1
|
Phu TKC, Nguyen PL, Phung TVB. Recent progress in highly effective electrocoagulation-coupled systems for advanced wastewater treatment. iScience 2025; 28:111965. [PMID: 40092610 PMCID: PMC11907470 DOI: 10.1016/j.isci.2025.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Electrocoagulation (EC) has been a well-known technology for wastewater treatment over the past centuries, owing to its straightforward equipment requirements and highly effective contaminant removal efficiency. This literature review emphasizes the influence of several input variables in the EC system such as electrode materials, applied current, pH, supporting electrolyte, and inner-electrode distance on effluent removal efficiency and energy consumption. Besides that, depending on the intrinsic properties of effluents, EC is recommended to hybridize with other methods such as physical-, biological-, chemical-, and electrochemical methods in order to enhance removal performance and reduce energy consumption. Subsequently, a comprehensive analysis of EC performance is presented, including power consumption, and evaluation of the synergistic effect of multiple input variables using statistical methods. Finally, this review discusses future perspectives such as the environmentally friendly utilization of post-EC treated sludges, the development of renewable energy-driven EC systems, and the challenges of EC management by artificial intelligence.
Collapse
Affiliation(s)
- Thi Kim Cuong Phu
- Center for Environmental Intelligence and College of Engineering and Computer Science, VinUniversity, Hanoi 100000, Vietnam
| | - Phi Long Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Center for Environmental Intelligence and College of Engineering and Computer Science, VinUniversity, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Gao J, Yang LJ, Wang G, Xie CF, Yin H, Li H, Lu JM. Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410805. [PMID: 39821438 DOI: 10.1002/smll.202410805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz19-PDI18-PEG10 rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far. Mechanistic studies have shown that this excellent performance of Cz19-PDI18-PEG10 can be attributed to synergistic interactions between highly efficient adsorption capacity and long-lived charge separation states during photocatalysis. This novel Janus-nanomicelles design strategy holds promise as an effective candidate for water purification.
Collapse
Affiliation(s)
- Jin Gao
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
- Shaoxing Yu-Cai High School, Shaoxing, 312099, China
| | - Liu-Jun Yang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Guan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Textile Academy, Beijing, 100025, China
| | - Chen-Fan Xie
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Han Yin
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Jian-Mei Lu
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Hinton RGK, Kalin RM, Banda LC, Kanjaye MB, Macleod CJA, Troldborg M, Phiri P, Kamtukule S. Mixed method analysis of anthropogenic groundwater contamination of drinking water sources in Malawi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177418. [PMID: 39542263 DOI: 10.1016/j.scitotenv.2024.177418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Groundwater contamination poses significant challenges to public health and sustainable development in Malawi, where approximately 80 % of the population relies on groundwater sources for drinking water. This study investigates the presence and drivers of nitrate and E. coli contamination in groundwater used for drinking. Analysis was conducted on results from 3388 boreholes/tube wells for nitrate contamination and 2418 drinking water sources drawn from groundwater for E. coli contamination. Overall, 6.11 % and 57.2 % of water-points did not meet WHO guidelines for safe drinking water quality for nitrate and E. coli contamination, respectively. Through a mixed-method approach, utilizing generalised linear mixed models and random forest regression modelling, the study identifies factors relating to sanitation usage as critical drivers of both nitrate and E coli contamination. Pit-latrine usage was identified as a particularly important factor in contamination; accounting for pit latrine density specifically, rather than population density, resulted in better model prediction for both nitrate and high E. coli contamination indicating that consideration of the specific type of sanitation is important in predicting water quality. In addition, a stable isotope tracer analysis method to validate predictions and monitor nitrate in drinking water was piloted, identifying human waste as a likely source of nitrate contamination. Overall, this study underscores the urgency of addressing sanitation-related contamination of drinking water sources to ensure access to safe drinking water in low-income settings.
Collapse
Affiliation(s)
- Rebekah G K Hinton
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| | - Robert M Kalin
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Limbikani C Banda
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK; Department of Water Resources, Ministry of Water and Sanitation, Government of Malawi, Private Bag 390, Lilongwe, Malawi
| | - Modesta B Kanjaye
- Department of Sanitation and Hygiene, Ministry of Water and Sanitation, Government of Malawi, Private Bag 390, Lilongwe, Malawi
| | | | - Mads Troldborg
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Peaches Phiri
- Department of Water Resources, Ministry of Water and Sanitation, Government of Malawi, Private Bag 390, Lilongwe, Malawi
| | - Sydney Kamtukule
- Department of Water Resources, Ministry of Water and Sanitation, Government of Malawi, Private Bag 390, Lilongwe, Malawi
| |
Collapse
|
4
|
Wang S, Liu Z, Zhou W, Jiang Y, Ding H, Dong F. Evolution of Karst Geothermal Hydrochemical Characteristics and Genesis Mechanism in Northern Jinan, Shandong, Eastern China. ACS OMEGA 2024; 9:36299-36313. [PMID: 39220514 PMCID: PMC11360018 DOI: 10.1021/acsomega.4c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The study of geothermal water hydrochemical characteristics and solute transport evolution can provide a reliable hydrogeochemical basis for the development and protection of geothermal resources. Currently, there is a lack of systematic research on the hydrochemical evolution mechanism of geothermal fields in northern Jinan, which limits the development and use of geothermal fields. In this study, the hydrochemical properties of groundwater in northern Jinan were described by analyzing the hydrochemical characteristics of 16 geothermal water samples and 3 cold water samples. The results show that during the transformation from cold water in the south to geothermal water in the north, the contents of major ions all show an increasing trend and the hydrochemical characteristics show obvious zoning characteristics. The hydrochemical type evolved from HCO3-Ca to HCO3-Ca·Mg type, and then further evolved SO4-Ca and SO4-Ca·Na type water. Dissolution-precipitation of carbonate, sulfate, halite, and silicate minerals is one of the important processes that controls the chemical characteristics of geothermal water. The water source is mainly from the atmospheric precipitation in the Taiyi Mountain, with an altitude of 698.99-1464.91 m.s.a.l. The thermal reservoir temperature in the study area is estimated to be 55.62-98.16 °C. This paper proposes a conceptual model of the karst geothermal water flow system in northern Jinan, which provides a new idea for exploring the geothermal water genesis mechanism under similar geological conditions.
Collapse
Affiliation(s)
- Shuchun Wang
- Shandong
Geology and Mineral Engineering Group Co., Ltd., Jinan 250200, China
| | - Zhiqing Liu
- Shandong
Geology and Mineral Engineering Group Co., Ltd., Jinan 250200, China
| | - Wei Zhou
- College
of Earth Science and Engineering, Shandong
University of Science and Technology, Qingdao, Shandong 266590, China
- Shandong
Provincial Key Laboratory of Depositional Mineralization & Sedimentary
Mineral, Shandong University of Science
and Technology, Qingdao, Shandong 266590, China
| | - Yanyu Jiang
- Shandong
Geology and Mineral Engineering Group Co., Ltd., Jinan 250200, China
| | - Hongliang Ding
- Shandong
Geology and Mineral Engineering Group Co., Ltd., Jinan 250200, China
| | - Fangying Dong
- College
of Earth Science and Engineering, Shandong
University of Science and Technology, Qingdao, Shandong 266590, China
- Shandong
Provincial Key Laboratory of Depositional Mineralization & Sedimentary
Mineral, Shandong University of Science
and Technology, Qingdao, Shandong 266590, China
| |
Collapse
|
5
|
Cao W, Zhang Z, Fu Y, Zhao L, Ren Y, Nan T, Guo H. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. WATER RESEARCH 2024; 259:121848. [PMID: 38824797 DOI: 10.1016/j.watres.2024.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Chronic exposure to elevated geogenic arsenic (As) and fluoride (F-) concentrations in groundwater poses a significant global health risk. In regions around the world where regular groundwater quality assessments are limited, the presence of harmful levels of As and F- in shallow groundwater extracted from specific wells remains uncertain. This study utilized an enhanced stacking ensemble learning model to predict the distributions of As and F- in shallow groundwater based on 4,393 available datasets of observed concentrations and forty relevant environmental factors. The enhanced model was obtained by fusing well-suited Extreme Gradient Boosting, Random Forest, and Support Vector Machine as the base learners and a structurally simple Linear Discriminant Analysis as the meta-learner. The model precisely captured the patchy distributions of groundwater As and F- with an AUC value of 0.836 and 0.853, respectively. The findings revealed that 9.0% of the study area was characterized by a high As risk in shallow groundwater, while 21.2% was at high F- risk identified as having a high risk of fluoride contamination. About 0.2% of the study area shows elevated levels of both of them. The affected populations are estimated at approximately 7.61 million, 34.1 million, and 0.2 million, respectively. Furthermore, sedimentary environment exerted the greatest influence on distribution of groundwater As, with human activities and climate following closely behind at 29.5%, 28.1%, and 21.9%, respectively. Likewise, sedimentary environment was the primary factor affecting groundwater F- distribution, followed by hydrogeology and soil physicochemical properties, contributing 27.8%, 24.0%, and 23.3%, respectively. This study contributed to the identification of health risks associated with shallow groundwater As and F-, and provided insights into evaluating health risks in regions with limited samples.
Collapse
Affiliation(s)
- Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Zhuo Zhang
- Tianjin Center (North China Center for Geoscience Innovation), China Geological Survey, Tianjin 300170, China.
| | - Yu Fu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Lihua Zhao
- Hebei Provincial academy of water resources, Shijiazhuang 050057, China
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Tian Nan
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
6
|
Aravinthasamy P, Karunanidhi D, Jayasena HC, Subramani T. Assessment of groundwater fluoride and human health effects in a hard rock province of south India: Implications from Pollution Index Model (PIM) and Geographical Information System (GIS) techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:326. [PMID: 39012514 DOI: 10.1007/s10653-024-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
This research examines whether the groundwater in the Sivakasi Region of South India is suitable for consumption, and assesses the possible health hazards for various age demographics including infants, children, teenagers, and adults. A total of 77 groundwater samples were gathered, covering a total area of 580 km2 and analyzed for major and minor ions. The hydrogen ion concentration (pH) of the samples indicates neutral to marginally alkaline. The total dissolved solids (TDS) fluctuate from 255 to 2701 mg/l and electrical conductivity varies from 364 to 3540 µS/cm. A wide range of fluoride concentration was detected (0.1 to 3.2 mg/l) with nearly 38% groundwater samples surpassing the proposed limit (1.5 mg/l) suggested by the World Health Organization in 2017. Gibbs plot analysis suggested that most of the samples were influenced by geogenic factors, primarily rock weathering in this region. Correlation analysis showed that most of the samples were impacted by both natural and human sources. The pollution index of groundwater (PIG) fluctuated from 0.67 to 2.60 with approximately 30% and 53% of samples falling into insignificant and low pollution categories, respectively. Furthermore, 10% and 5% of total samples were characterized as moderate and high pollution levels, and 2% as very high pollution category. Spatial analysis using GIS revealed that 440.63 km2 were within safe fluoride levels according to the WHO standards, while 139.32 km2 were identified as risk zone. The principal component analysis (PCA1) showed strong positive loadings on EC (0.994), TDS (0.905), Mg2+ (0.910), Cl- (0.903) and HCO3- (0.923) indicating rock water interaction. PCA2 accounts the high positive factor loading on HCO3- (0.864) indicating ion exchange and mineral leaching. The PCA1 and PCA2 indicated that variables such as mineral leaching and rock water interaction are the major mechanisms contributing to the chemical signatures in groundwater, which may support for the elevated fluoride levels in certain areas. Risk assessments, including Hazard Quotient results showed that 71%, 61% 38%, and 34% of groundwater samples exceeded the permissible THI limit (THI > 1) for infants, children, teenagers, and adults, respectively. The study recommends implementing measures such as denitrification, defluorination, rainwater harvesting, and improved sanitation infrastructure to enhance the health conditions in the study region. Additionally, it suggests introducing educational programs in rural areas to create awareness about the health dangers due to consumption of water with high fluoride levels.
Collapse
Affiliation(s)
- P Aravinthasamy
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore, 641032, India
| | - D Karunanidhi
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore, 641032, India.
| | - H Chandra Jayasena
- Department of Geology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - T Subramani
- Department of Geology and Department of Mining Engineering, College of Engineering Guindy, Anna University, Chennai, 600025, India
| |
Collapse
|
7
|
Bochynska S, Duszewska A, Maciejewska-Jeske M, Wrona M, Szeliga A, Budzik M, Szczesnowicz A, Bala G, Trzcinski M, Meczekalski B, Smolarczyk R. The impact of water pollution on the health of older people. Maturitas 2024; 185:107981. [PMID: 38555759 DOI: 10.1016/j.maturitas.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Water pollution exerts a negative impact on the health of both women and men, inducing hormonal changes, accelerating aging, and consequently leading to the premature onset of age-related health problems. Water pollutants can in general be classified as chemical (both organic and inorganic), physical, and biological agents. Certain chemical pollutants have been found to disrupt hormonal balance by blocking, mimicking, or disrupting functions within the intricate homeostasis of the human body. Moreover, certain water pollutants, including specific pesticides and industrial chemicals, have been associated with neurological and psychiatric disorders, such as mood swings, depression, cognitive decline, and anxiety, impacting both women and men. Water pollution is also associated with physical ailments, such as diarrhea, skin diseases, malnutrition, and cancer. Exposure to specific pollutants may promote premature menopause and vasomotor symptoms, elevate the risk of cardiovascular disease, and reduce bone density. In men, exposure to water pollution has been shown to reduce LH, FSH, and testosterone serum levels. The oxidative stress induced by pollutants prompts apoptosis of Sertoli and germ cells, inhibiting spermatogenesis and altering the normal morphology and concentration of sperm. Environmental estrogens further contribute to reduced sperm counts, reproductive system disruptions, and the feminization of male traits. Studies affirm that men generally exhibit a lower susceptibility than women to hormonal changes and health issues attributed to water pollutants. This discrepancy may be attributed to the varied water-related activities which have traditionally been undertaken by women, as well as differences in immune responses between genders. The implementation of effective measures to control water pollution and interventions aimed at safeguarding and enhancing the well-being of the aging population is imperative. The improvement of drinking water quality has emerged as a potential public health effort with the capacity to curtail the onset of cognitive impairment and dementia in an aging population.
Collapse
Affiliation(s)
- Stefania Bochynska
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Duszewska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw, University of Life Science, Warsaw, Poland
| | | | - Marcin Wrona
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Budzik
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Aleksandra Szczesnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Mateusz Trzcinski
- Department of Diagnosis and Treatment of Infertility, Poznan University of Medical Sciences, Poznan, Poland
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
8
|
Ratandeep, Dharmani AB, Verma M, Rani S, Narang A, Singh MR, Saya L, Hooda S. Unravelling groundwater contamination and health-related implications in semi-arid and cold regions of India. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104303. [PMID: 38244426 DOI: 10.1016/j.jconhyd.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Groundwater, a vital global resource, is essential for sustaining life and various human activities. However, its quality and availability face increasing threats from both natural and human-induced factors. Widespread contamination, arising from both natural origins and human activities such as agriculture, industry, mining, improper waste disposal, and wastewater release, poses significant risks to human health and water security. India, known for its dense population and pronounced groundwater challenges, serves as a prominent case study. Notably, in most of its regions, groundwater resources have been found to be severely contaminated by various chemical, biological, and radioactive contaminants. This review presents an examination of contamination disparities across various states of semi-arid and cold regions, encompassing diverse assessment methods. The studies conducted in semi-arid regions of North, South, West, and East India highlight the consistent presence of fluorides and nitrates majorly, as well as heavy metals in some areas, with values exceeding the permissible limits recommended by both the Bureau of Indian Standards (BIS) and the World Health Organization (WHO). These contaminants pose skeletal and dental threats, methemoglobinemia, and even cancer. Similarly, in cold regions, nitrate exposure and pesticide residues, reportedly exceeding BIS and WHO parameters, pose gastrointestinal and other waterborne health concerns. The findings also indicated that the recommended limits of several quality parameters, including pH, electrical conductivity, total dissolved solids (TDS), total hardness, and total alkalinity majorly surpassed. Emphasising the reported values of the various contaminant levels simultaneously with addressing the challenges and future perspectives, the review unravels the complex landscape of groundwater contamination and its health-related implications in semi-arid and cold regions of India.
Collapse
Affiliation(s)
- Ratandeep
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akshat Bhanu Dharmani
- School Of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Sanjeeta Rani
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Anita Narang
- Department of Botany, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - M Ramananda Singh
- Department of Chemistry, Kirorimal College, (University of Delhi), Delhi 110009, India
| | - Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi 110021, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi - 110019, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi - 110019, India.
| |
Collapse
|
9
|
Abdelhafiz MA, Seleem EMM, El Nazer HA, Zeid SAM, Salman SA, Meng B. Shallow groundwater environmental investigation at northeastern Cairo, Egypt: quality and photo-treatment evaluation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4533-4551. [PMID: 33900509 DOI: 10.1007/s10653-021-00933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Groundwater represents the primary source of freshwater for more than 35% of world people, and its contamination became a worldwide challenge. Egypt is suffering from water quantity and quality, especially in desert areas. El Obour city and environs Northeast Cairo face waterlogging owing to the elevated-shallow groundwater table. In the present research work, the water quality of the shallow groundwater aquifer was studied. The remediation efficiency of polluted water using photocatalytic treatment technique in the presence of modified nano-titania and solar radiation has also been investigated. Twenty-eight representative samples have been collected from different locations, and their microbial, physical, and chemical characteristics were determined. The average contents of Pb (214.96 µg/L), As (1517 µg/L), Cd (8.79 µg/L), total bacterial count (2.22 × 105 CFU/ml), and bacterial indicators (MPN-index/100 ml): total coliform (497.4), fecal coliform (358.3), and fecal streptococci (115.9) were higher than WHO permissible limits for drinking water, possibly due to higher industrialization, agricultural, and urbanization rates. The organic pollutants reached critical concentrations (chemical oxygen demand up to 960.8 mg O2/L). Most of the studied samples contained acceptable concentrations of the major ions, (e.g., K+, Mg2+, HCO3-), for drinking and irrigation purposes. The statistical analyses (e.g., principal component analysis and cluster analysis) pointed out the control of water-rock interaction and anthropogenic activities in water composition. The hydrochemical data show that most of the water samples (96.4%) are Na2SO4 and NaHCO3 type, indicating its meteoric origin. The contamination with human and animal fecal substances, NO3¯, and NH4+ was identified in all samples, which pointed out the control of anthropogenic activities in water pollution. The photocatalytic technique efficiently eliminated more than 82-95% of organic contents and microbial pollutants, respectively, but it was inefficient in reducing heavy metal levels. According to the current results, shallow groundwater injection into the deep aquifer must be constrained and reusable after treatment. Finally, more studies are imperative to disseminate the applied treatment techniques to elude bacteria and organic pollutants from water at a pilot scale.
Collapse
Affiliation(s)
- Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu district, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - El-Montser M Seleem
- Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Hossam A El Nazer
- Photochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Salah A M Zeid
- Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Salman A Salman
- Geological Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu district, Guiyang, 550081, China.
| |
Collapse
|
10
|
GIS-Based Spatiotemporal Mapping of Groundwater Potability and Palatability Indices in Arid and Semi-Arid Areas. WATER 2021. [DOI: 10.3390/w13091323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper aims to assess groundwater potability and palatability in the West Bank, Palestine. It combines the adjusted weighted arithmetic water quality index method (AWAWQIM), a close-ended questionnaire, and step-wise assessment ratio analysis (SWARA) to develop groundwater potability (PoGWQI) and palatability (PaGWQI) indices. Both a geographic information system (GIS) and the kriging interpolation method (KIM) are employed to create spatiotemporal mapping of PoGWQI and PaGWQI. The research is based on data from 79 wells, which were provided by the Palestinian Water Authority (PWA). Data include fecal coliform (FC), nitrate (NO3), pH, chloride (Cl), sulfate (SO4), bicarbonate (HCO3), total dissolved solids (TDS), turbidity, and hardness. Results indicate that 2% and 5% of water samples were unpotable and unpalatable, respectively. Unpotable samples were found in areas with poor sewer networks and intensive use of agrochemicals. All groundwater samples (100%) in the eastern part of the West Bank were unpalatable because of seawater intrusion. Unconfined aquifers were more vulnerable to potability and palatability contamination. It was noticed that PoGWQI is sensitive to FC and NO3, while PaGWQI is sensitive to HCO3, TDS, and Cl. Consequently, these quality parameters should be monitored well. The proposed method is of great interest to water decision-makers in Palestine for establishing strategies to protect water resources.
Collapse
|