1
|
Bian J, Xu J, Guo Z, Li X, Ge Y, Tang X, Lu B, Chen X, Lu S. Per- and polyfluoroalkyl substances in Chinese commercially available red swamp crayfish (Procambarus clarkii): Implications for human exposure and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124369. [PMID: 38876375 DOI: 10.1016/j.envpol.2024.124369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The extensive utilization of per- and polyfluoroalkyl substances (PFASs) has led to their pervasive presence in the environment, resulting in contamination of aquatic products. Prolonged exposure to PFASs has been linked to direct hepatic and renal damage, along with the induction of oxidative stress, contributing to a spectrum of chronic ailments. Despite the recent surge in popularity of red swamp crayfish as a culinary delicacy in China, studies addressing PFASs' exposure and associated health risks from their consumption remain scarce. To address this gap, our study investigated the PFASs' content in 85 paired edible tissue samples sourced from the five primary red swamp crayfish breeding provinces in China. The health risks associated with dietary exposure were also assessed. Our findings revealed widespread detection of PFASs in crayfish samples, with short-chain perfluoroalkyl carboxylic acids (PFCAs) exhibiting the highest concentrations. Notably, the total PFAS concentration in the hepatopancreas (median: 160 ng/g) significantly exceeded that in muscle tissue (5.95 ng/g), as did the concentration of every single substance. The hazard quotient of perfluorohexanesulfonic acid (PFHxS) via consuming crayfish during peak season exceeded 1. In this case, a potential total non-cancer health risk of PFASs, which is mainly from the hepatopancreas and associated with PFHxS, is also observed (hazard index>1). Thus, it is recommended to avoid consuming the hepatopancreas of red swamp crayfish. Greater attention should be paid to governance technology innovation and regulatory measure strengthening for short-chain PFASs.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Xu J, Bian J, Ge Y, Chen X, Lu B, Liao J, Xie Q, Zhang B, Sui Y, Yuan C, Lu S. Parabens and triclosan in red swamp crayfish (Procambarus clarkii) from China: Concentrations, tissue distribution and related human dietary intake risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173130. [PMID: 38734109 DOI: 10.1016/j.scitotenv.2024.173130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Parabens (PBs) and triclosan (TCS) are commonly found in pharmaceuticals and personal care products (PPCPs). As a result, they have been extensively found in the environment, particularly in aquaculture operations. Red swamp crayfish (Procambarus clarkii) consumption has significantly risen in China. Nevertheless, the levels of PBs and TCS in this species and the associated risk to human dietary intake remain undisclosed. This study assessed the amounts of five PBs, i.e., methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP) and benzyl-paraben (BzP), as well as TCS in crayfish taken from five provinces of the middle-lower Yangtze River. MeP, PrP and TCS showed the highest detection rates (hepatopancreas: 46-86 %; muscle: 63-77 %) since they are commonly used in PPCPs. Significantly higher levels of ∑5PBs (median: 3.69 ng/g) and TCS (median: 7.27 ng/g) were significantly found in the hepatopancreas compared to the muscle (median: 0.39 ng/g for ∑5PBs and 0.16 ng/g for TCS) (p < 0.05), indicating bioaccumulation of these chemicals in the hepatopancreas. The estimated daily intake values of ∑5PBs and TCS calculated from the median concentrations of crayfish were 6.44-7.94 ng/kg bw/day and 11.4-14.0 ng/kg bw/day, respectively. Although no health risk was predicted from consuming crayfish (HQ <1), consumption of the hepatopancreas is not recommended.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jianfang Liao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Qingyuan Xie
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Beining Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yaotong Sui
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Chenghan Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Li X, Xu J, Bi Z, Bian J, Huang J, Guo Z, Xiao Q, Sha Y, Ji J, Zhu T, Lu S. Concentrations, sources and health risk of bisphenols in red swamp crayfish (Procambarus clarkii) from South-Eastern China. CHEMOSPHERE 2024; 358:142187. [PMID: 38685327 DOI: 10.1016/j.chemosphere.2024.142187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Bisphenol analogs (BPs) are extensively employed in commercial and industrial products and they have been found in a variety of environmental matrices and human samples. The red swamp crayfish (Procambarus clarkii) has been a trendy food in China in recent decades. However, the levels of BPs in Chinese crayfish and the associated hazards of human exposure remain unknown. Thus, in this study, the levels of eight BPs in crayfish gathered from five major provinces engaged in crayfish within the Yangtze River Basin were analyzed. Additionally, the health risks for humans by ingesting crayfish were calculated. BPs were frequently detected in crayfish tissues, indicating the wide occurrence of these chemicals. In comparison to other substitutions, BPA remains the dominant bisphenol analog. Most of the BPs were observed to accumulate in the hepatopancreas compared to the muscle, so consuming the hepatopancreas of crayfish is not recommended. With the exception of BPS, the Estimated Daily Intakes (EDIs) of the remaining BPs exceeded the Tolerable Daily Intake (TDI) specified by the European Food Safety Authority (EFSA) by a factor of 1.75-69.0. The mean hazard index (HI) values exceeded 1 for both hepatopancreas and muscle in all provinces, and the mean HI values for hepatopancreas were significantly higher than those for muscle, indicating potential health risks for local consumers.
Collapse
Affiliation(s)
- Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhuochang Bi
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yujie Sha
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiajia Ji
- Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Zhu
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, Shenzhen, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Zhang L, Song Z, Zhou Y, Zhong S, Yu Y, Liu T, Gao X, Li L, Kong C, Wang X, He L, Gan J. The Accumulation of Toxic Elements (Pb, Hg, Cd, As, and Cu) in Red Swamp Crayfish ( Procambarus clarkii) in Qianjiang and the Associated Risks to Human Health. TOXICS 2023; 11:635. [PMID: 37505600 PMCID: PMC10384343 DOI: 10.3390/toxics11070635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Due to rapidly expanding crayfish consumption worldwide, the food safety of red swamp crayfish (Procambarus clarkii) is of great concern. China is the largest consumer and producer of crayfish globally. As of yet, it is unknown whether the main crayfish production cities in China are within safe levels of toxic heavy metals and metalloids. For 16 consecutive years, Qianjiang city ranked first in China in processing export volumes of red swamp crayfish. This study presents a comprehensive analysis of the enrichment levels and associated health risks of the species in Qianjiang. In our research, samples of four crayfish tissues, including the head, hepatopancreas, gills, and muscles, were collected from 38 sampling sites distributed in Qianjiang to evaluate the concentration levels of five heavy metals (Pb, Hg, Cd, As, and Cu). The concentration levels of all five metals in muscle did not surpass the national standard. Furthermore, eight significant correlations have been found. For further in-depth assess risk of crayfish in Qianjiang, estimated daily intake (EDI), target hazard quotient (THQ), carcinogenic risk (CR), and estimated maximum allowable consumption rates (CRmm) were evaluated in the abdomen muscle and hepatopancreas. The THQ values for each metal were found to be less than 1, while the CR values were below 10-6. Additionally, the CRmm for adults was determined to be 17.2 meals per month. These findings, based on the analysis of five metallic elements included in this study, suggest that the consumption of crayfish abdomen muscle in Qianjiang does not pose any significant health risks. However, it is noteworthy that certain regions exhibit elevated levels of arsenic in the hepatopancreas, surpassing the national standard, thereby rendering them unsuitable for excessive consumption. In general, the findings can be used to provide guidance for safe dietary practices in China.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ziwei Song
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoping Gao
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Xinna Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| |
Collapse
|
5
|
Li H, Li H, Zhang H, Cao J, Ge T, Gao J, Fang Y, Ye W, Fang T, Shi Y, Zhang R, Dong X, Guo X, Zhang Y. Trace elements in red swamp crayfish (Procambarus clarkii) in China: Spatiotemporal variation and human health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159749. [PMID: 36306845 DOI: 10.1016/j.scitotenv.2022.159749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The enrichment and health risk assessment of trace elements in crayfish on a national scale are significant for food safety due to the rapidly expanding crayfish consumption in China. In the present study, 4709 samples were extracted from databases to explore the spatiotemporal variation characteristics of trace elements in crayfish. Due to the variance in the background value of trace elements, the level of trace elements varies by region. Additionally, levels of As and Cr in crayfish increased with the promotion of intensive rice-crayfish coculture in China. Health risk assessment results revealed that trace elements may cause non-carcinogenic risk for crayfish consumption for adults and children from the mid-lower reaches of the Yangtze River, and the main risk was from As and Hg. The cancer risk values of As for children and adults in Zhejiang, Anhui, Heilongjiang, Hubei, Hunan, Jiangsu, Jiangxi and Shandong provinces were above the allowable value. There is concern about the non-carcinogenic and carcinogenic risk of consuming crayfish containing trace elements in some areas in China. Therefore, the results can serve as a critical reference for policy purposes in China. In addition, it is recommended that further research and assessment on crayfish consumption are required.
Collapse
Affiliation(s)
- Hui Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Huaiyan Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Haiting Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Jing Cao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Tao Ge
- Anhui Research Institute of Geological Experiment, Hefei 230001, China
| | - Jiale Gao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Yan Fang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Ting Fang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yanhong Shi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Rong Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Xiaoying Guo
- Agricultural Engineering Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yunhua Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China.
| |
Collapse
|
6
|
Liu Y, Ai X, Sun R, Yang Y, Zhou S, Dong J, Yang Q. Residue, biotransformation, risk assessment and withdrawal time of enrofloxacin in red swamp crayfish (Procambarus clarkii). CHEMOSPHERE 2022; 307:135657. [PMID: 35820477 DOI: 10.1016/j.chemosphere.2022.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Crayfish is a very popular aquatic food in many countries, and enrofloxacin (ENR) and ciprofloxacin (CIP) was the most frequently detected in aquatic products. However, limited information is available on the residue characterization, biotransformation rate and withdrawal period (WT) of ENR and CIP in crayfish and health risk via consumption of ENR and CIP remained crayfish. Herein, a comprehensive investigation was conducted to study residue depletion, biotransformation, ingestion risk, and WT of ENR and its predominate metabolite CIP in crayfish following different routes with repeated doses. The results showed that the elimination half-life (T1/2) of target compounds in crayfish were all in order of hepatopancreas > muscle > gill, and the order of T1/2 in different crayfish tissues were intramuscular (IM) route > oral (PO) treatment > immersion (IMMR) administration. The biotransformation rates from ENR to CIP varied from 0.75% to 3.45% in crayfish tissues following different exposure routes. The high dietary risk (RQ > 1) consuming muscle and hepatopancreas of ENR and CIP remained crayfish occurred at early after different administrations. WT is the key to control the drug residue risk, and the longest WT of marker residue of ENR in crayfish was calculated to be 51 d (1275 °C-day).
Collapse
Affiliation(s)
- Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, China.
| | - Ruyu Sun
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| |
Collapse
|
7
|
Xu J, Zhu Z, Zhong B, Gong W, Du S, Zhang D, Chen Y, Li X, Zheng Q, Ma J, Sun L, Lu S. Health risk assessment of perchlorate and chlorate in red swamp crayfish (Procambarus clarkii) in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156889. [PMID: 35753452 DOI: 10.1016/j.scitotenv.2022.156889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate and chlorate are both strong oxidants and thyroid toxicants that are widely distributed in soil, water and human foods. The red swamp crayfish (Procambarus clarkii) is a common aquatic organism that is popular in Chinese culinary dishes. Dietary intake is the main route of human exposure to perchlorate and chlorate, though the health risks of crayfish consumption are unknown. Thus, this study investigated the quantities of perchlorate and chlorate in red swap crayfish from sampling sites in five provinces located near the Yangtze River in China, along with the associated health risks of consuming this species. Perchlorate was detected in 55.6-100 % of crayfish samples in each sampling location, and chlorate was found in 100 % of samples cross all sites. Concentrations of perchlorate in crayfish from upstream provinces (Hubei, Hunan and Jiangxi) were higher than those from downstream provinces (Anhui and Jiangsu). Perchlorate and chlorate concentrations were positively correlated in crayfish, suggesting that chlorate may be a degradation byproduct of perchlorate. The quantities of both pollutants in hepatopancreas tissue were higher than in muscle tissues (p < 0.05), such that we do not recommend ingesting crayfish hepatopancreas. Hazard quotient (HQ) values for chlorate in crayfish were <1 across all provinces, suggesting no potential health risk of chlorate exposure through crayfish consumption. However, perchlorate concentrations in crayfish from the Jiangxi province had an associated HQ value >1, suggesting potential risks for human health. These results will be useful in informing mitigation measures aimed at reducing perchlorate exposure associated with crayfish consumption.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Baisen Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Weiran Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sijin Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Qin Z, Yao Y, Zhao J, Fu H, Zhang S, Qiu L. Investigation of migration rule of rainwater for sponge city roads under different rainfall intensities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3395-3407. [PMID: 34608596 DOI: 10.1007/s10653-021-01104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Urban development and climate change have led to severe waterlogging in cities. To study the degree of mitigation of urban waterlogging using the design of sponge city roads, this study employed No. 9 Road in the Sino-German Eco-park. By establishing the scaled physical model, the pavement structure of the sponge city road was optimized. Furthermore, water migration (seepage, impoundment, and drainage) rule was obtained under different rainfall intensities using the optimal pavement scheme. The following conclusions were drawn from the studies. Good permeability of the sidewalk surface structure is conducive for rainwater collection. The sponge urban road rainwater collection and utilization system could absorb up to 88% of rainwater under the rainfall intensity of 173 mm (extra heavy rain), and could absorb up to 100% of rainwater under heavy rain conditions. The seepage volume increased exponentially with the rise in rainfall intensity, and the amount of water storage increased linearly with the rainfall intensity. These results can provide guidance for safety early warning of urban waterlogging on No. 9 Road in the Sino-German Eco-park and deeper insights in the design of sponge city roads.
Collapse
Affiliation(s)
- Zhe Qin
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, No.579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong Province, China
- Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yujing Yao
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, No.579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong Province, China
- Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jingwei Zhao
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, No.579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong Province, China.
- Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Houli Fu
- School of Civil Engineering and Architecture, Linyi University, Linyi, 27600, China
| | - Sheng Zhang
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, No.579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong Province, China
- Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liyuan Qiu
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, No.579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong Province, China
- Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
9
|
Han R, Khan A, Ling Z, Wu Y, Feng P, Zhou T, Salama ES, El-Dalatony MM, Tian X, Liu P, Li X. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113216. [PMID: 35065503 DOI: 10.1016/j.ecoenv.2022.113216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Procambarus clarkii (crayfish) accumulates a high concentration of Arsenic (As) from the aquatic environment and causes considerable human health risks. In this study, Limosilactobacillus fermentum GR-3 strain was isolated from "Jiangshui" and applied for As(III) adsorption and antioxidant abilities. Strain GR-3 removed 50.67% of 50 mg/L As(III) and exhibited the high antioxidant potential of DPPH (1,1-Diphenyl-2-picrylhydrazyl) (87.63%) and hydroxyl radical (74.51%) scavenging rate in vitro. P. clarkii was feed with strain GR-3, the results showed that As(III) concentration reduced, and residual level in hepatopancreas was decreased by 36%, compared to As(III)-exposed group (control). Gut microbial sequencing showed that strain GR-3 restores gut microbiota dysbiosis caused by As(III) exposure. Further application in the field scale was performed and revealed a decrease in As(III) accumulation and increasing 50% aquaculture production of the total output. In summary, feed-additive probiotic is recommended as a novel strategy to minimize aquaculture foods toxicity and safe human health.
Collapse
Affiliation(s)
- Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Ying Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Marwa M El-Dalatony
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xirong Tian
- Hubei Kewang Animal Husbandry Co., Ltd, Qianjiang, Hubei, People's Republic of China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
10
|
Mo A, Huang Y, Gu Z, Liu C, Wang J, Yuan Y. Health risk assessment and bioaccumulation of heavy metals in Procambarus clarkii from six provinces of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2539-2546. [PMID: 34370203 DOI: 10.1007/s11356-021-15855-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Contamination with heavy metals in wild red swamp crayfish (Procambarus clarkii) from 7 different geographical areas in six provinces of China (Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shandong) was evaluated. Concentrations of chromium (Cr), arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg) in the abdominal muscle, gonad, and hepatopancreas were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometer (AFS). Except for the Cd content in the hepatopancreas, the contents of selected heavy metals in three different tissues were significantly lower than the proposed limits provided by United States Environmental Protection Agency (USEPA). The maximum accumulations of Cd and Pb were in the hepatopancreas, while the maximum accumulation of As was in the gonad, and the maximum accumulations of Hg and Cr were in the abdominal muscle. The highest contents of Cr, Hg, and Pb were all detected in Dongting Lake, Hunan, which was consistent with the trend of the metal pollution index (MPI). Risk value of the target hazard quotient (THQ) was below 1.0, suggesting that the intake of selected heavy metals through crayfish consumption would not pose a significant health risk to consumers.
Collapse
Affiliation(s)
- Aijie Mo
- FisheriesCollege, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangyang Huang
- FisheriesCollege, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zemao Gu
- FisheriesCollege, Huazhong Agricultural University, Wuhan, 430070, China
- Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- FisheriesCollege, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianghua Wang
- FisheriesCollege, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yongchao Yuan
- FisheriesCollege, Huazhong Agricultural University, Wuhan, 430070, China.
- Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Hull EA, Barajas M, Burkart KA, Fung SR, Jackson BP, Barrett PM, Neumann RB, Olden JD, Gawel JE. Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145318. [PMID: 33736365 PMCID: PMC8032223 DOI: 10.1016/j.scitotenv.2021.145318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Arsenic (As) causes cancer and non-cancer health effects in humans. Previous research revealed As concentrations over 200 μg g-1 in lake sediments in the south-central Puget Sound region affected by the former ASARCO copper smelter in Ruston, WA, and significant bioaccumulation of As in plankton in shallow lakes. Enhanced uptake occurs during summertime stratification and near-bottom anoxia when As is mobilized from sediments. Periodic mixing events in shallow lakes allow dissolved As to mix into oxygenated waters and littoral zones where biota reside. We quantify As concentrations and associated health risks in human-consumed tissues of sunfish [pumpkinseed (Lepomis gibbosus) and bluegill (Lepomis macrochirus)], crayfish [signal (Pacifastacus leniusculus) and red swamp (Procambarus clarkii)], and snails [Chinese mystery (Bellamya chinensis)] from lakes representing a gradient of As contamination and differing mixing regimes. In three shallow lakes with a range of arsenic in profundal sediments (20 to 206 μg As g-1), mean arsenic concentrations ranged from 2.9 to 46.4 μg g-1 in snails, 2.6 to 13.9 μg g-1 in crayfish, and 0.07 to 0.61 μg g-1 in sunfish. Comparatively, organisms in the deep, contaminated lake (208 μg g-1 in profundal sediments) averaged 11.8 μg g-1 in snails and 0.06 μg g-1 in sunfish. Using inorganic As concentrations, we calculated that consuming aquatic species from the most As-contaminated shallow lake resulted in 4-10 times greater health risks compared to the deep lake with the same arsenic concentrations in profundal sediments. We show that dynamics in shallow, polymictic lakes can result in greater As bioavailability compared to deeper, seasonally stratified lakes. Arsenic in oxygenated waters and littoral sediments was more indicative of exposure to aquatic species than profundal sediments, and therefore we recommend that sampling methods focus on these shallow zones to better indicate the potential for uptake into organisms and human health risk.
Collapse
Affiliation(s)
- Erin A Hull
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States.
| | - Marco Barajas
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States
| | - Kenneth A Burkart
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States
| | - Samantha R Fung
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, United States
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Fairchild Hall, Hanover, NH 03755, United States
| | - Pamela M Barrett
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, United States
| | - Rebecca B Neumann
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, United States
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98195, United States
| | - James E Gawel
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States
| |
Collapse
|
12
|
Hossain MM, Huang H, Yuan Y, Wan T, Jiang C, Dai Z, Xiong S, Cao M, Tu S. Silicone stressed response of crayfish (Procambarus clarkii) in antioxidant enzyme activity and related gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115836. [PMID: 33190981 DOI: 10.1016/j.envpol.2020.115836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Organosilicon has been widely used in various fields of industry and agriculture due to its excellent properties, such as high and low temperature resistance, flame retardant, insulation, radiation resistance and physiological inertia. However, organosilicon toxicity in aquatic animals is seldom known. In this research, two typical silicone or silane coupling agents (KH-560 (3-Glycidoxypropyltrimethoxysilane) and KH-570 (3-Methacryloxypropyltrimethoxysilane)) were used in a hydroponic experiment to evaluate the effects on survival rate, antioxidant response and gene expression in red swamp crayfish (Procambarus clarkii). Crayfishes were grown in black aquaculture boxes containing different concentrations (0, 10, 100 and 1000 mg L-1) of KH-560 and KH-570 for 72 h, and then crayfish samples were harvested and separated into tissues of carapace, gill and muscle for analysis. The results showed that silicone significantly increased malondialdehyde (MDA) content in muscle by 17%-38% except for the treatment of 100 mg L-1 KH-570, and reduced the survival rate of crayfish. Additionally, silicone KH-570 increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) by 15%-31%, 17%-35%, and 9%-46%, as well as the contents of ascorbate (AsA) and glutathione (GSH) by 19%-31%, and 23%-29% respectively, in muscle tissue, and similar results occurred in KH-560. In the carapace, however, SOD activity was significantly decreased at high concentrations level of both silicone treatments. Moreover, silicon (Si) content was higher in the abdominal muscle of crayfish after silicone treatment. Assay of gene expression showed an obvious increasing expression of antioxidant related genes (Sod1, Sod2, Cat1, Cat2, and Pod1, Pod2) under silicone stress. The above results suggested that silicone caused an obvious stress response in crayfish in both biochemical and molecular levels.
Collapse
Affiliation(s)
- Md Muzammel Hossain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tianyin Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chengfeng Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China.
| |
Collapse
|
13
|
Recent developments in environmental mercury bioremediation and its toxicity: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Wang J, Shan Q, Liang X, Guan F, Zhang Z, Huang H, Fang H. Levels and human health risk assessments of heavy metals in fish tissue obtained from the agricultural heritage rice-fish-farming system in China. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121627. [PMID: 31740309 DOI: 10.1016/j.jhazmat.2019.121627] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
China began to practice Rice-fish-farming system (RFFS) 1700 years ago. Nowadays, the widely spread of metals could be potential threats to the quality of RFFS fish. In this study, Pb, Cd, Hg, As and Cr as the top five most toxic heavy metals were determined in six species of RFFS fish meat obtained from 7 provinces in south China. The mean concentrations of metals in RFFS fish followed Pb (36.89 μg/kg) > As (33.36 μg/kg) > Cr (18.54 μg/kg) > Hg (16.35 μg/kg) > Cd (2.01 μg/kg), which were mostly lower in comparison with fish from traditional aquaculture systems raised by fish feeds. Grass carp obtained lower metal concentrations compared with other fishes, possibly indicating the importance of feeding habits of RFFS fish. Concentrations of metals in fish and RFFS sediment were in good correlations, and benthic fish obtained high pollution levels, suggesting the accumulation of metals through the direct contact with sediment. Risks assessments coupled with Monte Carlo simulation indicated the potential non-carcinogenic risks and carcinogenic risks decreased following As > Hg > Cr ≈ Pb > Cd, and As > Cr > Cd > Pb, respectively. These results suggested RFFS is still a successful mode of green agriculture.
Collapse
Affiliation(s)
- Jingxin Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China
| | - Qi Shan
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fangling Guan
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhi Zhang
- Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture and Ministry of Agriculture Laboratory of Quality & Safety Risky Assessment for Aquatic Product, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou 510380, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
15
|
Rodríguez-Estival J, Morales-Machuca C, Pareja-Carrera J, Ortiz-Santaliestra ME, Mateo R. Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109682. [PMID: 31557570 DOI: 10.1016/j.ecoenv.2019.109682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Here we characterize the bioaccumulation of mercury (Hg) and lead (Pb) in red swamp crayfish (Procambarus clarkii) from two river courses in Central Spain that are impacted by historical Hg and Pb mining activities, respectively. We estimate the absolute oral bioavailability of metals in crayfish tissues by means of in vitro bioaccessibility simulations, and assess whether their consumption may imply a health risk for humans by estimating target hazard quotients and safe consumption rates. We also study the effect of cooking crayfish on the mobilization of the metal body burden in the context of the traditional Spanish cuisine. The results showed that crayfish from the mining districts accumulated a high level of Hg and Pb pollution in both the tail muscle and the carcass. The in vitro bioaccessibility of Hg and Pb in the edible part was 27.86 ± 4.05 and 33.73 ± 5.91%, respectively. Absolute bioavailability was estimated to be 38.31 for Hg, and 20.21 (adults) and 67.35% (children) for Pb. Risk indices indicated that, even after adjusting for bioavailability, it is not safe to consume crayfish from the mining-impacted rivers because of their high levels of Hg and Pb. Using the carcass as a condiment for flavouring should also be avoided. The cooking procedure extracted relatively small amounts of the total Hg (8.92 ± 2.13%) and Pb (1.68 ± 0.29%) body burden. Further research that will support human and ecological risk assessment, along with the implementation of advisory measures for the local population as regards crayfish consumption, are recommended.
Collapse
Affiliation(s)
- Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Carlos Morales-Machuca
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Jennifer Pareja-Carrera
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
16
|
Thompson LA, Darwish WS. Environmental Chemical Contaminants in Food: Review of a Global Problem. J Toxicol 2019; 2019:2345283. [PMID: 30693025 PMCID: PMC6332928 DOI: 10.1155/2019/2345283] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023] Open
Abstract
Contamination by chemicals from the environment is a major global food safety issue, posing a serious threat to human health. These chemicals belong to many groups, including metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), perfluorinated compounds (PFCs), pharmaceutical and personal care products (PPCPs), radioactive elements, electronic waste, plastics, and nanoparticles. Some of these occur naturally in the environment, whilst others are produced from anthropogenic sources. They may contaminate our food-crops, livestock, and seafood-and drinking water and exert adverse effects on our health. It is important to perform assessments of the associated potential risks. Monitoring contamination levels, enactment of control measures including remediation, and consideration of sociopolitical implications are vital to provide safer food globally.
Collapse
Affiliation(s)
- Lesa A. Thompson
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Wageh S. Darwish
- Laboratory of Advanced Lipid Analysis, Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Chan PHY, Chan MHM, Li AM, Cheung RCK, Yu XT, Lam HS. Methylmercury levels in commonly consumed fish and methylmercury exposure of children and women of childbearing age in Hong Kong, a high fish consumption community. ENVIRONMENTAL RESEARCH 2018; 166:418-426. [PMID: 29940474 DOI: 10.1016/j.envres.2018.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/27/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Despite high fish consumption levels of Hong Kong residents, little is known about the MeHg exposure levels of Hong Kong high-risk populations (i.e. young children and women of childbearing age). OBJECTIVES To investigate the MeHg levels in fish commonly consumed in Hong Kong and assess the exposure levels of local kindergarten children and women of childbearing age. METHODS A community-based survey was conducted in randomly recruited local kindergartens. The MeHg concentrations of the most commonly consumed fish items were measured. Based on their fish consumption data, subjects' MeHg exposure levels were estimated and compared with the reference dose (RfD) set by U.S. Environmental Protection Agency. RESULTS A total of 2917 mother-child pairs were recruited. The MeHg levels of the fish samples ranged from < 2-1498.7 ng/g. Six frozen cod fish samples contained MeHg levels exceeding the local legal limit of 500 ng/g. The median estimated MeHg intake for children and mothers were 0.29 and 0.22 µg/kg bw/wk, respectively. Approximately 16% children and 9% mothers exceeded the RfD. CONCLUSIONS Apart from frozen cod fish, most fish species commonly consumed in Hong Kong had low MeHg content. Although the majority of our subjects were exposed to low MeHg levels, high fish consumers could still exceed the RfD and are potentially at risk of MeHg toxicity. To avoid excessive MeHg exposure, we suggest that young children and their mothers may consume a variety of locally available fish, but avoid consumption of frozen cod fish.
Collapse
Affiliation(s)
- Peggy Hiu Ying Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Michael Ho Ming Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Albert Martin Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Xin Ting Yu
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hugh Simon Lam
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|