1
|
Pepey E, Pulliat G, Hoai TD, Bruckert M, Conéjéro G, Boggio D, Perrin C, Valette M, Pouil S. Genotoxic Potential of Anthropized Water Bodies in the Hanoi Region of Vietnam Assessed with the Comet Assay on Erythrocytes of Nile Tilapia (Oreochromis niloticus). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:47. [PMID: 40082288 PMCID: PMC11906502 DOI: 10.1007/s00128-025-04023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
The Black and Nhue-Day River sub-basins near Hanoi, Vietnam, are crucial aquatic ecosystems that are suffering from severe pollution stemming from industrial, domestic, and agricultural sources, which pose risks to environmental and public health. We assessed water genotoxicity at four locations along a gradient of urbanization in Hanoi and its peripheral regions: a fish farm at Hoa Binh reservoir (HB), a peri-urban fish farm in Phu Xuyen district (PX), and urban lakes Truc Bach (TB) and Thien Quang (TQ). Using the comet assay on Nile tilapia erythrocytes, DNA damage (% tail DNA), reflecting fragmented DNA that migrates out of the nucleus during electrophoresis, demonstrated significant differences between sites (p < 0.001). Urban lakes exhibited lower damage (TB: 16 ± 10%, TQ: 33 ± 17%), while the highest damage levels were observed in the hydropower reservoir (HB: 70 ± 15%). Trace elements (i.e., As, Cd, Cr, Ni, and Pb) analyzed in water did not exhibit a significant correlation with DNA damage, suggesting the presence of other unexamined contaminants, such as pesticides, that may explain these findings. These genotoxicity results emphasize the need for further research to identify the specific origins of the observed DNA damage, such as potential contributions from agricultural runoff, untreated wastewater, or other unexamined contaminants. Understanding these sources is essential for developing targeted water management practices to mitigate environmental risks and ensure the safety of aquaculture products, particularly in areas like the HB reservoir, where fish farming supports food security.
Collapse
Affiliation(s)
- Elodie Pepey
- ISEM, Univ Montpellier, CNRS, IRD, CIRAD, Montpellier, France.
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France.
- UMR AGAP Institut, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Gwenn Pulliat
- CNRS, UMR ART-Dev, University of Montpellier, CNRS, Université Paul Valéry Montpellier 3, Université de Perpignan Via Domitia, CIRAD, Montpellier, France
| | - Truong Dinh Hoai
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Michaël Bruckert
- CIRAD, UMR INNOVATION, Hanoi, Vietnam
- INNOVATION, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Geneviève Conéjéro
- IPSiM, Univ Montpellier, CNRS, Institut Agro Montpellier, INRAE, Montpellier, France
| | - David Boggio
- Department of Information Technologies, CIRAD, Montpellier, France
| | | | - Mathilde Valette
- CIRAD, US 49 Analyses, Montpellier, France
- Univ Montpellier, CIRAD, Analyses, Montpellier, France
| | - Simon Pouil
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, GABI, France
| |
Collapse
|
2
|
Prasad DK, Shukla R, Ahammad SZ. Pharmaceuticals and personal care products and heavy metals in the Ganga River, India: Distribution, ecological and human health risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:119993. [PMID: 39276830 DOI: 10.1016/j.envres.2024.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In the present study, pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs), and heavy metals (HMs), were measured in water and sediment of the Ganga River during summer and winter seasons for two consecutive years. Additionally, this study estimated the ecological and human health risks associated with PPCPs, EDCs, and HMs. HMs detected in the range of not detected (n.d.) to 23.59 μg/L and 0.01-391.44 μg/g in water and sediment samples, respectively. All studied HMs were within the permissible limits, except for As in water, and Cr and Ni in sediment. The geo-accumulation index (Igeo) indicated that Cr (0.71-5.98) and Pb (0.90-3.90) had high Igeo compared to other metals in sediment samples. Pb showed the highest ecological risk, followed by Cd, Co, Ni, Cu, Cr, As, and Zn. The maximum potential ecological risk index was observed at site G8. The hazard index (HI) value for water (0.08-0.89) and sediment (0.02-0.29) intake by adults remained within the acceptable limits, except at sites G8 (1.27) and G9 (1.34) for water intake. However, for children, the HI value was above the acceptable limit for water intake at sites G4 to G13 and for sediment at site G8. Among the studied compounds, metformin, triclosan, triclocarban, diclofenac, and methylparaben were the most abundant compounds present in the Ganga River. PPCPs and EDCs detected in the range of n.d. to 5850.04 ng/L and n.d. to 1080.41 ng/g in water and sediment samples, respectively. The environmental risk assessment identifies the maximum ecological risk in water exhibited by triclocarban followed by 17α-ethinylestradiol (EE2), diclofenac, and triclosan, while in sediment, the maximum ecological risk exhibited by triclocarban, followed by EE2, 17 β-estradiol (E2), triclosan, and diclofenac. However, none of the compounds showed human health risk, except for EE2, E2, and atenolol.
Collapse
Affiliation(s)
- Deepak Kumar Prasad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
3
|
Kwong RWM. Trace metals in the teleost fish gill: biological roles, uptake regulation, and detoxification mechanisms. J Comp Physiol B 2024; 194:749-763. [PMID: 38916671 DOI: 10.1007/s00360-024-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
In fish, the gill plays a vital role in regulating the absorption of trace metals and is also highly susceptible to metal toxicity. Trace metals such as iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) are involved in various catalytic activities and molecular binding within the gill, thereby supporting a range of physiological processes in this organ. While beneficial at normal levels, these metals can become toxic when present in excess. Conversely, nonessential metals like cadmium (Cd) and lead (Pb) can gain entry into gill cells through similar metal transport pathways, potentially interfering with various cellular processes. The transepithelial transport of these metals across the gill epithelium is governed by a variety of metal transport and metal binding proteins. These include the Cu transporter 1 (CTR1), divalent metal transporter 1 (DMT1), and members of the Zrt-/Irt-like protein (ZIP) and zinc transport (ZnT) families. Additionally, some of these metals can compete with major ions (e.g., calcium, sodium) for absorption sites in the gill. This complex crosstalk suggests an interdependent mechanism that balances metal uptake to meet physiological needs while preventing excessive accumulation. In this article, I review the roles of trace metals in proteins/enzymes that support the different functions in the gill of teleost fish. I also discuss current understanding of the pathways involved in regulating the branchial uptake of metals and their influence on ionic regulation, and the potential detoxification mechanisms in the gill. Finally, I summarize knowledge gaps and potential areas for further investigation.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
4
|
Tetteh PA, Kalvani Z, Stevens D, Sappal R, Kamunde C. Interactions of binary mixtures of metals on rainbow trout (Oncorhynchus mykiss) heart mitochondrial H 2O 2 homeodynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106986. [PMID: 38851027 DOI: 10.1016/j.aquatox.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.
Collapse
Affiliation(s)
- Pius Abraham Tetteh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Ravinder Sappal
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| |
Collapse
|
5
|
Duong TT, Nguyen-Thuy D, Phuong NN, Ngo HM, Doan TO, Le TPQ, Bui HM, Nguyen-Van H, Nguyen-Dinh T, Nguyen TAN, Cao TTN, Pham TMH, Hoang THT, Gasperi J, Strady E. Microplastics in sediments from urban and suburban rivers: Influence of sediment properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166330. [PMID: 37591389 DOI: 10.1016/j.scitotenv.2023.166330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Although sediments are considered to be a major sink for microplastics (MP), there is still a relative lack of knowledge on the factors that influence the occurrence and abundance of MP in riverine sediments. The present study investigated the occurrence and distribution of MP in riverine sediments collected at twelve sites representative of different populated and urbanized rivers (To Lich, Nhue and Day Rivers) located in the Red River Delta (RRD, Vietnam, during dry and rainy seasons. MP concentrations ranged from 1600 items kg-1 dw to 94,300 items kg-1dw. Fiber shape dominated and MP were made of polypropylene (PP) and polyethylene (PE) predominantly. An absence of seasonal effect was observed for both fragments and fibers for each rivers. Decreasing MP concentrations trend was evidenced from the To Lich River, to the Nhue River and to the Day River, coupled with a decreasing fiber length and an increasing fragment area in the surface sediment from upstream to downstream. Content of organic matter was correlated to MP concentrations suggesting that, high levels of organic matter could be MP hotspots in urban rivers. Also, high population density as well as in highly residential areas are related to higher MP concentrations in sediments. Finally, a MP high ecological risk (RI: 866 to 4711) was calculated in the RDD.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Duong Nguyen-Thuy
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Ngoc Nam Phuong
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, Viet Nam; GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Ha My Ngo
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Hanoi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong St., District 5, Ho Chi Minh City, Viet Nam
| | - Huong Nguyen-Van
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thai Nguyen-Dinh
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thi Anh Nguyet Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Thanh Nga Cao
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Institute of Human Geography - Vietnam Academy of Social Sciences, 1 Lieu Giai Street Ba Dinh District, Hanoi, Viet Nam
| | - Thi Minh Hanh Pham
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi, Viet Nam
| | - Thu-Huong Thi Hoang
- Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam; School of Chemistry and Life Science, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam
| | - Johnny Gasperi
- GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Emilie Strady
- Aix-Marseille Univ., Toulon University, CNRS, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
6
|
Ngo HTT, Nguyen TD, Nguyen TTH, Le TT, Nguyen DQ. Adverse Effects of Toxic Metal Pollution in Rivers on the Physiological Health of Fish. TOXICS 2022; 10:toxics10090528. [PMID: 36136493 PMCID: PMC9502420 DOI: 10.3390/toxics10090528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 05/19/2023]
Abstract
Toxic metal pollution influences the lives of diverse aquatic organisms and humans who consume contaminated aquatic products. However, its potential impacts on aquatic organism health and, thus, ecological health, have been neglected in many regions. This research was carried out to contribute to filling that knowledge gap. Three freshwater fish species in the Nhue−Day River basin, Vietnam, have been chosen to study the bioaccumulation of metals (Zn, Cu, Pb, and Cd) in the tissues (livers, kidneys, gills) and their effects on fish physiological health (changes in the oxidative-GST activity, and physiological biomarkers-energy reserves, respectively) from 2013 to 2017. The extensive results revealed significant spatial and temporal variations in metal concentrations in tissues of common carp (Cyprinus carpio), silver carp (Hypothalmic molitrix), and tilapia (Oreochromis niloticus), and well correlated to their concentration in the water (p < 0.05). Fish bioaccumulated metals in the following order: Zn > Cu > Pb > Cd, with more in the kidneys and livers (spring and summer) than in other tissues. Metal accumulation in O. niloticus and C. carpio was higher than in H. molitrix. Biomarker responses (except for glycogen variation) were also higher during warm seasons. Changes in metal levels in water and fish tissues caused variations in biomarkers in the respective fish tissues, particularly in the livers, as demonstrated by significant correlations of metal concentrations in water and fish tissues to biochemical and physiological responses (p < 0.05). The findings suggest that metal pollution in the river basin adversely impacts the physiological health of both wild and cultured fish. Seasonal shifts in the levels of metal accumulation and biomarkers could be connected to species-specific differences in physiology and the levels of metals in environments. This biomarker set is simple but effective in assessing the impact of metal pollution on fish health and, hence, the aquatic ecosystem. This is one of the first biomonitoring studies to assist in designing better water management strategies for the Nhue−Day River basin.
Collapse
Affiliation(s)
- Huong Thi Thuy Ngo
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Bioresource Center, Phenikaa University, Hanoi 12116, Vietnam
- Correspondence: ; Tel.: +84-9-17709596
| | - Thanh Dinh Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Tien Thi Hanh Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Bioresource Center, Phenikaa University, Hanoi 12116, Vietnam
| | - Thao Thanh Le
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Bioresource Center, Phenikaa University, Hanoi 12116, Vietnam
| | - Dinh Quoc Nguyen
- Economic Geology and Geomatics Department, Vietnam Institute of Geosciences and Mineral Resources, Hanoi 12109, Vietnam
| |
Collapse
|
7
|
Kurniasari F, Tazaki A, Hashimoto K, Yuan T, Al Hossain MMA, Akhand AA, Ahsan N, Ohnuma S, Kato M. Redistribution of potentially toxic elements in the hydrosphere after the relocation of a group of tanneries. CHEMOSPHERE 2022; 303:135098. [PMID: 35643165 DOI: 10.1016/j.chemosphere.2022.135098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous relocation of a group of pollutant sources in a heavily polluted area is a rare event. Such a relocation has been implemented in Hazaribagh, a tannery built-up area with heavy pollution, in Bangladesh. This provides a valuable opportunity to compare the changes in environmental conditions associated with the relocation of multiple putative sources. Our environmental monitoring for a period of 6 years at the stationary areas centered on Hazaribagh geographically revealed trivalent [Cr(III)], hexavalent [Cr(VI)] chromium, lead, iron, and manganese as tannery-related elements after the legal deadline for tannery relocation. The median Cr(III) level in canal water, into which wastewater from tanneries was directly discharged, after the relocation was 97% lower of that before the relocation, indicating a beneficial effect of the relocation. In contrast, the median Cr(VI) level in water samples just after the relocation and 2 years after the relocation were approximately 5-fold and 30-fold higher, respectively, than those before the relocation. These results indicate not only a harmful effect of the relocation but also the possibility of conversion from Cr(III) to Cr(VI) in nature. Although the health hazard indexes considering all of the tannery-related elements in all of the canal water samples before the relocation exceeded the safety thresholds, the percentages of samples in which the indexes exceeded their safety thresholds after the relocation decreased by 32.5%-45.0%. Treatment with our patented hydrotalcite-like compound consisting of magnesium and iron (MF-HT) resulted in decreases in the health hazard indexes in all of the water samples in which the indexes exceeded their safety thresholds to levels lower than their thresholds. Thus, this study shows the double-edged effects associated with the relocation and a potential solution.
Collapse
Affiliation(s)
- Fitri Kurniasari
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Tian Yuan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - M M Aeorangajeb Al Hossain
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Directorate General of Health Services, Ministry of Health and Family Welfare, Government of the People's Republic of Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Anwarul Azim Akhand
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Ahsan
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shoko Ohnuma
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan.
| |
Collapse
|
8
|
Application of an Anaerobic–Anoxic–Oxic–Oxic (AAO/O) Model to the Treatment of Real Domestic Wastewater. J CHEM-NY 2022. [DOI: 10.1155/2022/9456026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Untreated or inadequately treated domestic wastewater has adversely affected the aquatic environment and public health in many cities in Vietnam. A conventional anaerobic–anoxic–oxic (AAO) process is recognized as an easy-to-handle approach that constrains chemical use during the procedure. Herein, we improve an AAO system by adding more oxic orders in association with a biological membrane in order to increase the hydraulic retention time (HRT) of the oxic zone in the system. The investigated system was applied to the treatment of real domestic wastewater during 168 days of operation. The performance of the system reached a stable state after 60 days of operation. The removal efficiency of total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), biological oxygen demand (BOD5), and chemical oxygen demand (COD) was found to be 93.6 ± 3.0%, 91.9 ± 3.5%, 88.6 ± 1.2%, 82.6 ± 1.4%, and 71.8 ± 0.7%, respectively. After the operation process, the TN, TP, and TSS contents in the wastewater effluents met the A level in accordance with the QCVN 14-MT:2015/BTNMT regulation, and the effluents of COD and BOD5 almost satisfied the requirement, with only some points being slightly higher than the limit values. The obtained data revealed that the AAO/O system was capable of treating domestic wastewater in small and medium-sized domestic wastewater treatment facilities.
Collapse
|
9
|
Le TM, Thi Pham CL, Nu Nguyen HM, Duong TT, Quynh Le TP, Nguyen DT, Vu ND, Minh TB, Tran TM. Distribution and ecological risk assessment of phthalic acid esters in surface sediments of three rivers in Northern Vietnam. ENVIRONMENTAL RESEARCH 2022; 209:112843. [PMID: 35101399 DOI: 10.1016/j.envres.2022.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Pollution status and distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 36 sediment samples collected from three rivers in Northern Vietnam from June to October 2020. The total concentrations of PAEs in sediment samples collected from the To Lich River (n = 9), the Nhue River (n = 12), and the Day River (n = 15) were in ranges of 11,000-125,000 ng/g-dwt (mean/median: 50,000/42,200 ng/g-dwt), 2140-89,900 ng/g-dwt (mean/median: 29,300/20,700 ng/g-dwt), and 1140-43,100 ng/g-dwt (mean/median: 13,800/10,400 ng/g-dwt), respectively. Among ten PAEs studied, di-(2-ethylhexyl) phthalate (DEHP) was found at the highest levels in all samples meanwhile dimethyl phthalate (DMP), diethyl phthalate (DEP), and dipropyl phthalate (DPP) were detected at low frequency and concentration. Significant correlations have existed between the median-chain (C4-C7) PAE pairs in sediment samples. Due to the high accumulation in the sediments, the median-chain PAEs had a higher ecological risk than the short-chain (C1-C3) PAEs. These contaminants may present a longstanding influence on organisms and ecosystems.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Chi Linh Thi Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Ha Tinh University, Cam Vinh commune, Cam Xuyen District, Ha Tinh, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
10
|
Nguyen HMN, Khieu HT, Le HQ, Duong TT, Do TQ, Minh TB, Tran TM. Assessment of distributional characteristics and ecological risks of cyclic volatile methylsiloxanes in sediments from urban rivers in northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29917-29926. [PMID: 34994938 DOI: 10.1007/s11356-021-18487-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
In this report, four cVMSs including hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were determined in 85 sediment samples collected from three rivers in northern Vietnam during the period from May to November 2020. Total mean concentrations of cVMSs ranged from 75.4 to 15,000 ng/g-dw. The highest levels of cVMS were found in sediment samples collected from the To Lich River (range, 260-15,000 ng/g-dw; median, 2840 ng/g-dw), followed by the Nhue River (range, 188-6800 ng/g-dw; median, 1370 ng/g-dw), and the Day River (range, 75.4-4600 ng/g-dw; median, 666 ng/g-dw). Among cVMSs, decamethylcyclopentasiloxane (D5) was found at the highest levels in all samples and ranged from 9.00 to 11,000 ng/g-dw. Significant correlations exist between the concentrations of D4/D6 and D5/D6 pairs in river sediment samples. Although the calculated ecological risk was not high, the presence of cVMSs in the sediment raises concerns about the impact on aquatic life because of their long-term accumulation capacity.
Collapse
Affiliation(s)
- Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
- Ha Tinh University, Cam Vinh Commune, Cam Xuyen District, Ha Tinh, Vietnam
| | - Hanh Thi Khieu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Huong Quang Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Trung Quang Do
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam.
| |
Collapse
|
11
|
Nag R, Cummins E. Human health risk assessment of lead (Pb) through the environmental-food pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151168. [PMID: 34710405 DOI: 10.1016/j.scitotenv.2021.151168] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Drinking water and farm-to-fork pathways have been identified as the predominant environmental pathways associated with human exposure (HE) to Pb. This study integrates a GIS-based survey of metal concentrations in soil and a probabilistic quantitative risk assessment of Pb through the food chain. The case study area was selected in the east of Ireland. A step-wise exposure assessment collated the data for Pb concentration in soil and water media, bioaccumulation of Pb in unprocessed food products, such as potatoes, carrots, green vegetables, and salad vegetables. The daily mean HE to Pb through selected food products was found to be 0.073 mg day-1, where a mean weekly exposure was estimated as 0.0065 mg kg body weight-1 week-1. Multiple risk estimates were used. Hazard Quotient (HQ), Daily Dietary Index (DDI), Daily Intake of Metal (DIM), Health Risk Index (HRI), Target Hazard Quotient (THQ) and Cancer Risk (CR) were found as 0.234 to 0.669, 0.002, 0.0002, 0.020 to 0.057, 0.234 to 0.669, and 0.00001, respectively which signify a low to moderate risk. A sensitivity analysis revealed that intake of potato is the most sensitive parameter of the model, which is positively correlated (coeff. + 0.66) followed by concentration of Pb in the arable soil (+0.49), bioaccumulation in tubers (+0.37), consumption of salad vegetables (+0.20), and consumption of green vegetables (+0.13) (top 5). A back-calculated limit of Pb in the soil (51 mg kg-1) justifies the lower threshold limit of Pb (50-300 mg kg-1) in agricultural soil set by the European Union to mitigate potential bio-transfer into food products. The study concludes there is a low to moderate risk posed by Pb, within the system boundary of the probabilistic model, and highlights the significance of limiting Pb concentrations in the vegetable producing agricultural soil.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Nguyen KT, Ahmed MB, Mojiri A, Huang Y, Zhou JL, Li D. Advances in As contamination and adsorption in soil for effective management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113274. [PMID: 34271355 DOI: 10.1016/j.jenvman.2021.113274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a heavy metal that causes widespread contamination and toxicity in the soil environment. This article reviewed the levels of As contamination in soils worldwide, and evaluated how soil properties (pH, clay mineral, organic matter, texture) and environmental conditions (ionic strength, anions, bacteria) affected the adsorption of As species on soils. The application of the adsorption isotherm models for estimating the adsorption capacities of As(III) and As(V) on soils was assessed. The results indicated that As concentrations in contaminated soil varying significantly from 1 mg/kg to 116,000 mg/kg, with the highest concentrations being reported in Mexico with mining being the dominating source. Regarding the controlling factors of As adsorption, soil pH, clay mineral and texture had demonstrated the most significant impacts. Both Langmuir and Freundlich isotherm models can be well fitted with As(III) and As(V) adsorption on soils. The Langmuir adsorption capacity varied in the range of 22-42400 mg/kg for As(V), which is greater than 45-8901 mg/kg for As(III). The research findings have enhanced our knowledge of As contamination in soil and its underlying controls, which are critical for the effective management and remediation of As-contaminated soil.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| |
Collapse
|
13
|
Ghobadi R, Altaee A, Zhou JL, McLean P, Yadav S. Copper removal from contaminated soil through electrokinetic process with reactive filter media. CHEMOSPHERE 2020; 252:126607. [PMID: 32443274 DOI: 10.1016/j.chemosphere.2020.126607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Electrokinetic (EK) remediation has been used in the removal of metal ions from contaminated soil. This study focused on integrating the EK technique with different reactive filter media (RFM) of activated carbon (AC) and biochar (BC) for the first time without adding chemicals to facilitate the removal of copper ions from the contaminated kaolinite soil. Tests based on EK, EK coupled with AC (EK-AC), and EK combined with BC (EK-BC) were performed under an electric potential of 10 V, and the overall removal efficiency of copper ions decreased as EK-BC > EK-AC > EK. The results show that 27% of copper in the soil was captured by BC, compared with only 10% by AC. Additional EK-BC test performed under a constant current (20 mA) revealed that the acid front swept across the soil, resulting in 70.6-95.0% copper removal from soil sections 4 to 1 close to the anode region with more copper accumulation in section 5. Similar to the EK-BC test under a fixed voltage, 26% of copper in the soil was captured by BC during EK-BC treatment under a constant current although with a higher energy consumption. Moreover, RFM was regenerated by flushing with an acid solution, achieving 99.3% of copper recovery in BC and 78.4% in AC. Although the permeability of AC-RFM was higher than that of BC-RFM, copper contaminant was more easily leached out from the BC-RFM. The findings demonstrated the feasibility of contaminant entrapment in BC-RFM and recovery by acid leaching, with potential for sustainable soil remediation.
Collapse
Affiliation(s)
- Romina Ghobadi
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - Peter McLean
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| |
Collapse
|
14
|
Dissolved Metal(loid) Concentrations and Their Relations with Chromophoric and Fluorescent Dissolved Organic Matter in an Urban River in Shenzhen, South China. WATER 2020. [DOI: 10.3390/w12010281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Urbanization is often accompanied by aquatic metal(loid) pollution, which is regulated by dissolved organic matter (DOM). However, the relationships between dissolved metal(loid) concentration and the bulk, chromophoric, and fluorescent DOM in black and odorous urban rivers are still poorly understood. Here, we investigated the dissolved metal(loid) concentrations of Zn, Cu, Cr, As, Pb, and Cd and their correlations with DOM-related parameters in water samples from a polluted urbanized watershed in Shenzhen, China. The results showed that the Zn and Cu concentrations in the mainstream and tributary exceeded the national standards, and the wastewater treatment plant (WWTP) was an important source, as indicated by the abrupt concentration increases downstream of the WWTP. The dissolved metal(loid) concentrations were not always significantly correlated with the dissolved organic carbon (DOC) concentration or the ultraviolet absorbance at 254 nm (UV254); however, they were more likely to be correlated with the maximum fluorescence intensity (Fmax) of protein-like fluorescent DOM components. A strong correlation between the Cu/DOC ratio and specific UV254 (SUVA254) previously reported did not exist in the present study. Instead, the Cu/DOC ratio was positively correlated with the Fmax/DOC ratios for protein-like fluorescent DOM components. Our study highlights that protein-like fluorescent DOM may be more important than humic-like fluorescence DOM and chromophoric DOM in terms of interacting with dissolved metal(loid)s in black and odorous urban rivers.
Collapse
|