1
|
Zhao Y, Li X, Xu G, Nan J. Multilevel investigation of the ecotoxicological effects of sewage sludge biochar on the earthworm Eisenia fetida. CHEMOSPHERE 2024; 360:142455. [PMID: 38810797 DOI: 10.1016/j.chemosphere.2024.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Tilikj N, de la Fuente M, González ABM, Martínez-Guitarte JL, Novo M. Surviving in a multistressor world: Gene expression changes in earthworms exposed to heat, desiccation, and chemicals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104428. [PMID: 38570150 DOI: 10.1016/j.etap.2024.104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
An investigation of the effects of anthropogenic stress on terrestrial ecosystems is urgently needed. In this work, we explored how exposure to heat, desiccation, and chemical stress alters the expression of genes that encode heat shock proteins (HSPs), an enzyme that responds to oxidative stress (CAT), hypoxia-related proteins (HIF1 and HYOU), and a DNA repair-related protein (PARP1) in the earthworm Eisenia fetida. Exposure to heat (31°C) for 24 h upregulated HSPs and hypoxia-related genes, suggesting possible acquired thermotolerance. Desiccation showed a similar expression profile; however, the HSP response was activated to a lesser extent. Heat and desiccation activated the small HSP at 24 h, suggesting that they may play a role in adaptation. Simultaneous exposure to endosulfan and temperature for 7 h upregulated all of the evaluated genes, implicating a coordinated response involving multiple biological processes to ensure survival and acclimation. These results highlight the relevance of multistress analysis in terrestrial invertebrates.
Collapse
Affiliation(s)
- Natasha Tilikj
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, Madrid 28040, Spain.
| | - Mercedes de la Fuente
- Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - Ana Belén Muñiz González
- Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - Marta Novo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, Madrid 28040, Spain
| |
Collapse
|
3
|
He F, Liu R, Tian G, Qi Y, Wang T. Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162014. [PMID: 36740067 DOI: 10.1016/j.scitotenv.2023.162014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
4
|
He F, Li X, Huo C, Chu S, Cui Z, Li Y, Wan J, Liu R. Evaluation of fluorene-caused ecotoxicological responses and the mechanism underlying its toxicity in Eisenia fetida: Multi-level analysis of biological organization. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129342. [PMID: 35716570 DOI: 10.1016/j.jhazmat.2022.129342] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Fluorene is an important toxic chemical that exists ubiquitously in the environment, and it has also been suggested to exert potential deleterious effects on soil invertebrates. However, knowledge about the toxic effects of fluorene and its underlying mechanisms of the effects on key soil organism earthworms remains limited. From this view point, this study was undertaken to explore the potential effects of fluorene and its underlying mechanisms in Eisenia fetida at the level of experimental animals, tissue, cell, and molecule. It was concluded that fluorene exerted lethal activity to adult E. fetida on day 14 with the LC50 determined to be 88.61 mg/kg. Fluorene-induced ROS caused oxidative stress in E. fetida, resulting in DNA damage, protein carbonylation, and lipid peroxidation. Moreover, changed antioxidative enzymatic activities, non-enzymatic antioxidative activities, and total antioxidative capacity in E. fetida by fluorene stress are associated with antioxidative and protective effects. High-dose fluorene (> 2.5 mg/kg) exposure significantly caused histopathological lesions including the microstructure of body wall, intestine, and seminal vesicle of earthworms. Also, the reproductive system of E. fetida was clearly disrupted by fluorene stress, leading to poor reproduction ability (decreased cocoon and juvenile production) in earthworms. It is found that E. fetida growth was significantly inhibited when treated with high-dose fluorene, thereby causing normal growth disorders. Additionally, fluorene stress triggered the abnormal mRNA expression related to oxidative stress (e.g., metallothionein and heat shock protein 70), growth (translationally controlled tumour protein), reproduction (annetocin precursor) in E. fetida. Together, both high-dose and long-term exposure elicited more severe poisoning effects on earthworms using the Integrated Biological Response (IBR) index, and E. fetida coelomocyte DNA was the most negatively affected by fluorene stress. This study comprehensively evaluated fluorene-induced toxicity in E. fetida, and its underlying molecular mechanisms mediating the toxic responses have been elucidated. These findings provide valuable data for assessing potential ecological risks posed by fluorene-contaminated soil.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
5
|
Swart E, Martell E, Svendsen C, Spurgeon DJ. Soil Ecotoxicology Needs Robust Biomarkers: A Meta-Analysis Approach to Test the Robustness of Gene Expression-Based Biomarkers for Measuring Chemical Exposure Effects in Soil Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2124-2138. [PMID: 35698918 PMCID: PMC9543370 DOI: 10.1002/etc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Gene expression-based biomarkers are regularly proposed as rapid, sensitive, and mechanistically informative tools to identify whether soil invertebrates experience adverse effects due to chemical exposure. However, before biomarkers could be deployed within diagnostic studies, systematic evidence of the robustness of such biomarkers to detect effects is needed. In our study, we present an approach for conducting a meta-analysis of the robustness of gene expression-based biomarkers in soil invertebrates. The approach was developed and trialed for two measurements of gene expression commonly proposed as biomarkers in soil ecotoxicology: earthworm metallothionein (MT) gene expression for metals and earthworm heat shock protein 70 (HSP70) gene expression for organic chemicals. We collected 294 unique gene expression data points from the literature and used linear mixed-effect models to assess concentration, exposure duration, and species effects on the quantified response. The meta-analysis showed that the expression of earthworm MT was strongly metal concentration dependent, stable over time and species independent. The metal concentration-dependent response was strongest for cadmium, indicating that this gene is a suitable biomarker for this metal. For copper, no clear concentration-dependent response of MT gene expression in earthworms was found, indicating MT is not a reliable biomarker for this metal. For HSP70, overall marginal up-regulation and lack of a concentration-dependent response indicated that this gene is not suitable as a biomarker for organic pollutant effects in earthworms. The present study demonstrates how meta-analysis can be used to assess the status of biomarkers. We encourage colleagues to apply this open-access approach to other biomarkers, as such quantitative assessment is a prerequisite to ensuring that the suitability and limitations of proposed biomarkers are known and stated. Environ Toxicol Chem 2022;41:2124-2138. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Elmer Swart
- UK Centre for Ecology and HydrologyWallingfordUK
| | - Ellie Martell
- United Kingdom Department for EnvironmentFood & Rural AffairsLondonUK
| | | | | |
Collapse
|
6
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
7
|
He F, Yu H, Shi H, Li X, Chu S, Huo C, Liu R. Behavioral, histopathological, genetic, and organism-wide responses to phenanthrene-induced oxidative stress in Eisenia fetida earthworms in natural soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40012-40028. [PMID: 35113383 DOI: 10.1007/s11356-022-18990-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) contamination not only changes the quality of soil environment but also threatens to the soil organisms. There is lack of focus on the eco-toxicity potential of this contaminant in real soil in the current investigation. Here, we assessed the toxic effects of PHE on earthworms (Eisenia fetida) in natural soil matrix. PHE exhibited a relatively high toxicity to E. fetida in natural soil, with the LC50 determined to be 56.68 mg kg-1 after a 14-day exposure. Excessive ROS induced by PHE, leading to oxidative damage to biomacromolecules in E. fetida, including lipid peroxidation, protein carbonylation, and DNA damage. The antioxidant defense system (total antioxidant capacity, glutathione S-transferase, peroxidase, catalase, carboxylesterase, and superoxide dismutase) in E. fetida responded quickly to scavenge excess ROS and free radicals. Exposure to PHE resulted in earthworm avoidance responses (2.5 mg kg-1) and habitat function loss (10 mg kg-1). Histological observations indicated that the intestine, body wall, and seminal vesicle in E. fetida were severely damaged after exposure to high-dose PHE. Moreover, earthworm growth (weight change) and reproduction (cocoon production and the number of juvenile) were also inhibited after exposure to this pollutant. Furthermore, the integrated toxicity of PHE toward E. fetida at different doses and exposure times was assessed by the integrated biomarker response (IBR), which confirmed that PHE is more toxic to earthworms in the high-dose and long-term exposure groups. Our results showed that PHE exposure induced oxidative stress, disturbed antioxidant defense system, and caused oxidative damage in E. fetida. These effects can trigger behavior changes and damage histological structure, finally cause growth inhibition, genotoxicity, and reproductive toxicity in earthworms. The strength of this study is the comprehensive toxicity evaluation of PHE to earthworms and highlights the need to investigate the eco-toxicity potential of exogenous environmental pollutants in a real soil environment.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hanmei Yu
- Yanzhou District Branch of Jining Ecological Environment Bureau, No. 159, Wenhua East Road , Yanzhou District, Jining City, Shandong Province, 272100, People's Republic of China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
8
|
Kang X, Li D, Zhao X, Lv Y, Chen X, Song X, Liu X, Chen C, Cao X. Long-Term Exposure to Phenanthrene Induced Gene Expressions and Enzyme Activities of Cyprinus carpio below the Safe Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042129. [PMID: 35206316 PMCID: PMC8872569 DOI: 10.3390/ijerph19042129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Phenanthrene (PHE) is a typical compound biomagnified in the food chain which endangers human health and generally accumulates from marine life. It has been listed as one of the 16 priority PAHs evaluated in toxicology. In order to evaluate the changes of CYP1A GST mRNA expression and EROD GST enzyme activity in carp exposed to lower than safe concentrations of PHE. Long-term exposure of carp to PHE at lower than safe concentrations for up to 25 days. The mRNA expression level and cytochrome P450 (CYP1A/EROD (7-Ethoxylesorufin O-deethylase)) and glutathione S-transferase (GST) activity were measured in carp liver and brain tissue. The results showed that PHE stress induced low-concentration induction and high-concentration inhibition of CYP1A expression and EROD enzyme activity in the liver and brain of carp. In both two organs, GST enzyme activity was also induced. However, the expression of GST mRNA was first induced and then inhibited, after the 15th day. These results indicate that long-term exposure to PHE at lower than safe concentrations still poses a potential threat to carp’s oxidase system and gene expression.
Collapse
Affiliation(s)
- Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Yanfeng Lv
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiangyu Liu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
- Correspondence: ; Tel.: +86-21-6779-2550
| |
Collapse
|
9
|
Kim YC, Lee SR, Jeon HJ, Kim K, Kim MJ, Choi SD, Lee SE. Acute toxicities of fluorene, fluorene-1-carboxylic acid, and fluorene-9-carboxylic acid on zebrafish embryos (Danio rerio): Molecular mechanisms of developmental toxicities of fluorene-1-carboxylic acid. CHEMOSPHERE 2020; 260:127622. [PMID: 32673875 DOI: 10.1016/j.chemosphere.2020.127622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, fluorene (FL), FL-1-carboxylic acid (FC-1), and FL-9-carboxylic acid (FC-9) were investigated to understand their acute toxicity by measuring inhibitory effects on hatching rates and developmental processes of zebrafish embryos (Danio rerio). For exposure concentrations up to 3000 μg/L, FC-1 alone showed acute toxicity at 1458 μg/L for LC50 value. FC-1 caused yolk sac and spinal deformities, and pericardial edema. Molecular studies were undertaken to understand FC-1 toxicity examining 61 genes after exposure to 5 μM (equivalent to LC20 value of FC-1) in embryos. In the FC-1-treated embryos, the expression of the cyp7a1 gene, involved in bile acid biosynthesis, was dramatically decreased, while the expression of the Il-1β gene involved in inflammation was remarkably increased. In addition to these findings, in FC-1-treated embryos, the expression of nppa gene related to the differentiation of the myocardium was 3-fold increased. On the other hand, cyp1a, cyp3a, ugt1a1, abcc4, mdr1, and sult1st1 responsible for detoxification of xenobiotics were upregulated in FC-9-treated embryos. Taken together, carboxylation on carbon 1 of FL increased acute toxicity in zebrafish embryos, and its toxicity might be related to morphological changes with modification of normal biological functions and lowered defense ability.
Collapse
Affiliation(s)
- Yong-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Ryong Lee
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myoung-Jin Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Shi Y, Shi Y, Zheng L. Individual and cellular responses of earthworms (Eisenia fetida) to endosulfan at environmentally related concentrations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103299. [PMID: 31785546 DOI: 10.1016/j.etap.2019.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The presence of endosulfan at high levels in soils poses a potential risk for terrestrial ecosystems and human health via the food chain. Therefore, the effects of endosulfan at environmentally related doses on the terrestrial biota are of great concern. The present study measured the mortality, growth inhibition and ultrastructure of the stomach and skin of earthworms exposed to endosulfan at environmentally related concentrations to identify the individual and cellular effects of endosulfan on terrestrial biota. The results demonstrated that the growth inhibition of earthworms was significantly and positively correlated with the endosulfan dose and little mortality was found. The nuclei, microvilli and cuticles in the stomachs and skin cells of earthworms exhibited marked abnormalities. Endosulfan injured the ultrastructure of the nucleus even at low doses (0.5 mg·kg-1). Endosulfan seriously affected stomach microvilli and the cuticle structure of the skin, and this damage increased with increased exposure time and dose. Notably, cuticle damage was worse than the microvilli damage. These experiments demonstrated that the morphological changes in the tissue ultrastructure of the earthworm were more sensitive than growth inhibition, and these changes may be used as an early warning indicator of endosulfan pollution. The degree of damage to microvilli and cuticle is a promising bio-indicator to evaluate pesticide risk. The results of this study provide evidence of endosulfan toxicity and the importance of risk assessment on the terrestrial ecosystem.
Collapse
Affiliation(s)
- Yajing Shi
- School of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, P.R. China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lisha Zheng
- China Agricultural University, Beijing 100094, China
| |
Collapse
|
11
|
Kim K, Jeon HJ, Choi SD, Tsang DCW, Oleszczuk P, Ok YS, Lee HS, Lee SE. Combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebrafish (Danio rerio). CHEMOSPHERE 2018; 194:30-41. [PMID: 29197246 DOI: 10.1016/j.chemosphere.2017.11.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Individual and combined toxicities of endosulfan (ENDO) with phenanthrene (PHE) were evaluated using zebrafish (Danio rerio) adults. The 96-h LC50 values for ENDO and PHE were 4.6 μg L-1 and 920 μg L-1, respectively. To evaluate the mixture toxicity, LC10 and LC50 concentrations were grouped into four combinations as ENDO-LC10 + PHE-LC10, ENDO-LC10 + PHE-LC50, ENDO-LC50 + PHE-LC10, and ENDO-LC50 + PHE-LC50, and their acute toxicities were determined. The combination of LC50-ENDO and LC10-PHE exhibited a synergistic effect. In addition, acetylcholinesterase activity decreased in zebrafish bodies exposed to ENDO with or without PHE. Combined treatments induced higher glutathione S-transferase activity compared to individual treatments. Carboxylesterase activity increased in both heads and bodies of ENDO-treated fishes compared with PHE-treated fishes. Using RT-qPCR technique, CYP1A gene expression significantly up-regulated in all combinations, whereas CYP3A was unchanged, suggesting that enzymes involved in defense may play different roles in the detoxification. CYP7A1 gene responsible for bile acid biosynthesis is dramatically down-regulated after exposure to the synergistic combination exposure, referring that the synergistic effect may be resulted from the reduction of bile production in zebrafishes. Among gender-related genes, CYP11A1 and CYP17A1 genes in female zebrafish decreased after treatment with ENDO alone and combination of LC50-ENDO and LC10-PHE. This might be related to a reduction in cortisol production. The overall results indicated that ENDO and PHE were toxic to zebrafish adults both individually and in combination, and that their co-presence induced changes in the expression of genes responsible for metabolic processes and defense mechanisms.
Collapse
Affiliation(s)
- Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, Maria Curie-Sklodowska Square 3, 20-031, Lublin, Poland
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hoi-Seon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|