1
|
Zhao Z, Gao B, Henawy AR, Rehman KU, Ren Z, Jiménez N, Zheng L, Huang F, Yu Z, Yu C, Zhang J, Cai M. Mitigating the transfer risk of antibiotic resistance genes from fertilized soil to cherry radish during the application of insect fertilizer. ENVIRONMENT INTERNATIONAL 2025; 199:109510. [PMID: 40319631 DOI: 10.1016/j.envint.2025.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The transfer of antibiotic resistance genes (ARGs) from fertilized soil to vegetables, particularly those consumed raw, causes significant public health risks through the food chain. Black soldier fly larvae can efficiently convert animal manure into organic fertilizer with reduced antibiotic resistance. This study utilized metagenomic sequencing to investigate fields treated with control organic fertilizer (COF), black soldier fly organic fertilizer (BOF), and no fertilizer, with the aim of assessing the transfer risks of ARGs from soil to cherry radish. The results indicated that BOF significantly reduced the richness and abundance of ARGs in both soil and cherry radish compared to COF, reducing 13 ARG subtypes and a 27.6% decrease in ARG abundance in cherry radish. Moreover, a significant positive correlation was observed between mobile genetic elements (MGEs) and virulence factors (VFs) with ARGs, with BOF treatment resulting in a relative abundance reduction of 32.8% and 29.1%, respectively. The complexity of networks involving ARGs with MGEs, VFs, and microbial communities in the BOF treatment was 54.2%, 32.3%, and 32.8% lower, respectively, than the COF treatment. Further analysis of metagenomic-assembled genomes (MAGs) revealed the co-occurrence of ARGs, MGEs, and VFs in cherry radish, indicating the presence of potential pathogenic antibiotic-resistant bacteria (PARB). Notably, the abundance of these PARB in BOF radishes decreased by 45.6% compared to COF. These findings underscore the efficacy of insect fertilizer in mitigating the transfer risks of ARGs to radish, highlighting the significance of sustainable agricultural practices in managing the environmental and health risks associated with ARGs.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Bingqi Gao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Ahmed R Henawy
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China; Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Kashif Ur Rehman
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany; Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhuqing Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China.
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China.
| |
Collapse
|
2
|
Ali N, Ali I, Din AU, Akhtar K, He B, Wen R. Integrons in the Age of Antibiotic Resistance: Evolution, Mechanisms, and Environmental Implications: A Review. Microorganisms 2024; 12:2579. [PMID: 39770781 PMCID: PMC11676243 DOI: 10.3390/microorganisms12122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Integrons, which are genetic components commonly found in bacteria, possess the remarkable capacity to capture gene cassettes, incorporate them into their structure, and thereby contribute to an increase in genomic complexity and phenotypic diversity. This adaptive mechanism allows integrons to play a significant role in acquiring, expressing, and spreading antibiotic resistance genes in the modern age. To assess the current challenges posed by integrons, it is necessary to have a thorough understanding of their characteristics. This review aims to elucidate the structure and evolutionary history of integrons, highlighting how the use of antibiotics has led to the preferential selection of integrons in various environments. Additionally, it explores their current involvement in antibiotic resistance and their dissemination across diverse settings, while considering potential transmission factors and routes. This review delves into the arrangement of gene cassettes within integrons, their ability to rearrange, the mechanisms governing their expression, and the process of excision. Furthermore, this study examines the presence of clinically relevant integrons in a wide range of environmental sources, shedding light on how anthropogenic influences contribute to their propagation into the environment.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
- Guangxi Baise Modern Agriculture Technology Research and Extension Center, Management Committee of Baise National Agricultural Science and Technology Zone of Guangxi, Baise 530108, China
| | - Izhar Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| |
Collapse
|
3
|
Zhang CM, Yuan QQ, Li YQ, Liu A. Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. Lett Appl Microbiol 2024; 77:ovae120. [PMID: 39611313 DOI: 10.1093/lambio/ovae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - An Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Bai Y, Li J, Huang M, Yan S, Li F, Xu J, Peng Z, Wang X, Ma J, Sun J, Yang B, Cui S. Prevalence and characterization of foodborne pathogens isolated from fresh-cut fruits and vegetables in Beijing, China. Int J Food Microbiol 2024; 421:110804. [PMID: 38905809 DOI: 10.1016/j.ijfoodmicro.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Pre-cut fresh fruits and vegetables are highly appealing to consumers for their convenience, however, as they are highly susceptible to microbial contamination in processing, the potential risks of foodborne illnesses to public health are not negligible. This study aimed to assess the prevalence, antibiotic susceptibility and molecular characteristics of major foodborne pathogens (Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella) isolated from fresh-cut fruits and vegetables in Beijing, China. 86 stains were isolated from 326 samples, with S. aureus being the highest prevalence (15.38 %), followed by E. coli (9.23 %) and L. monocytogenes (1.85 %), while no Salmonella was detected. The prevalence by type of food indicated that fruit trays and mixed vegetables were more susceptible to contamination by pathogens. 98 % of S. aureus were resistant to at least of one antibiotic, and showed a high resistance rate to benzylpenicillin (90 %) and oxacillin (48 %). Among 25 E. coli isolates, 57.67 % of which exhibited multi-drug resistance, with common resist to trimethoprim/sulfamethoxazole (66.67 %) and ampicillin (63.33 %). A total of 9 sequence types (STs) and 8 spa types were identified in 35 S. aureus isolates, with ST398-t34 being the predominant type (42.86 %). Additionally, analysis of 25 E. coli isolates demonstrated significant heterogeneity, characterized by 22 serotypes and 18 STs. Genomic analysis revealed that 5 and 44 distinct antibiotic resistance genes (ARGs) in S. aureus and E. coli, respectively. Seven quinolone resistance-determining regions (QRDRs) mutations were identified in E. coli isolates, of which GyrA (S83L) was the most frequently detected. All the S. aureus and E. coli isolates harbored virulence genes. ARGs in S. aureus and E. coli showed a significant positive correlation with plasmids. Furthermore, one L. monocytogenes isolate, which was ST101 and serogroupIIc from watermelon sample, harbored virulence genes (inlA and inlB) and LIPI-1 pathogenic islands (prfA, plcA, hly and actA), which posed potential risks for consumer's health. This study focused on the potential microbial risk of fresh-cut fruits and vegetables associated with foodborne diseases, improving the scientific understanding towards risk assessment related to ready-to-eat foods.
Collapse
Affiliation(s)
- Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Jun Li
- College of Food Science and Engineering, Northwest Agriculture and Forestry Science and Technology University, Shaanxi 712100, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan 417000, China; College of Life Science, Anqing Normal University, Anhui 246133, China
| | - Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Xueshuo Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jinjing Ma
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China; College of Life Science, Anqing Normal University, Anhui 246133, China
| | - Jiali Sun
- College of Food Science and Engineering, Northwest Agriculture and Forestry Science and Technology University, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest Agriculture and Forestry Science and Technology University, Shaanxi 712100, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
5
|
Gentile A, Piccolo P, Iannece P, Cicatelli A, Castiglione S, Guarino F. Reduction of antimicrobial resistance: Advancements in nature-based wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134330. [PMID: 38678704 DOI: 10.1016/j.jhazmat.2024.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Water scarcity, affecting one-fifth of the global population, is exacerbated by industrial, agricultural, and population growth pressures on water resources. Wastewater, containing Contaminants of Emerging Concern (CECs) such as antibiotics, presents environmental and health hazards. This study explores a Nature-Based Solution (NBS) using Constructed Wetlands (CWs) for wastewater reclamation and CECs removal. Two CW configurations (Vertical-VCW and Hybrid-HCW) were tested for their efficacy. Results show significant reduction in for all the chemico-physical and biological parameters meeting Italian water reuse standards. Furthermore, Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistant Genes (ARGs) were effectively reduced, emphasizing the potential of the CWs in mitigating Antimicrobial Resistance (AMR). Lettuce seedlings irrigated with the treated wastewater exhibited no ARB/ARGs transfer, indicating the safety of the reclaimed wastewater for agricultural use. Overall, CWs emerge as sustainable Nature Based Solutions (NBS) for wastewater treatment, contributing to global water conservation efforts amid escalating water scarcity challenges.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Paolo Piccolo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy.
| | - Patrizia Iannece
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| |
Collapse
|
6
|
Yuan M, Huang Z, Malakar PK, Pan Y, Zhao Y, Zhang Z. Antimicrobial resistomes in food chain microbiomes. Crit Rev Food Sci Nutr 2023; 64:6953-6974. [PMID: 36785889 DOI: 10.1080/10408398.2023.2177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The safety and integrity of the global food system is in a constant state of flux with persistent chemical and microbial risks. While chemical risks are being managed systematically, microbial risks pose extra challenges. Antimicrobial resistant microorganism and persistence of related antibiotic resistance genes (ARGs) in the food chain adds an extra dimension to the management of microbial risks. Because the food chain microbiome is a key interface in the global health system, these microbes can affect health in many ways. In this review, we systematically summarize the distribution of ARGs in foods, describe the potential transmission pathway and transfer mechanism of ARGs from farm to fork, and discuss potential food safety problems and challenges. Modulating antimicrobial resistomes in the food chain facilitates a sustainable global food production system.
Collapse
Affiliation(s)
- Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Zhao H, Zhang J, Chen X, Yang S, Huang H, Pan L, Huang L, Jiang G, Tang J, Xu Q, Dong K, Li N. Climate and nutrients regulate biographical patterns and health risks of antibiotic resistance genes in mangrove environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158811. [PMID: 36115398 DOI: 10.1016/j.scitotenv.2022.158811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are prone to receive pollutants and act as a sink for antibiotic resistance genes (ARGs). However, knowledge of the human health risk of ARGs and its influencing factors in mangrove ecosystems is limited, particularly at large scales. Here, we applied a high-throughput sequencing technique combined with an ARG risk assessment framework to investigate the profiles of ARGs and their public health risks from mangrove wetlands across South China. We detected 456 ARG subtypes, and found 71 of them were identified as high-risk ARGs, accounting for 0.25 % of the total ARG abundance. Both ARGs and bacterial communities showed a distance-decay biogeography, but ARGs had a steeper slope. Linear regression analysis between features of co-occurrence network and high-risk ARG abundance implies that greater connections in the network would result in higher health risk. Structural equation models showed that geographic distance and MGEs were the most influential factors that affected ARG patterns, ARGs and MGEs contributed the most to the health risk profiles in mangrove ecosystems. This work provides a novel understanding of biogeographic patterns and health risk assessment of ARGs in mangrove ecosystems and can have profound significance for mangrove environment management with regard to ARG risk control.
Collapse
Affiliation(s)
- Huaxian Zhao
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xing Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shu Yang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Haifeng Huang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Lianghao Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Gonglingxia Jiang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Jinli Tang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Qiangsheng Xu
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Nan Li
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
8
|
Shin M, Kang JW, Kang DH. A study on antibiotic resistance gene degradation in fresh produce using peracetic acid combined with an ultraviolet-C light-emitting-diode. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Seyoum MM, Lichtenberg R, Orlofsky E, Bernstein N, Gillor O. Antibiotic resistance in soil and tomato crop irrigated with freshwater and two types of treated wastewater. ENVIRONMENTAL RESEARCH 2022; 211:113021. [PMID: 35276198 DOI: 10.1016/j.envres.2022.113021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Agricultural use of treated wastewater (TWW) is an effective means to reduce freshwater (FW) consumption. However, there is a growing concern regarding the potential dissemination of antibiotic resistance elements by TWW irrigation. We hypothesized that higher levels of antibiotic resistance genes (ARGs) would be detected in soil and crops irrigated with TWW compared to FW irrigation. To test our prediction, samples of water (FW, secondary TWW, and tertiary TWW), irrigated soils, and crops (tomato) surface wash were collected during two consecutive growing seasons. The ARGs conferring resistance to sulfonamide, fluoroquinolone, penicillin, erythromycin and tetracycline were quantified in the samples, alongside Class 1 integron-integrase and the bacterial 16 S rRNA encoding genes. Contrary to our hypothesis, ARGs in the irrigation water were not propagated to either the irrigated soil, or the tomato. The tomato surface wash featured a variety of ARGs that were undetected in neither the waters nor the irrigated soils. Therefore, we cautiously question the link between irrigation water quality and the soil and produce resistomes.
Collapse
Affiliation(s)
- Mitiku Mihiret Seyoum
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion, 8499000, Israel
| | - Rachel Lichtenberg
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion, 8499000, Israel
| | - Ezra Orlofsky
- School of Engineering, Kinneret Academic College, Zemach, Emek HaYarden, 1513200, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion, 8499000, Israel.
| |
Collapse
|
10
|
Gu Q, Sun M, Lin T, Zhang Y, Wei X, Wu S, Zhang S, Pang R, Wang J, Ding Y, Liu Z, Chen L, Chen W, Lin X, Zhang J, Chen M, Xue L, Wu Q. Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. Front Microbiol 2022; 12:798442. [PMID: 35273579 PMCID: PMC8902363 DOI: 10.3389/fmicb.2021.798442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3’)-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS’s antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjie Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiuhua Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|