1
|
Chen X, Lu X, Zhao R, Su G, Meng J, Li Q, Hua Y, Shi B. Occurrence and risks of PPCPs of a typical mountainous region: Implications for sustainable urban water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175714. [PMID: 39181247 DOI: 10.1016/j.scitotenv.2024.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Urban wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs) play vital roles in the urban water cycle, ensuring access to safe drinking water and maintaining aquatic ecosystems. This study comprehensively assessed the occurrence and risks of pharmaceuticals and personal care products (PPCPs) in urban WWTPs and DWTPs. Our findings revealed widespread PPCPs presence, with concentrations ranging from <1 ng/L to several thousand ng/L. Significant regional disparities in occurrence and composition were observed linked to population types and economic structures. Furthermore, strong correlations were observed between DWTPs and WWTPs indicating consistent transport and transformation patterns of PPCPs within the urban water cycle. Approximately two-thirds of PPCPs were degraded post-WWTP treatment, with about one-tenth persisting in drinking water following surface water dilution and purification processes. Thus, we suggested that controlling the total concentration of the five priority PPCPs in the effluent from the WWTP to <1100 ng/L have potential to reduce the environmental and health risk of PPCPs. Additionally, this research identified influential water quality parameters, such as pH, dissolved oxygen, and temperature, through redundancy analysis. This research underscores the importance of establishing emission standards to mitigate PPCP-related risks and supports sustainable urban water system advancement.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Renxin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Guijin Su
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li S, Lin Y, Zhu S, Liu G. Electrocatalytic degradation of sulfamethylthiadiazole by GAC@Ni/Fe three-dimensional particle electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57112-57126. [PMID: 35344147 DOI: 10.1007/s11356-022-19021-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In this work, GAC@Ni/Fe particle electrodes were prepared and employed for the degradation of sulfamethylthiadiazole (SMT) by three-dimensional electrocatalytic technology. The effects of particle electrode bi-metal loading ratio, cell voltage, particle electrode dosage, electrode plate spacing, and SMT initial concentration on SMT removal were studied. In addition, GAC@Ni/Fe particle electrode was analyzed by the scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS), and Fourier transform infrared spectrometer (FTIR) to characterize which indicated that a significant amount of iron-nickel oxide was formed on the surface of GAC@Ni/Fe particle electrode. The results indicated that when the nickel-iron loading ratio is 1:1, the SMT removal effect is the best, and the removal rate can reach 90.89% within 30 min. Compared with the granular activated carbon without bimetal, the removal efficiency is increased by 37.58%. The degradation of SMT in the GAC@Ni/Fe particle three-dimensional electrode reactor is the joint result of both direct oxidation and indirect oxidation. The contribution rates of direct oxidation of anode and particle electrode and indirect oxidation of ·OH in the degradation are 32%, 27%, and 41%, respectively. Based on the intermediate detected by ultra-high liquid chromatography and the calculation of bond energy of SMT molecule by Gauss software, the degradation pathway of SMT in the GAC@Ni/Fe three-dimensional electrode reactor is proposed. This research provides a green, healthy, and effective method for removing sulfonamide micro-polluted wastewater.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Suiyi Zhu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Gen Liu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| |
Collapse
|
3
|
Zhang Q, Li Z, Wei P, Wang Q, Tian J, Wang P, Shen Z, Li J, Xu H, Zhao Y, Dang X, Cao J. Insights into the day-night sources and optical properties of coastal organic aerosols in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154663. [PMID: 35318062 DOI: 10.1016/j.scitotenv.2022.154663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Organic aerosols (OAs) in particulate matter with an aerodynamic diameter of smaller than 2.5 μm (PM2.5) can affect the atmospheric radiation balance through varying molecular structure and light absorption of the aerosols. In this study, daytime and nighttime PM2.5 mass, and contents of OA including nitrated aromatic compounds (NACs), polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes were measured from April 11th to May 15th, 2017, at the coastal Sanya, China. The average concentration of 18 total quantified PAHs (∑PAHs) was 2.08 ± 1.13 ng·m-3, which was 2.8 and 12 times higher than that of ∑NACs and hopanes, while was 7.5 times lower that of n-alkanes. Combustion-derived PAHs contributed 74% to the ∑PAHs. This finding, in addition to a high benzo[a]pyrene/(benzo[a]pyrene+benzo[e]pyrene) ratio, indicates that the PAHs mainly derived from fresh fuel combustion during the sampling periods. Furthermore, dramatic day-night differences were observed in the loadings of total NACs, PAHs, and n-alkanes, which had a high coefficient of divergence values of 0.67, 0.47, and 0.32, respectively. Moreover, hopanes exhibited similar variation as well. The proportion of dimethyl-nitrophenol (DM-NP), dinitrophenol (DNP), and nitrosalicylic acid (NSA) in PM2.5 were higher in the daytime than at nighttime, suggesting the co-influence of primary emissions and secondary formation related to biomass combustion. The positive matrix factorization (PMF) model revealed that motor vehicle and biomass burning emissions were the two main pollution sources in the daytime, contributing 51.7% and 24.6%, respectively, of the total quantified OAs. The proportion of industrial coal combustion emissions was higher at nighttime (20.6%) than in daytime (10%). Both the PAHs and NACs displayed light absorbing capacities among OAs compounds over Sanya City, and thus their influence on solar radiation must be considered in the future control policies.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ziyi Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Wei
- School of Geography and Environment, Shandong Normal University, Jinan 250358, PR China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Jie Tian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ping Wang
- Hainan Tropical Ocean University, Sanya 572022, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youzhi Zhao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiaoqing Dang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
4
|
Lu S, Wang B, Xin M, Wang J, Gu X, Lian M, Li Y, Lin C, Ouyang W, Liu X, He M. Insights into the spatiotemporal occurrence and mixture risk assessment of household and personal care products in the waters from rivers to Laizhou Bay, southern Bohai Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152290. [PMID: 34902407 DOI: 10.1016/j.scitotenv.2021.152290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Household and personal care products (HPCPs) are a kind of contaminants closely related to daily life, capturing worldwide concern. To our knowledge, this is the first attempt focusing on the spatiotemporal occurrence and mixture risk of HPCPs in the waters from rivers to Laizhou Bay. Nine HPCPs were quantitated in 216 water samples gathered from Laizhou Bay and its adjacent rivers in 2018, 2019, and 2021 to reveal the spatiotemporal occurrence and mixture ecological risks in Laizhou Bay. Eight HPCPs were detected with detection frequencies ranging from 74% to 100%. The total concentrations were in the ranges 105-721 ng L-1 in river water and 51.3-332 ng L-1 in seawater. The HPCPs were dominated by p-hydroxybenzoic and triclosan, which together contributed over 75% of the total HPCPs. The average level of the total HPCP concentration in the summer of 2018 (96.1 ng L-1) was slightly exceed that in the spring of 2019 (91.6 ng L-1), which is associated with the higher usage of HPCPs and enhanced tourism during summer. However, the highest total concentrations were found in spring of 2021 (124 ng L-1 in average), which was attribute to a higher level of methylparaben, a predominant paraben used as preservatives in commercial pharmaceuticals of China. Influenced by riverine inputs and ocean currents, higher HPCP concentrations in Laizhou Bay were found nearby the estuary of Yellow River and the southern part of the bay. Triclosan should be given constant concern considering its medium to high risks (RQ > 0.1) in nearly 80% of the water samples. The cumulative risk assessment in two approaches revealed that HPCP mixtures generally elicit medium or high risk to three main aquatic taxa. Considering the worldwide outbreak of COVID-19, the levels and risks of multiple HPCPs in natural waters requires constant attention in future studies.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jing Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yun Li
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Cui M, Xu S, Song W, Ye H, Huang J, Liu B, Dong B, Xu Z. Trace metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in the surface sediments from Sanya River, China: Distribution, sources and ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118614. [PMID: 34863889 DOI: 10.1016/j.envpol.2021.118614] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The urban inland river ecosystems are now facing comprehensive pollution and governance pressures. Up to now, few works related to the multiple pollution assessment of trace metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) for the urban inland river sediments have been reported in China. Our study investigated the spatial distribution, ecological risk and potential sources of trace metals, PAHs and PCBs in surface sediment collected from 20 sampling sites of Sanya River, Hainan Province, China. The pollution status and potential ecological risk of trace metals were evaluated using the contamination indexes including geoaccumulation index (Igeo), individual potential ecological risk (Eri), potential ecological risk index (RI) and pollution load index (PLI). Considering the carcinogenicity and toxicity of PAHs and PCBs to human health and the ecological environment, we also analyzed the distributions, sources and adverse biological effects of PAHs and PCBs according to the sediment quality guidelines (SQGs), principal component analysis (PCA) and other source analysis. This study revealed that the surface sediments in Sanya River were extremely slight pollution and showed a very low ecological risk according to Igeo, Eri, PLI and RI results for trace metals. Besides, PAHs and PCBs pollution detected may not pose considerable adverse biological effect to ecological environment in a foreseeable period on the basis of comprehensive research results. The overall surface sediments quality of the Sanya River not seem to pose a serious pollution and ecological risk based on the evaluation results of multiple pollution factors. The study provided detailed information on the multiple pollution status and location of surface sediments, one of the key environmental indicators of international tourism cities, in the Sanya River, which would be useful for the water quality improvement of Sanya River and the environmental remediation of the other coastal ecosystems from different regions.
Collapse
Affiliation(s)
- Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shiliang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, 200092, PR China
| | - Wenqing Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, 200092, PR China
| | - Huibin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jialiang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China
| | - Binhan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
6
|
Lu S, Lin C, Lei K, Xin M, Wang B, Ouyang W, Liu X, He M. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117588. [PMID: 34153606 DOI: 10.1016/j.envpol.2021.117588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) in water are receiving particular attention as they pose adverse effects on aquatic systems, even at trace concentrations. A comprehensive study was conducted on 14 EDCs (five estrogens and nine household and personal care products (HPCPs)) in the water of the urbanized Jiaozhou Bay in the Yellow Sea during summer and winter. Results showed that the total concentration of 14 EDCs ranged from 100 to 658 ng L-1 and 56.7-212 ng L-1 in the estuarine and bay water, respectively. The average total concentration of five estrogens in summer was significantly (p < 0.05) lower than that in winter due to the higher precipitation dilution and degradations during summer, whereas the average total concentration of nine HPCPs was significantly (p < 0.05) higher during the summer than that during the winter because of the higher usage and emissions during the summer. Estrogens and HPCPs were dominated by 17α-ethinylestradiol and p-hydroxybenzoic acid (PHBA), respectively. High PHBA concentrations may be related to the hydrolysis of parabens. The total concentrations of EDCs were higher in the eastern coastal seawater of the bay due to the strong influence of domestic and industrial wastewater discharge. Estrogens may interfere with the endocrine system of aquatic organisms in the bay because the total estradiol equivalent concentration exceeded 1 ng L-1. 17α-ethinylestradiol was the main contributor to the estrogenic activity. The EDC mixtures posed high risks (RQ > 1) to mollusks, crustaceans, and fish, and low to moderate risks (RQ < 1) to algae. Fish was the most sensitive aquatic taxon to the EDC mixtures. Given the concentration and frequency of EDCs, the optimized risk quotient method revealed that 17α-ethinylestradiol, estrone, triclocarban, triclosan, and 17β-estradiol should be prioritized in ecological management because of their high risks (prioritization index of >1).
Collapse
Affiliation(s)
- Shuang Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kai Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Wei Ouyang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Pharmaceuticals in Wastewater Treatment Plants: A Systematic Review on the Substances of Greatest Concern Responsible for the Development of Antimicrobial Resistance. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, there is a growing concern about the alarming spread of antimicrobial resistance (AMR) in different environments. Increasingly, many species of bacteria, fungi and viruses are becoming immune to the most commonly used pharmaceuticals. One of the causes of the development of the resistance is the persistence of these drugs, excreted by humans, in municipal and hospital wastewater (WW). Consequently, wastewater treatment plants (WWTPs) are a primary source of antimicrobial resistance genes as novel pollutants. This systematic review sought to examine the relevant literature on pharmaceutical residues (PRs) responsible for AMR in municipal and hospital WW in order to propose a classification of the PRs of greatest concern and provide an updated source for AMR management in WWTPs. Among 546 studies collected from four databases, 18 were included in the present review. The internal and external validity of each study was assessed, and the risk of bias was evaluated on a 20-parameter basis. Results were combined in a narrative synthesis discussing influent and effluent PR concentrations at 88 WWTPs, seasonal variations, differences between hospital and municipal WW, environmental risk assessment values of antimicrobial substances and treatment facilities removal efficiencies. Among the 45 PRs responsible for AMR evaluated in this study, the antibiotics ciprofloxacin, clarithromycin, erythromycin, metronidazole, ofloxacin, sulfamethoxazole and trimethoprim constitute a considerable risk in terms of ubiquitous distribution, worrying concentrations, risk quotient values and resistance to removal treatments. Gaps in knowledge, data and information reported in this review will provide a valuable source for managing AMR in WWTPs.
Collapse
|