethylene on plant growth under As stress. From the pooled data, it may also be concluded that Neo treatment to MeJA- treated rice plants restricted JA-mediated responses, implying that application of MeJA modulated ethylene- dependent pathways in response to As stress. Thus, the action of MeJA in As tolerance is found to be mediated by ethylene. The study will shed light on the mechanisms that could be used to ensure the sustainability of rice plants under As stress.
Collapse
Affiliation(s)
- Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | - Manzer H Siddiqui
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
7
|
Joshi H, Mishra SK, Prasad V, Chauhan PS. Bacillus amyloliquefaciens modulate sugar metabolism to mitigate arsenic toxicity in Oryza sativa L. var Saryu-52. CHEMOSPHERE 2023; 311:137070. [PMID: 36334743 DOI: 10.1016/j.chemosphere.2022.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the current study, plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SN13 (SN13) was evaluated for arsenic (As) toxicity amelioration potential under arsenate (AsV) and arsenite (AsIII) stress exposed to rice (Oryza sativa var Saryu-52) plants for 15 days. The PGPR-mediated alleviation of As toxicity was demonstrated by modulated measures such as proline, total soluble sugar, malondialdehyde content, enzymatic status, relative water content, and electrolytic leakage in treated rice seedlings under arsenic-stressed conditions as compared to the respective control. SN13 inoculation not only improved the agronomic traits but also modulated the micronutrient concentrations (Fe, Mo, Zn, Cu, and Co). The desirable results were obtained due to a significant decrease in the AsIII and AsV accumulation in the shoot (47 and 10 mg kg-1 dw), and the root (62 and 26 mg kg-1 dw) in B. amyloliquefaciens inoculated seedlings as compared to their uninoculated root (98 and 43 mg kg-1 dw) and shoot (57 and 12 mg kg-1 dw), respectively. Further, metabolome (GC-MS) analysis was performed to decipher the underlying PGPR-induced mechanisms under arsenic stress. A total of 67 distinct metabolites were identified, which influence the metabolic and physiological factors to modulate the As stress. The expression analysis of metabolism- and stress-responsive genes further proclaimed the involvement of SN13 through modulating the carbohydrate metabolism in rice seedlings, to enable improved growth and As stress tolerance.
Collapse
Affiliation(s)
- Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Vivek Prasad
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
8
|
Bhadwal S, Sharma S. Selenium alleviates physiological traits, nutrient uptake and nitrogen metabolism in rice under arsenate stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70862-70881. [PMID: 35589895 DOI: 10.1007/s11356-022-20762-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A green house experiment was conducted to evaluate the efficacy of soil application of selenium (Se) in modulating metabolic changes in rice under arsenic (As) stress. Rice plants were grown over soil amended with sodium arsenate (25, 50 and 100 μM kg-1 soil) with or without sodium selenate @ 0.5 and 1 mg kg-1 soil in a complete randomized experimental design, and photosynthetic efficiency, nutrient uptake and nitrogen metabolism in rice leaves were estimated at tillering and grain filling stages. Se treatments significantly improved the toxic effects of As on plant height, leaf dry weight and grain yield. Arsenate treatment reduced uptake of Na, Mg, P, K, Ca, Mn, Fe and Zn and lowered chlorophyll, carotenoids and activities of enzymes of nitrogen metabolism (nitrate reductase, nitrite reductase, glutamine synthase and glutamate synthase) in rice leaves at both the stages in a dose-dependent fashion. Se application along with As improved photosynthesis, nutrient uptake and arsenate-induced effects on activities of enzymes of nitrogen metabolism with maximum impact shown by As50 + Se1 combination. Application of Se can modulate photosynthetic efficiency, nutrient uptake and alterations in nitrogen metabolism in rice Cv PR126 due to As stress that helped plants to adapt to excess As and resulted in improved plant growth.
Collapse
Affiliation(s)
- Sheetal Bhadwal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Sucheta Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| |
Collapse
|
9
|
Zulfiqar F, Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127891. [PMID: 34848065 DOI: 10.1016/j.jhazmat.2021.127891] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment. Although both inorganic and organic types of arsenic exist in the environment, the most common inorganic forms of As that adversely affect plants are arsenite (As III) and arsenate (As V). Despite no evidence for As being essential for plant growth, exposure of roots to this element can cause its uptake primarily via transporters responsible for the transport of essential mineral nutrients. Arsenic exposure even at low concentrations disturbs the plant normal functioning via excessive generation of reactive oxygen species, a condition known as oxidative stress leading to an imbalance in the redox system of the plant. This is associated with considerable damage to the cell components thereby impairing normal cellular functions and activation of several cell survival and cell death pathways. To counteract this oxidative disorder, plants possess natural defense mechanisms such as chemical species and enzymatic antioxidants. This review considers how different types of antioxidants participate in the oxidative defense mechanism to alleviate As stress in plants. Since the underlying phenomena of oxidative stress tolerance are not yet fully elucidated, the potential for "Omics" technologies to uncover molecular mechanisms are discussed. Various strategies to improve As-induced oxidative tolerance in plants such as exogenous supplementation of effective growth regulators, protectant chemicals, transgenic approaches, and genome editing are also discussed thoroughly in this review.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
10
|
Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. Biometals 2022; 35:451-478. [PMID: 35344114 DOI: 10.1007/s10534-022-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Globally, many people have been suffering from arsenic poisoning. Arsenate (AsV) exposure to twelve rice cultivars caused growth retardation, triggered production of As-chelatin biopeptides and altered activities of antioxidants along with increase in ascorbate (AsA)-glutathione (GSH) contents as a protective measure. The effects were more conspicuous in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 to attenuate oxidative-overload mediated adversities. Contrastingly, in cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64, effects were less conspicuous in terms of alterations in the said variables due to reduced generation of oxidative stress. Under As(V) imposition, the protective role of phytochelatins (PCs) were recorded where peaks height and levels of PCs (PC2, PC3 and PC4) were elevated significantly in the test seedlings with an endeavour to detoxify cells by sequestering arsenic-phytochelatin (As-PC) complex into vacuole that resulted in reprogramming of antioxidants network. Additionally, scatter plot correlation matrices, color-coded heat map analysis and regression slopes demonstrated varied adaptive responses of test cultivars, where cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64 found tolerant against As(V) toxicity. Results were further justified by hierarchical clustering. These findings could help to grow identified tolerant rice cultivars in As-prone soil with sustainable growth and productivity after proper agricultural execution.
Collapse
|
11
|
Boorboori MR, Zhang HY. Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. J Fungi (Basel) 2022; 8:176. [PMID: 35205936 PMCID: PMC8879560 DOI: 10.3390/jof8020176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing expansion of mines, factories, and agricultural lands has caused many changes and pollution in soils and water of several parts of the world. In recent years, metal(loid)s are one of the most dangerous environmental pollutants, which directly and indirectly enters the food cycle of humans and animals, resulting in irreparable damage to their health and even causing their death. One of the most important missions of ecologists and environmental scientists is to find suitable solutions to reduce metal(loid)s pollution and prevent their spread and penetration in soil and groundwater. In recent years, phytoremediation was considered a cheap and effective solution to reducing metal(loid)s pollution in soil and water. Additionally, the effect of soil microorganisms on increasing phytoremediation was given special attention; therefore, this study attempted to investigate the role of arbuscular mycorrhizal fungus in the phytoremediation system and in reducing contamination by some metal(loid)s in order to put a straightforward path in front of other researchers.
Collapse
Affiliation(s)
| | - Hai-Yang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou 234000, China;
| |
Collapse
|
12
|
Jia X, Zhang B, Chen W, Feng B, Guo P. Development of phytoremediator screening strategy and exploration of Pennisetum aided chromium phytoremediation mechanisms in soil. CHEMOSPHERE 2022; 289:133160. [PMID: 34871612 DOI: 10.1016/j.chemosphere.2021.133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Screening of chromium (Cr) phytoremediators (i.e., hyperaccumulator plants and accumulation plants) is essential for the phytoremediation of Cr-contaminated soils but less tackled previously. In this study, we proposed a stepwise strategy for screening Cr phytoremediators and explored tolerance mechanism of the screened species. To achieve effective screening of Cr phytoremediators, seed germination, hydroponic, and pot experiment were performed sequentially, and an improved indicator system was established accordingly. Pennisetum was selected from nine plants, with its high growth rate and Cr remediation efficiency successfully demonstrated in the field. Antioxidant enzymes (i.e., superoxide dismutase (SOD) and catalase (CAT)) and photosynthesis under Cr stress were monitored for tracking the tolerance mechanism. Results showed that the enhanced SOD and CAT contributed to the strong tolerance of Pennisetum to Cr. The SOD and CAT were positively correlated with net photosynthetic rate (Pn), resulting in a phenomenon that Cr had no significant effect on Pn of Pennisetum even at 400 mg kg-1. The research findings helped obtain powerful Cr phytoremediators, deepen our understanding of the tolerance mechanisms associated with phytoremediation, and eventually facilitate effective Cr removal in soil.
Collapse
Affiliation(s)
- Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John' s, NL, A1B 3X5, Canada
| | - Weiwei Chen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Baogen Feng
- China Three Gorges Corporation, Beijing, 100038, PR China
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
13
|
Mishra V, Singh VP. Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:117958. [PMID: 34547656 DOI: 10.1016/j.envpol.2021.117958] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H2S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H2S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H2S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H2S in the presence of L - NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H2S could independently mitigate As(V) stress.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
14
|
Das S, Majumder B, Biswas AK. Selenium alleviates arsenic induced stress by modulating growth, oxidative stress, antioxidant defense and thiol metabolism in rice seedlings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:763-777. [PMID: 34579603 DOI: 10.1080/15226514.2021.1975639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study aims to investigate the potentiality of selenium in modulating arsenic stress in rice seedlings. Arsenate accumulation along with its transformation to arsenite was enhanced in arsenate exposed seedlings. Arsenite induced oxidative stress and severely affected the growth of the seedlings. Arsenate exposure caused an elevation in ascorbate and glutathione levels along with the activities of their metabolizing enzymes viz., ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase. Phytochelatins content was increased under arsenic stress to subdue the toxic effects in the test seedlings. Co-application of arsenate and selenate in rice seedlings manifested pronounced alteration of oxidative stress, antioxidant defense, and thiol metabolism as compared to arsenate treatment only. ANOVA analysis (Tukey's HSD test) demonstrated the relevance of using selenate along with arsenate to maintain the normal growth and development of rice seedlings. Thus, exogenous supplementation of selenium will be a beneficial approach to cultivate rice seedlings in arsenic polluted soil.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, India
| | - Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Gupta S, Thokchom SD, Kapoor R. Arbuscular Mycorrhiza Improves Photosynthesis and Restores Alteration in Sugar Metabolism in Triticum aestivum L. Grown in Arsenic Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2021; 12:640379. [PMID: 33777073 PMCID: PMC7991624 DOI: 10.3389/fpls.2021.640379] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 05/05/2023]
Abstract
Contamination of agricultural soil by arsenic (As) is a serious menace to environmental safety and global food security. Symbiotic plant-microbe interaction, such as arbuscular mycorrhiza (AM), is a promising approach to minimize hazards of As contamination in agricultural soil. Even though the potential of AM fungi (AMF) in redeeming As tolerance and improving growth is well recognized, the detailed metabolic and physiological mechanisms behind such beneficial effects are far from being completely unraveled. The present study investigated the ability of an AM fungus, Rhizophagus intraradices, in mitigating As-mediated negative effects on photosynthesis and sugar metabolism in wheat (Triticum aestivum) subjected to three levels of As, viz., 0, 25, and 50 mg As kg-1 of soil, supplied as sodium arsenate. As exposure caused significant decrease in photosynthetic pigments, Hill reaction activity, and gas exchange parameters such as net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration. In addition, As exposure also altered the activities of starch-hydrolyzing, sucrose-synthesizing, and sucrose-degrading enzymes in leaves. Colonization by R. intraradices not only promoted plant growth but also restored As-mediated impairments in plant physiology. The symbiosis augmented the concentration of photosynthetic pigments, enhanced Hill reaction activity, and improved leaf gas exchange parameters and water use efficiency of T. aestivum even at high dose of 50 mg As kg-1 of soil. Furthermore, inoculation with R. intraradices also restored As-mediated alteration in sugar metabolism by modulating the activities of starch phosphorylase, α-amylase, β-amylase, acid invertase, sucrose synthase, and sucrose-phosphate synthase in leaves. This ensured improved sugar and starch levels in mycorrhizal plants. Overall, the study advocates the potential of R. intraradices in bio-amelioration of As-induced physiological disturbances in wheat plant.
Collapse
Affiliation(s)
| | | | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|